xref: /openbmc/linux/arch/arm/common/mcpm_entry.c (revision 3d3337de)
1 /*
2  * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3  *
4  * Created by:  Nicolas Pitre, March 2012
5  * Copyright:   (C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 #include <linux/cpu_pm.h>
16 
17 #include <asm/mcpm.h>
18 #include <asm/cacheflush.h>
19 #include <asm/idmap.h>
20 #include <asm/cputype.h>
21 #include <asm/suspend.h>
22 
23 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
24 
25 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
26 {
27 	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
28 	mcpm_entry_vectors[cluster][cpu] = val;
29 	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
30 }
31 
32 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
33 
34 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
35 			 unsigned long poke_phys_addr, unsigned long poke_val)
36 {
37 	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
38 	poke[0] = poke_phys_addr;
39 	poke[1] = poke_val;
40 	__sync_cache_range_w(poke, 2 * sizeof(*poke));
41 }
42 
43 static const struct mcpm_platform_ops *platform_ops;
44 
45 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
46 {
47 	if (platform_ops)
48 		return -EBUSY;
49 	platform_ops = ops;
50 	return 0;
51 }
52 
53 bool mcpm_is_available(void)
54 {
55 	return (platform_ops) ? true : false;
56 }
57 
58 /*
59  * We can't use regular spinlocks. In the switcher case, it is possible
60  * for an outbound CPU to call power_down() after its inbound counterpart
61  * is already live using the same logical CPU number which trips lockdep
62  * debugging.
63  */
64 static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
65 
66 static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
67 
68 static inline bool mcpm_cluster_unused(unsigned int cluster)
69 {
70 	int i, cnt;
71 	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
72 		cnt |= mcpm_cpu_use_count[cluster][i];
73 	return !cnt;
74 }
75 
76 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
77 {
78 	bool cpu_is_down, cluster_is_down;
79 	int ret = 0;
80 
81 	if (!platform_ops)
82 		return -EUNATCH; /* try not to shadow power_up errors */
83 	might_sleep();
84 
85 	/* backward compatibility callback */
86 	if (platform_ops->power_up)
87 		return platform_ops->power_up(cpu, cluster);
88 
89 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
90 
91 	/*
92 	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
93 	 * variant exists, we need to disable IRQs manually here.
94 	 */
95 	local_irq_disable();
96 	arch_spin_lock(&mcpm_lock);
97 
98 	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
99 	cluster_is_down = mcpm_cluster_unused(cluster);
100 
101 	mcpm_cpu_use_count[cluster][cpu]++;
102 	/*
103 	 * The only possible values are:
104 	 * 0 = CPU down
105 	 * 1 = CPU (still) up
106 	 * 2 = CPU requested to be up before it had a chance
107 	 *     to actually make itself down.
108 	 * Any other value is a bug.
109 	 */
110 	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
111 	       mcpm_cpu_use_count[cluster][cpu] != 2);
112 
113 	if (cluster_is_down)
114 		ret = platform_ops->cluster_powerup(cluster);
115 	if (cpu_is_down && !ret)
116 		ret = platform_ops->cpu_powerup(cpu, cluster);
117 
118 	arch_spin_unlock(&mcpm_lock);
119 	local_irq_enable();
120 	return ret;
121 }
122 
123 typedef void (*phys_reset_t)(unsigned long);
124 
125 void mcpm_cpu_power_down(void)
126 {
127 	unsigned int mpidr, cpu, cluster;
128 	bool cpu_going_down, last_man;
129 	phys_reset_t phys_reset;
130 
131 	if (WARN_ON_ONCE(!platform_ops))
132 	       return;
133 	BUG_ON(!irqs_disabled());
134 
135 	/*
136 	 * Do this before calling into the power_down method,
137 	 * as it might not always be safe to do afterwards.
138 	 */
139 	setup_mm_for_reboot();
140 
141 	/* backward compatibility callback */
142 	if (platform_ops->power_down) {
143 		platform_ops->power_down();
144 		goto not_dead;
145 	}
146 
147 	mpidr = read_cpuid_mpidr();
148 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
149 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
150 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
151 
152 	__mcpm_cpu_going_down(cpu, cluster);
153 
154 	arch_spin_lock(&mcpm_lock);
155 	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
156 
157 	mcpm_cpu_use_count[cluster][cpu]--;
158 	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
159 	       mcpm_cpu_use_count[cluster][cpu] != 1);
160 	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
161 	last_man = mcpm_cluster_unused(cluster);
162 
163 	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
164 		platform_ops->cpu_powerdown_prepare(cpu, cluster);
165 		platform_ops->cluster_powerdown_prepare(cluster);
166 		arch_spin_unlock(&mcpm_lock);
167 		platform_ops->cluster_cache_disable();
168 		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
169 	} else {
170 		if (cpu_going_down)
171 			platform_ops->cpu_powerdown_prepare(cpu, cluster);
172 		arch_spin_unlock(&mcpm_lock);
173 		/*
174 		 * If cpu_going_down is false here, that means a power_up
175 		 * request raced ahead of us.  Even if we do not want to
176 		 * shut this CPU down, the caller still expects execution
177 		 * to return through the system resume entry path, like
178 		 * when the WFI is aborted due to a new IRQ or the like..
