xref: /openbmc/linux/arch/arm/common/mcpm_entry.c (revision 8a10bc9d)
1 /*
2  * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3  *
4  * Created by:  Nicolas Pitre, March 2012
5  * Copyright:   (C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 
16 #include <asm/mcpm.h>
17 #include <asm/cacheflush.h>
18 #include <asm/idmap.h>
19 #include <asm/cputype.h>
20 
21 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
22 
23 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
24 {
25 	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
26 	mcpm_entry_vectors[cluster][cpu] = val;
27 	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
28 }
29 
30 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
31 
32 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
33 			 unsigned long poke_phys_addr, unsigned long poke_val)
34 {
35 	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
36 	poke[0] = poke_phys_addr;
37 	poke[1] = poke_val;
38 	__sync_cache_range_w(poke, 2 * sizeof(*poke));
39 }
40 
41 static const struct mcpm_platform_ops *platform_ops;
42 
43 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
44 {
45 	if (platform_ops)
46 		return -EBUSY;
47 	platform_ops = ops;
48 	return 0;
49 }
50 
51 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
52 {
53 	if (!platform_ops)
54 		return -EUNATCH; /* try not to shadow power_up errors */
55 	might_sleep();
56 	return platform_ops->power_up(cpu, cluster);
57 }
58 
59 typedef void (*phys_reset_t)(unsigned long);
60 
61 void mcpm_cpu_power_down(void)
62 {
63 	phys_reset_t phys_reset;
64 
65 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
66 		return;
67 	BUG_ON(!irqs_disabled());
68 
69 	/*
70 	 * Do this before calling into the power_down method,
71 	 * as it might not always be safe to do afterwards.
72 	 */
73 	setup_mm_for_reboot();
74 
75 	platform_ops->power_down();
76 
77 	/*
78 	 * It is possible for a power_up request to happen concurrently
79 	 * with a power_down request for the same CPU. In this case the
80 	 * power_down method might not be able to actually enter a
81 	 * powered down state with the WFI instruction if the power_up
82 	 * method has removed the required reset condition.  The
83 	 * power_down method is then allowed to return. We must perform
84 	 * a re-entry in the kernel as if the power_up method just had
85 	 * deasserted reset on the CPU.
86 	 *
87 	 * To simplify race issues, the platform specific implementation
88 	 * must accommodate for the possibility of unordered calls to
89 	 * power_down and power_up with a usage count. Therefore, if a
90 	 * call to power_up is issued for a CPU that is not down, then
91 	 * the next call to power_down must not attempt a full shutdown
92 	 * but only do the minimum (normally disabling L1 cache and CPU
93 	 * coherency) and return just as if a concurrent power_up request
94 	 * had happened as described above.
95 	 */
96 
97 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
98 	phys_reset(virt_to_phys(mcpm_entry_point));
99 
100 	/* should never get here */
101 	BUG();
102 }
103 
104 int mcpm_cpu_power_down_finish(unsigned int cpu, unsigned int cluster)
105 {
106 	int ret;
107 
108 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down_finish))
109 		return -EUNATCH;
110 
111 	ret = platform_ops->power_down_finish(cpu, cluster);
112 	if (ret)
113 		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
114 			__func__, cpu, cluster, ret);
115 
116 	return ret;
117 }
118 
119 void mcpm_cpu_suspend(u64 expected_residency)
120 {
121 	phys_reset_t phys_reset;
122 
123 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
124 		return;
125 	BUG_ON(!irqs_disabled());
126 
127 	/* Very similar to mcpm_cpu_power_down() */
128 	setup_mm_for_reboot();
129 	platform_ops->suspend(expected_residency);
130 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
131 	phys_reset(virt_to_phys(mcpm_entry_point));
132 	BUG();
133 }
134 
135 int mcpm_cpu_powered_up(void)
136 {
137 	if (!platform_ops)
138 		return -EUNATCH;
139 	if (platform_ops->powered_up)
140 		platform_ops->powered_up();
141 	return 0;
142 }
143 
144 struct sync_struct mcpm_sync;
145 
146 /*
147  * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
148  *    This must be called at the point of committing to teardown of a CPU.
