xref: /openbmc/linux/arch/arm/crypto/aes-ce-glue.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * aes-ce-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/hwcap.h>
9 #include <asm/neon.h>
10 #include <asm/simd.h>
11 #include <asm/unaligned.h>
12 #include <crypto/aes.h>
13 #include <crypto/ctr.h>
14 #include <crypto/internal/simd.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/scatterwalk.h>
17 #include <linux/cpufeature.h>
18 #include <linux/module.h>
19 #include <crypto/xts.h>
20 
21 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
22 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
23 MODULE_LICENSE("GPL v2");
24 
25 /* defined in aes-ce-core.S */
26 asmlinkage u32 ce_aes_sub(u32 input);
27 asmlinkage void ce_aes_invert(void *dst, void *src);
28 
29 asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
30 				   int rounds, int blocks);
31 asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
32 				   int rounds, int blocks);
33 
34 asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
35 				   int rounds, int blocks, u8 iv[]);
36 asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
37 				   int rounds, int blocks, u8 iv[]);
38 asmlinkage void ce_aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
39 				   int rounds, int bytes, u8 const iv[]);
40 asmlinkage void ce_aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
41 				   int rounds, int bytes, u8 const iv[]);
42 
43 asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
44 				   int rounds, int blocks, u8 ctr[]);
45 
46 asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
47 				   int rounds, int bytes, u8 iv[],
48 				   u32 const rk2[], int first);
49 asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
50 				   int rounds, int bytes, u8 iv[],
51 				   u32 const rk2[], int first);
52 
53 struct aes_block {
54 	u8 b[AES_BLOCK_SIZE];
55 };
56 
57 static int num_rounds(struct crypto_aes_ctx *ctx)
58 {
59 	/*
60 	 * # of rounds specified by AES:
61 	 * 128 bit key		10 rounds
62 	 * 192 bit key		12 rounds
63 	 * 256 bit key		14 rounds
64 	 * => n byte key	=> 6 + (n/4) rounds
65 	 */
66 	return 6 + ctx->key_length / 4;
67 }
68 
69 static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
70 			    unsigned int key_len)
71 {
72 	/*
73 	 * The AES key schedule round constants
74 	 */
75 	static u8 const rcon[] = {
76 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
77 	};
78 
79 	u32 kwords = key_len / sizeof(u32);
80 	struct aes_block *key_enc, *key_dec;
81 	int i, j;
82 
83 	if (key_len != AES_KEYSIZE_128 &&
84 	    key_len != AES_KEYSIZE_192 &&
85 	    key_len != AES_KEYSIZE_256)
86 		return -EINVAL;
87 
88 	ctx->key_length = key_len;
89 	for (i = 0; i < kwords; i++)
90 		ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
91 
92 	kernel_neon_begin();
93 	for (i = 0; i < sizeof(rcon); i++) {
94 		u32 *rki = ctx->key_enc + (i * kwords);
95 		u32 *rko = rki + kwords;
96 
97 		rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
98 		rko[0] = rko[0] ^ rki[0] ^ rcon[i];
99 		rko[1] = rko[0] ^ rki[1];
100 		rko[2] = rko[1] ^ rki[2];
101 		rko[3] = rko[2] ^ rki[3];
102 
103 		if (key_len == AES_KEYSIZE_192) {
104 			if (i >= 7)
105 				break;
106 			rko[4] = rko[3] ^ rki[4];
107 			rko[5] = rko[4] ^ rki[5];
108 		} else if (key_len == AES_KEYSIZE_256) {
109 			if (i >= 6)
110 				break;
111 			rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
112 			rko[5] = rko[4] ^ rki[5];
113 			rko[6] = rko[5] ^ rki[6];
114 			rko[7] = rko[6] ^ rki[7];
115 		}
116 	}
117 
118 	/*
119 	 * Generate the decryption keys for the Equivalent Inverse Cipher.
120 	 * This involves reversing the order of the round keys, and applying
121 	 * the Inverse Mix Columns transformation on all but the first and
122 	 * the last one.