179 		 * So let's continue with cache cleaning in all cases.
180 		 */
181 		platform_ops->cpu_cache_disable();
182 	}
183 
184 	__mcpm_cpu_down(cpu, cluster);
185 
186 	/* Now we are prepared for power-down, do it: */
187 	if (cpu_going_down)
188 		wfi();
189 
190 not_dead:
191 	/*
192 	 * It is possible for a power_up request to happen concurrently
193 	 * with a power_down request for the same CPU. In this case the
194 	 * CPU might not be able to actually enter a powered down state
195 	 * with the WFI instruction if the power_up request has removed
196 	 * the required reset condition.  We must perform a re-entry in
197 	 * the kernel as if the power_up method just had deasserted reset
198 	 * on the CPU.
199 	 */
200 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
201 	phys_reset(virt_to_phys(mcpm_entry_point));
202 
203 	/* should never get here */
204 	BUG();
205 }
206 
207 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
208 {
209 	int ret;
210 
211 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
212 		return -EUNATCH;
213 
214 	ret = platform_ops->wait_for_powerdown(cpu, cluster);
215 	if (ret)
216 		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
217 			__func__, cpu, cluster, ret);
218 
219 	return ret;
220 }
221 
222 void mcpm_cpu_suspend(u64 expected_residency)
223 {
224 	if (WARN_ON_ONCE(!platform_ops))
225 		return;
226 
227 	/* backward compatibility callback */
228 	if (platform_ops->suspend) {
229 		phys_reset_t phys_reset;
230 		BUG_ON(!irqs_disabled());
231 		setup_mm_for_reboot();
232 		platform_ops->suspend(expected_residency);
233 		phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
234 		phys_reset(virt_to_phys(mcpm_entry_point));
235 		BUG();
236 	}
237 
238 	/* Some platforms might have to enable special resume modes, etc. */
239 	if (platform_ops->cpu_suspend_prepare) {
240 		unsigned int mpidr = read_cpuid_mpidr();
241 		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
242 		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
243 		arch_spin_lock(&mcpm_lock);
244 		platform_ops->cpu_suspend_prepare(cpu, cluster);
245 		arch_spin_unlock(&mcpm_lock);
246 	}
247 	mcpm_cpu_power_down();
248 }
249 
250 int mcpm_cpu_powered_up(void)
251 {
252 	unsigned int mpidr, cpu, cluster;
253 	bool cpu_was_down, first_man;
254 	unsigned long flags;
255 
256 	if (!platform_ops)
257 		return -EUNATCH;
258 
259 	/* backward compatibility callback */
260 	if (platform_ops->powered_up) {
261 		platform_ops->powered_up();
262 		return 0;
263 	}
264 
265 	mpidr = read_cpuid_mpidr();
266 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
267 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
268 	local_irq_save(flags);
269 	arch_spin_lock(&mcpm_lock);
270 
271 	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
272 	first_man = mcpm_cluster_unused(cluster);
273 
274 	if (first_man && platform_ops->cluster_is_up)
275 		platform_ops->cluster_is_up(cluster);
276 	if (cpu_was_down)
277 		mcpm_cpu_use_count[cluster][cpu] = 1;
278 	if (platform_ops->cpu_is_up)
279 		platform_ops->cpu_is_up(cpu, cluster);
280 
281 	arch_spin_unlock(&mcpm_lock);
282 	local_irq_restore(flags);
283 
284 	return 0;
285 }
286 
287 #ifdef CONFIG_ARM_CPU_SUSPEND
288 
289 static int __init nocache_trampoline(unsigned long _arg)
290 {
291 	void (*cache_disable)(void) = (void *)_arg;
292 	unsigned int mpidr = read_cpuid_mpidr();
293 	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
294 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
295 	phys_reset_t phys_reset;
296 
297 	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
298 	setup_mm_for_reboot();
299 
300 	__mcpm_cpu_going_down(cpu, cluster);
301 	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
302 	cache_disable();
303 	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
304 	__mcpm_cpu_down(cpu, cluster);
305 
306 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
307 	phys_reset(virt_to_phys(mcpm_entry_point));
308 	BUG();
309 }
310 
311 int __init mcpm_loopback(void (*cache_disable)(void))
312 {
313 	int ret;
314 
315 	/*
316 	 * We're going to soft-restart the current CPU through the
317 	 * low-level MCPM code by leveraging the suspend/resume
318 	 * infrastructure. Let's play it safe by using cpu_pm_enter()
319 	 * in case the CPU init code path resets the VFP or similar.
