1 /* 2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/irqflags.h> 15 #include <linux/cpu_pm.h> 16 17 #include <asm/mcpm.h> 18 #include <asm/cacheflush.h> 19 #include <asm/idmap.h> 20 #include <asm/cputype.h> 21 #include <asm/suspend.h> 22 23 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; 24 25 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) 26 { 27 unsigned long val = ptr ? virt_to_phys(ptr) : 0; 28 mcpm_entry_vectors[cluster][cpu] = val; 29 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); 30 } 31 32 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2]; 33 34 void mcpm_set_early_poke(unsigned cpu, unsigned cluster, 35 unsigned long poke_phys_addr, unsigned long poke_val) 36 { 37 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0]; 38 poke[0] = poke_phys_addr; 39 poke[1] = poke_val; 40 __sync_cache_range_w(poke, 2 * sizeof(*poke)); 41 } 42 43 static const struct mcpm_platform_ops *platform_ops; 44 45 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops) 46 { 47 if (platform_ops) 48 return -EBUSY; 49 platform_ops = ops; 50 return 0; 51 } 52 53 bool mcpm_is_available(void) 54 { 55 return (platform_ops) ? true : false; 56 } 57 58 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster) 59 { 60 if (!platform_ops) 61 return -EUNATCH; /* try not to shadow power_up errors */ 62 might_sleep(); 63 return platform_ops->power_up(cpu, cluster); 64 } 65 66 typedef void (*phys_reset_t)(unsigned long); 67 68 void mcpm_cpu_power_down(void) 69 { 70 phys_reset_t phys_reset; 71 72 if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down)) 73 return; 74 BUG_ON(!irqs_disabled()); 75 76 /* 77 * Do this before calling into the power_down method, 78 * as it might not always be safe to do afterwards. 79 */ 80 setup_mm_for_reboot(); 81 82 platform_ops->power_down(); 83 84 /* 85 * It is possible for a power_up request to happen concurrently 86 * with a power_down request for the same CPU. In this case the 87 * power_down method might not be able to actually enter a 88 * powered down state with the WFI instruction if the power_up 89 * method has removed the required reset condition. The 90 * power_down method is then allowed to return. We must perform 91 * a re-entry in the kernel as if the power_up method just had 92 * deasserted reset on the CPU. 93 * 94 * To simplify race issues, the platform specific implementation 95 * must accommodate for the possibility of unordered calls to 96 * power_down and power_up with a usage count. Therefore, if a 97 * call to power_up is issued for a CPU that is not down, then 98 * the next call to power_down must not attempt a full shutdown 99 * but only do the minimum (normally disabling L1 cache and CPU 100 * coherency) and return just as if a concurrent power_up request 101 * had happened as described above. 102 */ 103 104 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset); 105 phys_reset(virt_to_phys(mcpm_entry_point)); 106 107 /* should never get here */ 108 BUG(); 109 } 110 111 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster) 112 { 113 int ret; 114 115 if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown)) 116 return -EUNATCH; 117 118 ret = platform_ops->wait_for_powerdown(cpu, cluster); 119 if (ret) 120 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n", 121 __func__, cpu, cluster, ret); 122 123 return ret; 124 } 125 126 void mcpm_cpu_suspend(u64 expected_residency) 127 { 128 phys_reset_t phys_reset; 129 130 if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend)) 131 return; 132 BUG_ON(!irqs_disabled()); 133 134 /* Very similar to mcpm_cpu_power_down() */ 135 setup_mm_for_reboot(); 136 platform_ops->suspend(expected_residency); 137 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset); 138 phys_reset(virt_to_phys(mcpm_entry_point)); 139 BUG(); 140 } 141 142 int mcpm_cpu_powered_up(void) 143 { 144 if (!platform_ops) 145 return -EUNATCH; 146 if (platform_ops->powered_up) 147 platform_ops->powered_up(); 148 return 0; 149 } 150 151 #ifdef CONFIG_ARM_CPU_SUSPEND 152 153 static int __init nocache_trampoline(unsigned long _arg) 154 { 155 void (*cache_disable)(void) = (void *)_arg; 156 unsigned int mpidr = read_cpuid_mpidr(); 157 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 158 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 159 phys_reset_t phys_reset; 160 161 mcpm_set_entry_vector(cpu, cluster, cpu_resume); 162 setup_mm_for_reboot(); 163 164 __mcpm_cpu_going_down(cpu, cluster); 165 BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); 166 cache_disable(); 167 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); 168 __mcpm_cpu_down(cpu, cluster); 169 170 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset); 171 phys_reset(virt_to_phys(mcpm_entry_point)); 172 BUG(); 173 } 174 175 int __init mcpm_loopback(void (*cache_disable)(void)) 176 { 177 int ret; 178 179 /* 180 * We're going to soft-restart the current CPU through the 181 * low-level MCPM code by leveraging the suspend/resume 182 * infrastructure. Let's play it safe by using cpu_pm_enter() 183 * in case the CPU init code path resets the VFP or similar. 