123 	 */
124 	key_enc = (struct aes_block *)ctx->key_enc;
125 	key_dec = (struct aes_block *)ctx->key_dec;
126 	j = num_rounds(ctx);
127 
128 	key_dec[0] = key_enc[j];
129 	for (i = 1, j--; j > 0; i++, j--)
130 		ce_aes_invert(key_dec + i, key_enc + j);
131 	key_dec[i] = key_enc[0];
132 
133 	kernel_neon_end();
134 	return 0;
135 }
136 
137 static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
138 			 unsigned int key_len)
139 {
140 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
141 	int ret;
142 
143 	ret = ce_aes_expandkey(ctx, in_key, key_len);
144 	if (!ret)
145 		return 0;
146 
147 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
148 	return -EINVAL;
149 }
150 
151 struct crypto_aes_xts_ctx {
152 	struct crypto_aes_ctx key1;
153 	struct crypto_aes_ctx __aligned(8) key2;
154 };
155 
156 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
157 		       unsigned int key_len)
158 {
159 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
160 	int ret;
161 
162 	ret = xts_verify_key(tfm, in_key, key_len);
163 	if (ret)
164 		return ret;
165 
166 	ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
167 	if (!ret)
168 		ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
169 				       key_len / 2);
170 	if (!ret)
171 		return 0;
172 
173 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
174 	return -EINVAL;
175 }
176 
177 static int ecb_encrypt(struct skcipher_request *req)
178 {
179 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
180 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
181 	struct skcipher_walk walk;
182 	unsigned int blocks;
183 	int err;
184 
185 	err = skcipher_walk_virt(&walk, req, false);
186 
187 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
188 		kernel_neon_begin();
189 		ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
190 				   ctx->key_enc, num_rounds(ctx), blocks);
191 		kernel_neon_end();
192 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
193 	}
194 	return err;
195 }
196 
197 static int ecb_decrypt(struct skcipher_request *req)
198 {
199 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
200 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
201 	struct skcipher_walk walk;
202 	unsigned int blocks;
203 	int err;
204 
205 	err = skcipher_walk_virt(&walk, req, false);
206 
207 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
208 		kernel_neon_begin();
209 		ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
210 				   ctx->key_dec, num_rounds(ctx), blocks);
211 		kernel_neon_end();
212 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
213 	}
214 	return err;
215 }
216 
217 static int cbc_encrypt_walk(struct skcipher_request *req,
218 			    struct skcipher_walk *walk)
219 {
220 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
221 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
222 	unsigned int blocks;
223 	int err = 0;
224 
225 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
226 		kernel_neon_begin();
227 		ce_aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
228 				   ctx->key_enc, num_rounds(ctx), blocks,
229 				   walk->iv);
230 		kernel_neon_end();
231 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
232 	}
233 	return err;
234 }
235 
236 static int cbc_encrypt(struct skcipher_request *req)
237 {
238 	struct skcipher_walk walk;
239 	int err;
240 
241 	err = skcipher_walk_virt(&walk, req, false);
242 	if (err)
243 		return err;
244 	return cbc_encrypt_walk(req, &walk);
245 }
246 
247 static int cbc_decrypt_walk(struct skcipher_request *req,
248 			    struct skcipher_walk *walk)
249 {
250 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
251 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
252 	unsigned int blocks;
253 	int err = 0;
254 
255 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
256 		kernel_neon_begin();
257 		ce_aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
258 				   ctx->key_dec, num_rounds(ctx), blocks,
259 				   walk->iv);
260 		kernel_neon_end();
261 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
262 	}
263 	return err;
264 }
265 
266 static int cbc_decrypt(struct skcipher_request *req)
267 {
268 	struct skcipher_walk walk;
269 	int err;
270 
271 	err = skcipher_walk_virt(&walk, req, false);
272 	if (err)
273 		return err;
274 	return cbc_decrypt_walk(req, &walk);
275 }
276 
277 static int cts_cbc_encrypt(struct skcipher_request *req)
