xref: /openbmc/linux/arch/arm/common/mcpm_entry.c (revision 36bccb11)
1 /*
2  * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3  *
4  * Created by:  Nicolas Pitre, March 2012
5  * Copyright:   (C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 
16 #include <asm/mcpm.h>
17 #include <asm/cacheflush.h>
18 #include <asm/idmap.h>
19 #include <asm/cputype.h>
20 
21 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
22 
23 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
24 {
25 	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
26 	mcpm_entry_vectors[cluster][cpu] = val;
27 	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
28 }
29 
30 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
31 
32 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
33 			 unsigned long poke_phys_addr, unsigned long poke_val)
34 {
35 	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
36 	poke[0] = poke_phys_addr;
37 	poke[1] = poke_val;
38 	__sync_cache_range_w(poke, 2 * sizeof(*poke));
39 }
40 
41 static const struct mcpm_platform_ops *platform_ops;
42 
43 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
44 {
45 	if (platform_ops)
46 		return -EBUSY;
47 	platform_ops = ops;
48 	return 0;
49 }
50 
51 bool mcpm_is_available(void)
52 {
53 	return (platform_ops) ? true : false;
54 }
55 
56 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
57 {
58 	if (!platform_ops)
59 		return -EUNATCH; /* try not to shadow power_up errors */
60 	might_sleep();
61 	return platform_ops->power_up(cpu, cluster);
62 }
63 
64 typedef void (*phys_reset_t)(unsigned long);
65 
66 void mcpm_cpu_power_down(void)
67 {
68 	phys_reset_t phys_reset;
69 
70 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
71 		return;
72 	BUG_ON(!irqs_disabled());
73 
74 	/*
75 	 * Do this before calling into the power_down method,
76 	 * as it might not always be safe to do afterwards.
77 	 */
78 	setup_mm_for_reboot();
79 
80 	platform_ops->power_down();
81 
82 	/*
83 	 * It is possible for a power_up request to happen concurrently
84 	 * with a power_down request for the same CPU. In this case the
85 	 * power_down method might not be able to actually enter a
86 	 * powered down state with the WFI instruction if the power_up
87 	 * method has removed the required reset condition.  The
88 	 * power_down method is then allowed to return. We must perform
89 	 * a re-entry in the kernel as if the power_up method just had
90 	 * deasserted reset on the CPU.
91 	 *
92 	 * To simplify race issues, the platform specific implementation
93 	 * must accommodate for the possibility of unordered calls to
94 	 * power_down and power_up with a usage count. Therefore, if a
95 	 * call to power_up is issued for a CPU that is not down, then
96 	 * the next call to power_down must not attempt a full shutdown
97 	 * but only do the minimum (normally disabling L1 cache and CPU
98 	 * coherency) and return just as if a concurrent power_up request
99 	 * had happened as described above.
100 	 */
101 
102 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
103 	phys_reset(virt_to_phys(mcpm_entry_point));
104 
105 	/* should never get here */
106 	BUG();
107 }
108 
109 int mcpm_cpu_power_down_finish(unsigned int cpu, unsigned int cluster)
110 {
111 	int ret;
112 
113 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down_finish))
114 		return -EUNATCH;
115 
116 	ret = platform_ops->power_down_finish(cpu, cluster);
117 	if (ret)
118 		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
119 			__func__, cpu, cluster, ret);
120 
121 	return ret;
122 }
123 
124 void mcpm_cpu_suspend(u64 expected_residency)
125 {
126 	phys_reset_t phys_reset;
127 
128 	if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
129 		return;
130 	BUG_ON(!irqs_disabled());
131 
132 	/* Very similar to mcpm_cpu_power_down() */
133 	setup_mm_for_reboot();
134 	platform_ops->suspend(expected_residency);
135 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
136 	phys_reset(virt_to_phys(mcpm_entry_point));
137 	BUG();
138 }
139 
140 int mcpm_cpu_powered_up(void)
141 {
142 	if (!platform_ops)
143 		return -EUNATCH;
144 	if (platform_ops->powered_up)
145 		platform_ops->powered_up();
146 	return 0;
147 }
148 
149 struct sync_struct mcpm_sync;
150 
151 /*
152  * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
153  *    This must be called at the point of committing to teardown of a CPU.
