1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched/signal.h> 17 #include <uapi/linux/sched/types.h> 18 #include <linux/interrupt.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/cpu.h> 21 #include <linux/cpumask.h> 22 #include <linux/kthread.h> 23 #include <linux/wait.h> 24 #include <linux/time.h> 25 #include <linux/clockchips.h> 26 #include <linux/hrtimer.h> 27 #include <linux/tick.h> 28 #include <linux/notifier.h> 29 #include <linux/mm.h> 30 #include <linux/mutex.h> 31 #include <linux/smp.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 #include <linux/sysfs.h> 35 #include <linux/irqchip/arm-gic.h> 36 #include <linux/moduleparam.h> 37 38 #include <asm/smp_plat.h> 39 #include <asm/cputype.h> 40 #include <asm/suspend.h> 41 #include <asm/mcpm.h> 42 #include <asm/bL_switcher.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/power_cpu_migrate.h> 46 47 48 /* 49 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 50 * __attribute_const__ and we don't want the compiler to assume any 51 * constness here as the value _does_ change along some code paths. 52 */ 53 54 static int read_mpidr(void) 55 { 56 unsigned int id; 57 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 58 return id & MPIDR_HWID_BITMASK; 59 } 60 61 /* 62 * bL switcher core code. 63 */ 64 65 static void bL_do_switch(void *_arg) 66 { 67 unsigned ib_mpidr, ib_cpu, ib_cluster; 68 long volatile handshake, **handshake_ptr = _arg; 69 70 pr_debug("%s\n", __func__); 71 72 ib_mpidr = cpu_logical_map(smp_processor_id()); 73 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 74 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 75 76 /* Advertise our handshake location */ 77 if (handshake_ptr) { 78 handshake = 0; 79 *handshake_ptr = &handshake; 80 } else 81 handshake = -1; 82 83 /* 84 * Our state has been saved at this point. Let's release our 85 * inbound CPU. 86 */ 87 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 88 sev(); 89 90 /* 91 * From this point, we must assume that our counterpart CPU might 92 * have taken over in its parallel world already, as if execution 93 * just returned from cpu_suspend(). It is therefore important to 94 * be very careful not to make any change the other guy is not 95 * expecting. This is why we need stack isolation. 96 * 97 * Fancy under cover tasks could be performed here. For now 98 * we have none. 99 */ 100 101 /* 102 * Let's wait until our inbound is alive. 103 */ 104 while (!handshake) { 105 wfe(); 106 smp_mb(); 107 } 108 109 /* Let's put ourself down. */ 110 mcpm_cpu_power_down(); 111 112 /* should never get here */ 113 BUG(); 114 } 115 116 /* 117 * Stack isolation. To ensure 'current' remains valid, we just use another 118 * piece of our thread's stack space which should be fairly lightly used. 119 * The selected area starts just above the thread_info structure located 120 * at the very bottom of the stack, aligned to a cache line, and indexed 121 * with the cluster number. 122 */ 123 #define STACK_SIZE 512 124 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 125 static int bL_switchpoint(unsigned long _arg) 126 { 127 unsigned int mpidr = read_mpidr(); 128 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 129 void *stack = current_thread_info() + 1; 130 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 131 stack += clusterid * STACK_SIZE + STACK_SIZE; 132 call_with_stack(bL_do_switch, (void *)_arg, stack); 133 BUG(); 134 } 135 136 /* 137 * Generic switcher interface 138 */ 139 140 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 141 static int bL_switcher_cpu_pairing[NR_CPUS]; 142 143 /* 144 * bL_switch_to - Switch to a specific cluster for the current CPU 145 * @new_cluster_id: the ID of the cluster to switch to. 146 * 147 * This function must be called on the CPU to be switched. 148 * Returns 0 on success, else a negative status code. 149 */ 150 static int bL_switch_to(unsigned int new_cluster_id) 151 { 152 unsigned int mpidr, this_cpu, that_cpu; 153 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 154 struct completion inbound_alive; 155 long volatile *handshake_ptr; 156 int ipi_nr, ret; 157 158 this_cpu = smp_processor_id(); 159 ob_mpidr = read_mpidr(); 160 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 161 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 162 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 163 164 if (new_cluster_id == ob_cluster) 165 return 0; 166 167 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 168 ib_mpidr = cpu_logical_map(that_cpu); 169 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 170 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 171 172 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 173 this_cpu, ob_mpidr, ib_mpidr); 174 175 this_cpu = smp_processor_id(); 176 177 /* Close the gate for our entry vectors */ 178 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 