278 {
279 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
280 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
281 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
282 	struct scatterlist *src = req->src, *dst = req->dst;
283 	struct scatterlist sg_src[2], sg_dst[2];
284 	struct skcipher_request subreq;
285 	struct skcipher_walk walk;
286 	int err;
287 
288 	skcipher_request_set_tfm(&subreq, tfm);
289 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
290 				      NULL, NULL);
291 
292 	if (req->cryptlen <= AES_BLOCK_SIZE) {
293 		if (req->cryptlen < AES_BLOCK_SIZE)
294 			return -EINVAL;
295 		cbc_blocks = 1;
296 	}
297 
298 	if (cbc_blocks > 0) {
299 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
300 					   cbc_blocks * AES_BLOCK_SIZE,
301 					   req->iv);
302 
303 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
304 		      cbc_encrypt_walk(&subreq, &walk);
305 		if (err)
306 			return err;
307 
308 		if (req->cryptlen == AES_BLOCK_SIZE)
309 			return 0;
310 
311 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
312 		if (req->dst != req->src)
313 			dst = scatterwalk_ffwd(sg_dst, req->dst,
314 					       subreq.cryptlen);
315 	}
316 
317 	/* handle ciphertext stealing */
318 	skcipher_request_set_crypt(&subreq, src, dst,
319 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
320 				   req->iv);
321 
322 	err = skcipher_walk_virt(&walk, &subreq, false);
323 	if (err)
324 		return err;
325 
326 	kernel_neon_begin();
327 	ce_aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
328 			       ctx->key_enc, num_rounds(ctx), walk.nbytes,
329 			       walk.iv);
330 	kernel_neon_end();
331 
332 	return skcipher_walk_done(&walk, 0);
333 }
334 
335 static int cts_cbc_decrypt(struct skcipher_request *req)
336 {
337 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
338 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
339 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
340 	struct scatterlist *src = req->src, *dst = req->dst;
341 	struct scatterlist sg_src[2], sg_dst[2];
342 	struct skcipher_request subreq;
343 	struct skcipher_walk walk;
344 	int err;
345 
346 	skcipher_request_set_tfm(&subreq, tfm);
347 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
348 				      NULL, NULL);
349 
350 	if (req->cryptlen <= AES_BLOCK_SIZE) {
351 		if (req->cryptlen < AES_BLOCK_SIZE)
352 			return -EINVAL;
353 		cbc_blocks = 1;
354 	}
355 
356 	if (cbc_blocks > 0) {
357 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
358 					   cbc_blocks * AES_BLOCK_SIZE,
359 					   req->iv);
360 
361 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
362 		      cbc_decrypt_walk(&subreq, &walk);
363 		if (err)
364 			return err;
365 
366 		if (req->cryptlen == AES_BLOCK_SIZE)
367 			return 0;
368 
369 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
370 		if (req->dst != req->src)
371 			dst = scatterwalk_ffwd(sg_dst, req->dst,
372 					       subreq.cryptlen);
373 	}
374 
375 	/* handle ciphertext stealing */
376 	skcipher_request_set_crypt(&subreq, src, dst,
377 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
378 				   req->iv);
379 
380 	err = skcipher_walk_virt(&walk, &subreq, false);
381 	if (err)
382 		return err;
383 
384 	kernel_neon_begin();
385 	ce_aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
386 			       ctx->key_dec, num_rounds(ctx), walk.nbytes,
387 			       walk.iv);
388 	kernel_neon_end();
389 
390 	return skcipher_walk_done(&walk, 0);
391 }
392 
393 static int ctr_encrypt(struct skcipher_request *req)
394 {
395 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
396 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
397 	struct skcipher_walk walk;
398 	int err, blocks;
399 
400 	err = skcipher_walk_virt(&walk, req, false);
401 
402 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
403 		kernel_neon_begin();
404 		ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
405 				   ctx->key_enc, num_rounds(ctx), blocks,
406 				   walk.iv);
407 		kernel_neon_end();
408 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
409 	}
410 	if (walk.nbytes) {
411 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
412 		unsigned int nbytes = walk.nbytes;
413 		u8 *tdst = walk.dst.virt.addr;
414 		u8 *tsrc = walk.src.virt.addr;
415 
416 		/*
417 		 * Tell aes_ctr_encrypt() to process a tail block.