149  *    The CPU cache (SCTRL.C bit) is expected to still be active.
150  */
151 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
152 {
153 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
154 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
155 }
156 
157 /*
158  * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
159  *    cluster can be torn down without disrupting this CPU.
160  *    To avoid deadlocks, this must be called before a CPU is powered down.
161  *    The CPU cache (SCTRL.C bit) is expected to be off.
162  *    However L2 cache might or might not be active.
163  */
164 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
165 {
166 	dmb();
167 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
168 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
169 	sev();
170 }
171 
172 /*
173  * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
174  * @state: the final state of the cluster:
175  *     CLUSTER_UP: no destructive teardown was done and the cluster has been
176  *         restored to the previous state (CPU cache still active); or
177  *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
178  *         (CPU cache disabled, L2 cache either enabled or disabled).
179  */
180 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
181 {
182 	dmb();
183 	mcpm_sync.clusters[cluster].cluster = state;
184 	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
185 	sev();
186 }
187 
188 /*
189  * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
190  * This function should be called by the last man, after local CPU teardown
191  * is complete.  CPU cache expected to be active.
192  *
193  * Returns:
194  *     false: the critical section was not entered because an inbound CPU was
195  *         observed, or the cluster is already being set up;
196  *     true: the critical section was entered: it is now safe to tear down the
197  *         cluster.
198  */
199 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
200 {
201 	unsigned int i;
202 	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
203 
204 	/* Warn inbound CPUs that the cluster is being torn down: */
205 	c->cluster = CLUSTER_GOING_DOWN;
206 	sync_cache_w(&c->cluster);
207 
208 	/* Back out if the inbound cluster is already in the critical region: */
209 	sync_cache_r(&c->inbound);
210 	if (c->inbound == INBOUND_COMING_UP)
211 		goto abort;
212 
213 	/*
214 	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
215 	 * teardown is complete on each CPU before tearing down the cluster.
216 	 *
217 	 * If any CPU has been woken up again from the DOWN state, then we
218 	 * shouldn't be taking the cluster down at all: abort in that case.
219 	 */
220 	sync_cache_r(&c->cpus);
221 	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
222 		int cpustate;
223 
224 		if (i == cpu)
225 			continue;
226 
227 		while (1) {
228 			cpustate = c->cpus[i].cpu;
229 			if (cpustate != CPU_GOING_DOWN)
230 				break;
231 
232 			wfe();
233 			sync_cache_r(&c->cpus[i].cpu);
234 		}
235 
236 		switch (cpustate) {
237 		case CPU_DOWN:
238 			continue;
239 
240 		default:
241 			goto abort;
242 		}
243 	}
244 
245 	return true;
246 
247 abort:
248 	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
249 	return false;
250 }
251 
252 int __mcpm_cluster_state(unsigned int cluster)
253 {
254 	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
255 	return mcpm_sync.clusters[cluster].cluster;
256 }
257 
258 extern unsigned long mcpm_power_up_setup_phys;
259 
260 int __init mcpm_sync_init(
261 	void (*power_up_setup)(unsigned int affinity_level))
262 {
263 	unsigned int i, j, mpidr, this_cluster;
264 
265 	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
266 	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
267 
268 	/*
269 	 * Set initial CPU and cluster states.
270 	 * Only one cluster is assumed to be active at this point.
271 	 */
272 	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
273 		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
274 		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
275 		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
276 			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
277 	}
278 	mpidr = read_cpuid_mpidr();
279 	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
280 	for_each_online_cpu(i)
281 		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
282 	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
283 	sync_cache_w(&mcpm_sync);
284 
285 	if (power_up_setup) {
286 		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
287 		sync_cache_w(&mcpm_power_up_setup_phys);
288 	}
289 
290 	return 0;
291 }
292