184 */ 185 local_irq_disable(); 186 local_fiq_disable(); 187 ret = cpu_pm_enter(); 188 if (!ret) { 189 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline); 190 cpu_pm_exit(); 191 } 192 local_fiq_enable(); 193 local_irq_enable(); 194 if (ret) 195 pr_err("%s returned %d\n", __func__, ret); 196 return ret; 197 } 198 199 #endif 200 201 struct sync_struct mcpm_sync; 202 203 /* 204 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down. 205 * This must be called at the point of committing to teardown of a CPU. 206 * The CPU cache (SCTRL.C bit) is expected to still be active. 207 */ 208 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster) 209 { 210 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN; 211 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); 212 } 213 214 /* 215 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the 216 * cluster can be torn down without disrupting this CPU. 217 * To avoid deadlocks, this must be called before a CPU is powered down. 218 * The CPU cache (SCTRL.C bit) is expected to be off. 219 * However L2 cache might or might not be active. 220 */ 221 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster) 222 { 223 dmb(); 224 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN; 225 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); 226 sev(); 227 } 228 229 /* 230 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section. 231 * @state: the final state of the cluster: 232 * CLUSTER_UP: no destructive teardown was done and the cluster has been 233 * restored to the previous state (CPU cache still active); or 234 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off 235 * (CPU cache disabled, L2 cache either enabled or disabled). 236 */ 237 void __mcpm_outbound_leave_critical(unsigned int cluster, int state) 238 { 239 dmb(); 240 mcpm_sync.clusters[cluster].cluster = state; 241 sync_cache_w(&mcpm_sync.clusters[cluster].cluster); 242 sev(); 243 } 244 245 /* 246 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section. 247 * This function should be called by the last man, after local CPU teardown 248 * is complete. CPU cache expected to be active. 249 * 250 * Returns: 251 * false: the critical section was not entered because an inbound CPU was 252 * observed, or the cluster is already being set up; 253 * true: the critical section was entered: it is now safe to tear down the 254 * cluster. 255 */ 256 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster) 257 { 258 unsigned int i; 259 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster]; 260 261 /* Warn inbound CPUs that the cluster is being torn down: */ 262 c->cluster = CLUSTER_GOING_DOWN; 263 sync_cache_w(&c->cluster); 264 265 /* Back out if the inbound cluster is already in the critical region: */ 266 sync_cache_r(&c->inbound); 267 if (c->inbound == INBOUND_COMING_UP) 268 goto abort; 269 270 /* 271 * Wait for all CPUs to get out of the GOING_DOWN state, so that local 272 * teardown is complete on each CPU before tearing down the cluster. 273 * 274 * If any CPU has been woken up again from the DOWN state, then we 275 * shouldn't be taking the cluster down at all: abort in that case. 276 */ 277 sync_cache_r(&c->cpus); 278 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) { 279 int cpustate; 280 281 if (i == cpu) 282 continue; 283 284 while (1) { 285 cpustate = c->cpus[i].cpu; 286 if (cpustate != CPU_GOING_DOWN) 287 break; 288 289 wfe(); 290 sync_cache_r(&c->cpus[i].cpu); 291 } 292 293 switch (cpustate) { 294 case CPU_DOWN: 295 continue; 296 297 default: 298 goto abort; 299 } 300 } 301 302 return true; 303 304 abort: 305 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP); 306 return false; 307 } 308 309 int __mcpm_cluster_state(unsigned int cluster) 310 { 311 sync_cache_r(&mcpm_sync.clusters[cluster].cluster); 312 return mcpm_sync.clusters[cluster].cluster; 313 } 314 315 extern unsigned long mcpm_power_up_setup_phys; 316 317 int __init mcpm_sync_init( 318 void (*power_up_setup)(unsigned int affinity_level)) 319 { 320 unsigned int i, j, mpidr, this_cluster; 321 322 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync); 323 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1)); 324 325 /* 326 * Set initial CPU and cluster states. 327 * Only one cluster is assumed to be active at this point. 328 */ 329 for (i = 0; i < MAX_NR_CLUSTERS; i++) { 330 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN; 331 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP; 332 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++) 333 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN; 334 } 335 mpidr = read_cpuid_mpidr(); 336 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 337 for_each_online_cpu(i) 338 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP; 339 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP; 340 sync_cache_w(&mcpm_sync); 341 342 if (power_up_setup) { 343 mcpm_power_up_setup_phys = virt_to_phys(power_up_setup); 344 sync_cache_w(&mcpm_power_up_setup_phys); 345 } 346 347 return 0; 348 } 349