154  *    The CPU cache (SCTRL.C bit) is expected to still be active.
155  */
156 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
157 {
158 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
159 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
160 }
161 
162 /*
163  * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
164  *    cluster can be torn down without disrupting this CPU.
165  *    To avoid deadlocks, this must be called before a CPU is powered down.
166  *    The CPU cache (SCTRL.C bit) is expected to be off.
167  *    However L2 cache might or might not be active.
168  */
169 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
170 {
171 	dmb();
172 	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
173 	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
174 	sev();
175 }
176 
177 /*
178  * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
179  * @state: the final state of the cluster:
180  *     CLUSTER_UP: no destructive teardown was done and the cluster has been
181  *         restored to the previous state (CPU cache still active); or
182  *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
183  *         (CPU cache disabled, L2 cache either enabled or disabled).
184  */
185 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
186 {
187 	dmb();
188 	mcpm_sync.clusters[cluster].cluster = state;
189 	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
190 	sev();
191 }
192 
193 /*
194  * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
195  * This function should be called by the last man, after local CPU teardown
196  * is complete.  CPU cache expected to be active.
197  *
198  * Returns:
199  *     false: the critical section was not entered because an inbound CPU was
200  *         observed, or the cluster is already being set up;
201  *     true: the critical section was entered: it is now safe to tear down the
202  *         cluster.
203  */
204 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
205 {
206 	unsigned int i;
207 	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
208 
209 	/* Warn inbound CPUs that the cluster is being torn down: */
210 	c->cluster = CLUSTER_GOING_DOWN;
211 	sync_cache_w(&c->cluster);
212 
213 	/* Back out if the inbound cluster is already in the critical region: */
214 	sync_cache_r(&c->inbound);
215 	if (c->inbound == INBOUND_COMING_UP)
216 		goto abort;
217 
218 	/*
219 	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
220 	 * teardown is complete on each CPU before tearing down the cluster.
221 	 *
222 	 * If any CPU has been woken up again from the DOWN state, then we
223 	 * shouldn't be taking the cluster down at all: abort in that case.
224 	 */
225 	sync_cache_r(&c->cpus);
226 	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
227 		int cpustate;
228 
229 		if (i == cpu)
230 			continue;
231 
232 		while (1) {
233 			cpustate = c->cpus[i].cpu;
234 			if (cpustate != CPU_GOING_DOWN)
235 				break;
236 
237 			wfe();
238 			sync_cache_r(&c->cpus[i].cpu);
239 		}
240 
241 		switch (cpustate) {
242 		case CPU_DOWN:
243 			continue;
244 
245 		default:
246 			goto abort;
247 		}
248 	}
249 
250 	return true;
251 
252 abort:
253 	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
254 	return false;
255 }
256 
257 int __mcpm_cluster_state(unsigned int cluster)
258 {
259 	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
260 	return mcpm_sync.clusters[cluster].cluster;
261 }
262 
263 extern unsigned long mcpm_power_up_setup_phys;
264 
265 int __init mcpm_sync_init(
266 	void (*power_up_setup)(unsigned int affinity_level))
267 {
268 	unsigned int i, j, mpidr, this_cluster;
269 
270 	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
271 	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
272 
273 	/*
274 	 * Set initial CPU and cluster states.
275 	 * Only one cluster is assumed to be active at this point.
276 	 */
277 	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
278 		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
279 		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
280 		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
281 			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
282 	}
283 	mpidr = read_cpuid_mpidr();
284 	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
285 	for_each_online_cpu(i)
286 		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
287 	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
288 	sync_cache_w(&mcpm_sync);
289 
290 	if (power_up_setup) {
291 		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
292 		sync_cache_w(&mcpm_power_up_setup_phys);
293 	}
294 
295 	return 0;
296 }
297