320 	 */
321 	local_irq_disable();
322 	local_fiq_disable();
323 	ret = cpu_pm_enter();
324 	if (!ret) {
325 		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
326 		cpu_pm_exit();
327 	}
328 	local_fiq_enable();
329 	local_irq_enable();
330 	if (ret)
331 		pr_err("%s returned %d\n", __func__, ret);
332 	return ret;
333 }
334 
335 #endif
336 
337 struct sync_struct mcpm_sync;
338 
339 /*
340  * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
341  *    This must be called at the point of committing to teardown of a CPU.
342  *    The CPU cache (SCTRL.C bit) is expected to still be active.
343  */
344 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
345 {
346 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
347 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
348 }
349 
350 /*
351  * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
352  *    cluster can be torn down without disrupting this CPU.
353  *    To avoid deadlocks, this must be called before a CPU is powered down.
354  *    The CPU cache (SCTRL.C bit) is expected to be off.
355  *    However L2 cache might or might not be active.
356  */
357 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
358 {
359 	dmb();
360 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
361 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
362 	sev();
363 }
364 
365 /*
366  * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
367  * @state: the final state of the cluster:
368  *     CLUSTER_UP: no destructive teardown was done and the cluster has been
369  *         restored to the previous state (CPU cache still active); or
370  *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
371  *         (CPU cache disabled, L2 cache either enabled or disabled).
372  */
373 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
374 {
375 	dmb();
376 	mcpm_sync.clusters[cluster].cluster = state;
377 	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
378 	sev();
379 }
380 
381 /*
382  * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
383  * This function should be called by the last man, after local CPU teardown
384  * is complete.  CPU cache expected to be active.
385  *
386  * Returns:
387  *     false: the critical section was not entered because an inbound CPU was
388  *         observed, or the cluster is already being set up;
389  *     true: the critical section was entered: it is now safe to tear down the
390  *         cluster.
391  */
392 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
393 {
394 	unsigned int i;
395 	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
396 
397 	/* Warn inbound CPUs that the cluster is being torn down: */
398 	c->cluster = CLUSTER_GOING_DOWN;
399 	sync_cache_w(&c->cluster);
400 
401 	/* Back out if the inbound cluster is already in the critical region: */
402 	sync_cache_r(&c->inbound);
403 	if (c->inbound == INBOUND_COMING_UP)
404 		goto abort;
405 
406 	/*
407 	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
408 	 * teardown is complete on each CPU before tearing down the cluster.
409 	 *
410 	 * If any CPU has been woken up again from the DOWN state, then we
411 	 * shouldn't be taking the cluster down at all: abort in that case.
412 	 */
413 	sync_cache_r(&c->cpus);
414 	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
415 		int cpustate;
416 
417 		if (i == cpu)
418 			continue;
419 
420 		while (1) {
421 			cpustate = c->cpus[i].cpu;
422 			if (cpustate != CPU_GOING_DOWN)
423 				break;
424 
425 			wfe();
426 			sync_cache_r(&c->cpus[i].cpu);
427 		}
428 
429 		switch (cpustate) {
430 		case CPU_DOWN:
431 			continue;
432 
433 		default:
434 			goto abort;
435 		}
436 	}
437 
438 	return true;
439 
440 abort:
441 	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
442 	return false;
443 }
444 
445 int __mcpm_cluster_state(unsigned int cluster)
446 {
447 	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
448 	return mcpm_sync.clusters[cluster].cluster;
449 }
450 
451 extern unsigned long mcpm_power_up_setup_phys;
452 
453 int __init mcpm_sync_init(
454 	void (*power_up_setup)(unsigned int affinity_level))
455 {
456 	unsigned int i, j, mpidr, this_cluster;
457 
458 	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
459 	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
460 
461 	/*
462 	 * Set initial CPU and cluster states.
463 	 * Only one cluster is assumed to be active at this point.
464 	 */
465 	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
466 		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
467 		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
468 		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
469 			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
470 	}
471 	mpidr = read_cpuid_mpidr();
472 	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
473 	for_each_online_cpu(i) {
474 		mcpm_cpu_use_count[this_cluster][i] = 1;
475 		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
476 	}
477 	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
478 	sync_cache_w(&mcpm_sync);
479 
480 	if (power_up_setup) {
481 		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
482 		sync_cache_w(&mcpm_power_up_setup_phys);
483 	}
484 
485 	return 0;
486 }
487