418 		 */
419 		blocks = -1;
420 
421 		kernel_neon_begin();
422 		ce_aes_ctr_encrypt(tail, NULL, ctx->key_enc, num_rounds(ctx),
423 				   blocks, walk.iv);
424 		kernel_neon_end();
425 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
426 		err = skcipher_walk_done(&walk, 0);
427 	}
428 	return err;
429 }
430 
431 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
432 {
433 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
434 	unsigned long flags;
435 
436 	/*
437 	 * Temporarily disable interrupts to avoid races where
438 	 * cachelines are evicted when the CPU is interrupted
439 	 * to do something else.
440 	 */
441 	local_irq_save(flags);
442 	aes_encrypt(ctx, dst, src);
443 	local_irq_restore(flags);
444 }
445 
446 static int ctr_encrypt_sync(struct skcipher_request *req)
447 {
448 	if (!crypto_simd_usable())
449 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
450 
451 	return ctr_encrypt(req);
452 }
453 
454 static int xts_encrypt(struct skcipher_request *req)
455 {
456 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
457 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
458 	int err, first, rounds = num_rounds(&ctx->key1);
459 	int tail = req->cryptlen % AES_BLOCK_SIZE;
460 	struct scatterlist sg_src[2], sg_dst[2];
461 	struct skcipher_request subreq;
462 	struct scatterlist *src, *dst;
463 	struct skcipher_walk walk;
464 
465 	if (req->cryptlen < AES_BLOCK_SIZE)
466 		return -EINVAL;
467 
468 	err = skcipher_walk_virt(&walk, req, false);
469 
470 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
471 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
472 					      AES_BLOCK_SIZE) - 2;
473 
474 		skcipher_walk_abort(&walk);
475 
476 		skcipher_request_set_tfm(&subreq, tfm);
477 		skcipher_request_set_callback(&subreq,
478 					      skcipher_request_flags(req),
479 					      NULL, NULL);
480 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
481 					   xts_blocks * AES_BLOCK_SIZE,
482 					   req->iv);
483 		req = &subreq;
484 		err = skcipher_walk_virt(&walk, req, false);
485 	} else {
486 		tail = 0;
487 	}
488 
489 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
490 		int nbytes = walk.nbytes;
491 
492 		if (walk.nbytes < walk.total)
493 			nbytes &= ~(AES_BLOCK_SIZE - 1);
494 
495 		kernel_neon_begin();
496 		ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
497 				   ctx->key1.key_enc, rounds, nbytes, walk.iv,
498 				   ctx->key2.key_enc, first);
499 		kernel_neon_end();
500 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
501 	}
502 
503 	if (err || likely(!tail))
504 		return err;
505 
506 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
507 	if (req->dst != req->src)
508 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
509 
510 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
511 				   req->iv);
512 
513 	err = skcipher_walk_virt(&walk, req, false);
514 	if (err)
515 		return err;
516 
517 	kernel_neon_begin();
518 	ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
519 			   ctx->key1.key_enc, rounds, walk.nbytes, walk.iv,
520 			   ctx->key2.key_enc, first);
521 	kernel_neon_end();
522 
523 	return skcipher_walk_done(&walk, 0);
524 }
525 
526 static int xts_decrypt(struct skcipher_request *req)
527 {
528 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
