xref: /openbmc/linux/arch/arm/common/mcpm_entry.c (revision c819e2cf)
1 /*
2  * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3  *
4  * Created by:  Nicolas Pitre, March 2012
5  * Copyright:   (C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 #include <linux/cpu_pm.h>
16 
17 #include <asm/mcpm.h>
18 #include <asm/cacheflush.h>
19 #include <asm/idmap.h>
20 #include <asm/cputype.h>
21 #include <asm/suspend.h>
22 
23 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
24 
25 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
26 {
27 	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
28 	mcpm_entry_vectors[cluster][cpu] = val;
29 	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
30 }
31 
32 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
33 
34 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
35 			 unsigned long poke_phys_addr, unsigned long poke_val)
36 {
37 	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
38 	poke[0] = poke_phys_addr;
39 	poke[1] = poke_val;
40 	__sync_cache_range_w(poke, 2 * sizeof(*poke));
41 }
42 
43 static const struct mcpm_platform_ops *platform_ops;
44 
45 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
46 {
47 	if (platform_ops)
48 		return -EBUSY;
49 	platform_ops = ops;
50 	return 0;
51 }
52 
53 bool mcpm_is_available(void)
54 {
55 	return (platform_ops) ? true : false;
56 }
57 
58 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
59 {
60 	if (!platform_ops)
61 		return -EUNATCH; /* try not to shadow power_up errors */
62 	might_sleep();
63 	return platform_ops->power_up(cpu, cluster);
64 }
65 
66 typedef void (*phys_reset_t)(unsigned long);
67 
68 void mcpm_cpu_power_down(void)
69 {
70 	phys_reset_t phys_reset;
71 
72 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
73 		return;
74 	BUG_ON(!irqs_disabled());
75 
76 	/*
77 	 * Do this before calling into the power_down method,
78 	 * as it might not always be safe to do afterwards.
79 	 */
80 	setup_mm_for_reboot();
81 
82 	platform_ops->power_down();
83 
84 	/*
85 	 * It is possible for a power_up request to happen concurrently
86 	 * with a power_down request for the same CPU. In this case the
87 	 * power_down method might not be able to actually enter a
88 	 * powered down state with the WFI instruction if the power_up
89 	 * method has removed the required reset condition.  The
90 	 * power_down method is then allowed to return. We must perform
91 	 * a re-entry in the kernel as if the power_up method just had
92 	 * deasserted reset on the CPU.
93 	 *
94 	 * To simplify race issues, the platform specific implementation
95 	 * must accommodate for the possibility of unordered calls to
96 	 * power_down and power_up with a usage count. Therefore, if a
97 	 * call to power_up is issued for a CPU that is not down, then
98 	 * the next call to power_down must not attempt a full shutdown
99 	 * but only do the minimum (normally disabling L1 cache and CPU
100 	 * coherency) and return just as if a concurrent power_up request
101 	 * had happened as described above.
102 	 */
103 
104 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
105 	phys_reset(virt_to_phys(mcpm_entry_point));
106 
107 	/* should never get here */
108 	BUG();
109 }
110 
111 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
112 {
113 	int ret;
114 
115 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
116 		return -EUNATCH;
117 
118 	ret = platform_ops->wait_for_powerdown(cpu, cluster);
119 	if (ret)
120 		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
121 			__func__, cpu, cluster, ret);
122 
123 	return ret;
124 }
125 
126 void mcpm_cpu_suspend(u64 expected_residency)
127 {
128 	phys_reset_t phys_reset;
129 
130 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
131 		return;
132 	BUG_ON(!irqs_disabled());
133 
134 	/* Very similar to mcpm_cpu_power_down() */
135 	setup_mm_for_reboot();
136 	platform_ops->suspend(expected_residency);
137 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
138 	phys_reset(virt_to_phys(mcpm_entry_point));
139 	BUG();
140 }
141 
142 int mcpm_cpu_powered_up(void)
143 {
144 	if (!platform_ops)
145 		return -EUNATCH;
146 	if (platform_ops->powered_up)
147 		platform_ops->powered_up();
148 	return 0;
149 }
150 
151 #ifdef CONFIG_ARM_CPU_SUSPEND
152 
153 static int __init nocache_trampoline(unsigned long _arg)
154 {
155 	void (*cache_disable)(void) = (void *)_arg;
156 	unsigned int mpidr = read_cpuid_mpidr();
157 	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
158 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
159 	phys_reset_t phys_reset;
160 
161 	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
162 	setup_mm_for_reboot();
163 
164 	__mcpm_cpu_going_down(cpu, cluster);
165 	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
166 	cache_disable();
167 	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
168 	__mcpm_cpu_down(cpu, cluster);
169 
170 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
171 	phys_reset(virt_to_phys(mcpm_entry_point));
172 	BUG();
173 }
174 
175 int __init mcpm_loopback(void (*cache_disable)(void))
176 {
177 	int ret;
178 
179 	/*
180 	 * We're going to soft-restart the current CPU through the
181 	 * low-level MCPM code by leveraging the suspend/resume
182 	 * infrastructure. Let's play it safe by using cpu_pm_enter()
183 	 * in case the CPU init code path resets the VFP or similar.