529 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
530 	int err, first, rounds = num_rounds(&ctx->key1);
531 	int tail = req->cryptlen % AES_BLOCK_SIZE;
532 	struct scatterlist sg_src[2], sg_dst[2];
533 	struct skcipher_request subreq;
534 	struct scatterlist *src, *dst;
535 	struct skcipher_walk walk;
536 
537 	if (req->cryptlen < AES_BLOCK_SIZE)
538 		return -EINVAL;
539 
540 	err = skcipher_walk_virt(&walk, req, false);
541 
542 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
543 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
544 					      AES_BLOCK_SIZE) - 2;
545 
546 		skcipher_walk_abort(&walk);
547 
548 		skcipher_request_set_tfm(&subreq, tfm);
549 		skcipher_request_set_callback(&subreq,
550 					      skcipher_request_flags(req),
551 					      NULL, NULL);
552 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
553 					   xts_blocks * AES_BLOCK_SIZE,
554 					   req->iv);
555 		req = &subreq;
556 		err = skcipher_walk_virt(&walk, req, false);
557 	} else {
558 		tail = 0;
559 	}
560 
561 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
562 		int nbytes = walk.nbytes;
563 
564 		if (walk.nbytes < walk.total)
565 			nbytes &= ~(AES_BLOCK_SIZE - 1);
566 
567 		kernel_neon_begin();
568 		ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
569 				   ctx->key1.key_dec, rounds, nbytes, walk.iv,
570 				   ctx->key2.key_enc, first);
571 		kernel_neon_end();
572 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
573 	}
574 
575 	if (err || likely(!tail))
576 		return err;
577 
578 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
579 	if (req->dst != req->src)
580 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
581 
582 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
583 				   req->iv);
584 
585 	err = skcipher_walk_virt(&walk, req, false);
586 	if (err)
587 		return err;
588 
589 	kernel_neon_begin();
590 	ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
591 			   ctx->key1.key_dec, rounds, walk.nbytes, walk.iv,
592 			   ctx->key2.key_enc, first);
593 	kernel_neon_end();
594 
595 	return skcipher_walk_done(&walk, 0);
596 }
597 
598 static struct skcipher_alg aes_algs[] = { {
599 	.base.cra_name		= "__ecb(aes)",
600 	.base.cra_driver_name	= "__ecb-aes-ce",
601 	.base.cra_priority	= 300,
602 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
603 	.base.cra_blocksize	= AES_BLOCK_SIZE,
604 	.base.cra_ctxsize	= sizeof(struct crypto_aes_ctx),
605 	.base.cra_module	= THIS_MODULE,
606 
607 	.min_keysize		= AES_MIN_KEY_SIZE,
608 	.max_keysize		= AES_MAX_KEY_SIZE,
609 	.setkey			= ce_aes_setkey,
610 	.encrypt		= ecb_encrypt,
611 	.decrypt		= ecb_decrypt,
612 }, {
613 	.base.cra_name		= "__cbc(aes)",
614 	.base.cra_driver_name	= "__cbc-aes-ce",
615 	.base.cra_priority	= 300,
616 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
617 	.base.cra_blocksize	= AES_BLOCK_SIZE,
618 	.base.cra_ctxsize	= sizeof(struct crypto_aes_ctx),
619 	.base.cra_module	= THIS_MODULE,
620 
621 	.min_keysize		= AES_MIN_KEY_SIZE,
622 	.max_keysize		= AES_MAX_KEY_SIZE,
623 	.ivsize			= AES_BLOCK_SIZE,
624 	.setkey			= ce_aes_setkey,
625 	.encrypt		= cbc_encrypt,
626 	.decrypt		= cbc_decrypt,
627 }, {
628 	.base.cra_name		= "__cts(cbc(aes))",
629 	.base.cra_driver_name	= "__cts-cbc-aes-ce",
630 	.base.cra_priority	= 300,
631 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
632 	.base.cra_blocksize	= AES_BLOCK_SIZE,
633 	.base.cra_ctxsize	= sizeof(struct crypto_aes_ctx),
634 	.base.cra_module	= THIS_MODULE,
635 
636 	.min_keysize		= AES_MIN_KEY_SIZE,
637 	.max_keysize		= AES_MAX_KEY_SIZE,
638 	.ivsize			= AES_BLOCK_SIZE,
639 	.walksize		= 2 * AES_BLOCK_SIZE,
640 	.setkey			= ce_aes_setkey,
641 	.encrypt		= cts_cbc_encrypt,
642 	.decrypt		= cts_cbc_decrypt,
643 }, {
644 	.base.cra_name		= "__ctr(aes)",
645 	.base.cra_driver_name	= "__ctr-aes-ce",
646 	.base.cra_priority	= 300,
647 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
648 	.base.cra_blocksize	= 1,
649 	.base.cra_ctxsize	= sizeof(struct crypto_aes_ctx),
650 	.base.cra_module	= THIS_MODULE,
651 
652 	.min_keysize		= AES_MIN_KEY_SIZE,
653 	.max_keysize		= AES_MAX_KEY_SIZE,
654 	.ivsize			= AES_BLOCK_SIZE,
655 	.chunksize		= AES_BLOCK_SIZE,
656 	.setkey			= ce_aes_setkey,
657 	.encrypt		= ctr_encrypt,
658 	.decrypt		= ctr_encrypt,
659 }, {
660 	.base.cra_name		= "ctr(aes)",
661 	.base.cra_driver_name	= "ctr-aes-ce-sync",
662 	.base.cra_priority	= 300 - 1,
663 	.base.cra_blocksize	= 1,
664 	.base.cra_ctxsize	= sizeof(struct crypto_aes_ctx),
665 	.base.cra_module	= THIS_MODULE,
666 
667 	.min_keysize		= AES_MIN_KEY_SIZE,
668 	.max_keysize		= AES_MAX_KEY_SIZE,
669 	.ivsize			= AES_BLOCK_SIZE,
670 	.chunksize		= AES_BLOCK_SIZE,
671 	.setkey			= ce_aes_setkey,
672 	.encrypt		= ctr_encrypt_sync,
673 	.decrypt		= ctr_encrypt_sync,
674 }, {
675 	.base.cra_name		= "__xts(aes)",
676 	.base.cra_driver_name	= "__xts-aes-ce",
677 	.base.cra_priority	= 300,
678 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
679 	.base.cra_blocksize	= AES_BLOCK_SIZE,
680 	.base.cra_ctxsize	= sizeof(struct crypto_aes_xts_ctx),
681 	.base.cra_module	= THIS_MODULE,
682 
683 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
684 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
685 	.ivsize			= AES_BLOCK_SIZE,
686 	.walksize		= 2 * AES_BLOCK_SIZE,
687 	.setkey			= xts_set_key,
688 	.encrypt		= xts_encrypt,
689 	.decrypt		= xts_decrypt,
690 } };
691 
692 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
693 
694 static void aes_exit(void)
695 {
696 	int i;
697 
698 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
699 		simd_skcipher_free(aes_simd_algs[i]);
700 
701 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
702 }
703 
704 static int __init aes_init(void)
705 {
706 	struct simd_skcipher_alg *simd;
707 	const char *basename;
708 	const char *algname;
709 	const char *drvname;
710 	int err;
711 	int i;
712 
713 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
714 	if (err)
715 		return err;
716 
717 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
718 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
719 			continue;
720 
721 		algname = aes_algs[i].base.cra_name + 2;
722 		drvname = aes_algs[i].base.cra_driver_name + 2;
723 		basename = aes_algs[i].base.cra_driver_name;
724 		simd = simd_skcipher_create_compat(algname, drvname, basename);
725 		err = PTR_ERR(simd);
726 		if (IS_ERR(simd))
727 			goto unregister_simds;
728 
729 		aes_simd_algs[i] = simd;
730 	}
731 
732 	return 0;
733 
734 unregister_simds:
735 	aes_exit();
736 	return err;
737 }
738 
739 module_cpu_feature_match(AES, aes_init);
740 module_exit(aes_exit);
741