184 	 */
185 	local_irq_disable();
186 	local_fiq_disable();
187 	ret = cpu_pm_enter();
188 	if (!ret) {
189 		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
190 		cpu_pm_exit();
191 	}
192 	local_fiq_enable();
193 	local_irq_enable();
194 	if (ret)
195 		pr_err("%s returned %d\n", __func__, ret);
196 	return ret;
197 }
198 
199 #endif
200 
201 struct sync_struct mcpm_sync;
202 
203 /*
204  * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
205  *    This must be called at the point of committing to teardown of a CPU.
206  *    The CPU cache (SCTRL.C bit) is expected to still be active.
207  */
208 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
209 {
210 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
211 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
212 }
213 
214 /*
215  * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
216  *    cluster can be torn down without disrupting this CPU.
217  *    To avoid deadlocks, this must be called before a CPU is powered down.
218  *    The CPU cache (SCTRL.C bit) is expected to be off.
219  *    However L2 cache might or might not be active.
220  */
221 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
222 {
223 	dmb();
224 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
225 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
226 	sev();
227 }
228 
229 /*
230  * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
231  * @state: the final state of the cluster:
232  *     CLUSTER_UP: no destructive teardown was done and the cluster has been
233  *         restored to the previous state (CPU cache still active); or
234  *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
235  *         (CPU cache disabled, L2 cache either enabled or disabled).
236  */
237 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
238 {
239 	dmb();
240 	mcpm_sync.clusters[cluster].cluster = state;
241 	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
242 	sev();
243 }
244 
245 /*
246  * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
247  * This function should be called by the last man, after local CPU teardown
248  * is complete.  CPU cache expected to be active.
249  *
250  * Returns:
251  *     false: the critical section was not entered because an inbound CPU was
252  *         observed, or the cluster is already being set up;
253  *     true: the critical section was entered: it is now safe to tear down the
254  *         cluster.
255  */
256 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
257 {
258 	unsigned int i;
259 	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
260 
261 	/* Warn inbound CPUs that the cluster is being torn down: */
262 	c->cluster = CLUSTER_GOING_DOWN;
263 	sync_cache_w(&c->cluster);
264 
265 	/* Back out if the inbound cluster is already in the critical region: */
266 	sync_cache_r(&c->inbound);
267 	if (c->inbound == INBOUND_COMING_UP)
268 		goto abort;
269 
270 	/*
271 	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
272 	 * teardown is complete on each CPU before tearing down the cluster.
273 	 *
274 	 * If any CPU has been woken up again from the DOWN state, then we
275 	 * shouldn't be taking the cluster down at all: abort in that case.
276 	 */
277 	sync_cache_r(&c->cpus);
278 	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
279 		int cpustate;
280 
281 		if (i == cpu)
282 			continue;
283 
284 		while (1) {
285 			cpustate = c->cpus[i].cpu;
286 			if (cpustate != CPU_GOING_DOWN)
287 				break;
288 
289 			wfe();
290 			sync_cache_r(&c->cpus[i].cpu);
291 		}
292 
293 		switch (cpustate) {
294 		case CPU_DOWN:
295 			continue;
296 
297 		default:
298 			goto abort;
299 		}
300 	}
301 
302 	return true;
303 
304 abort:
305 	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
306 	return false;
307 }
308 
309 int __mcpm_cluster_state(unsigned int cluster)
310 {
311 	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
312 	return mcpm_sync.clusters[cluster].cluster;
313 }
314 
315 extern unsigned long mcpm_power_up_setup_phys;
316 
317 int __init mcpm_sync_init(
318 	void (*power_up_setup)(unsigned int affinity_level))
319 {
320 	unsigned int i, j, mpidr, this_cluster;
321 
322 	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
323 	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
324 
325 	/*
326 	 * Set initial CPU and cluster states.
327 	 * Only one cluster is assumed to be active at this point.
328 	 */
329 	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
330 		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
331 		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
332 		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
333 			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
334 	}
335 	mpidr = read_cpuid_mpidr();
336 	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
337 	for_each_online_cpu(i)
338 		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
339 	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
340 	sync_cache_w(&mcpm_sync);
341 
342 	if (power_up_setup) {
343 		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
344 		sync_cache_w(&mcpm_power_up_setup_phys);
345 	}
346 
347 	return 0;
348 }
349