179 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 180 181 /* Install our "inbound alive" notifier. */ 182 init_completion(&inbound_alive); 183 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 184 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 185 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 186 187 /* 188 * Let's wake up the inbound CPU now in case it requires some delay 189 * to come online, but leave it gated in our entry vector code. 190 */ 191 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 192 if (ret) { 193 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 194 return ret; 195 } 196 197 /* 198 * Raise a SGI on the inbound CPU to make sure it doesn't stall 199 * in a possible WFI, such as in bL_power_down(). 200 */ 201 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 202 203 /* 204 * Wait for the inbound to come up. This allows for other 205 * tasks to be scheduled in the mean time. 206 */ 207 wait_for_completion(&inbound_alive); 208 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 209 210 /* 211 * From this point we are entering the switch critical zone 212 * and can't take any interrupts anymore. 213 */ 214 local_irq_disable(); 215 local_fiq_disable(); 216 trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr); 217 218 /* redirect GIC's SGIs to our counterpart */ 219 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 220 221 tick_suspend_local(); 222 223 ret = cpu_pm_enter(); 224 225 /* we can not tolerate errors at this point */ 226 if (ret) 227 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 228 229 /* Swap the physical CPUs in the logical map for this logical CPU. */ 230 cpu_logical_map(this_cpu) = ib_mpidr; 231 cpu_logical_map(that_cpu) = ob_mpidr; 232 233 /* Let's do the actual CPU switch. */ 234 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 235 if (ret > 0) 236 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 237 238 /* We are executing on the inbound CPU at this point */ 239 mpidr = read_mpidr(); 240 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 241 BUG_ON(mpidr != ib_mpidr); 242 243 mcpm_cpu_powered_up(); 244 245 ret = cpu_pm_exit(); 246 247 tick_resume_local(); 248 249 trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr); 250 local_fiq_enable(); 251 local_irq_enable(); 252 253 *handshake_ptr = 1; 254 dsb_sev(); 255 256 if (ret) 257 pr_err("%s exiting with error %d\n", __func__, ret); 258 return ret; 259 } 260 261 struct bL_thread { 262 spinlock_t lock; 263 struct task_struct *task; 264 wait_queue_head_t wq; 265 int wanted_cluster; 266 struct completion started; 267 bL_switch_completion_handler completer; 268 void *completer_cookie; 269 }; 270 271 static struct bL_thread bL_threads[NR_CPUS]; 272 273 static int bL_switcher_thread(void *arg) 274 { 275 struct bL_thread *t = arg; 276 struct sched_param param = { .sched_priority = 1 }; 277 int cluster; 278 bL_switch_completion_handler completer; 279 void *completer_cookie; 280 281 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 282 complete(&t->started); 283 284 do { 285 if (signal_pending(current)) 286 flush_signals(current); 287 wait_event_interruptible(t->wq, 288 t->wanted_cluster != -1 || 289 kthread_should_stop()); 290 291 spin_lock(&t->lock); 292 cluster = t->wanted_cluster; 293 completer = t->completer; 294 completer_cookie = t->completer_cookie; 295 t->wanted_cluster = -1; 296 t->completer = NULL; 297 spin_unlock(&t->lock); 298 299 if (cluster != -1) { 300 bL_switch_to(cluster); 301 302 if (completer) 303 completer(completer_cookie); 304 } 305 } while (!kthread_should_stop()); 306 307 return 0; 308 } 309 310 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 311 { 312 struct task_struct *task; 313 314 task = kthread_create_on_node(bL_switcher_thread, arg, 315 cpu_to_node(cpu), "kswitcher_%d", cpu); 316 if (!IS_ERR(task)) { 317 kthread_bind(task, cpu); 318 wake_up_process(task); 319 } else 320 pr_err("%s failed for CPU %d\n", __func__, cpu); 321 return task; 322 } 323 324 /* 325 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 326 * with completion notification via a callback 327 * 328 * @cpu: the CPU to switch 329 * @new_cluster_id: the ID of the cluster to switch to. 330 * @completer: switch completion callback. if non-NULL, 331 * @completer(@completer_cookie) will be called on completion of 332 * the switch, in non-atomic context. 333 * @completer_cookie: opaque context argument for @completer. 334 * 335 * This function causes a cluster switch on the given CPU by waking up 336 * the appropriate switcher thread. This function may or may not return 337 * before the switch has occurred. 338 * 339 * If a @completer callback function is supplied, it will be called when 340 * the switch is complete. This can be used to determine asynchronously 341 * when the switch is complete, regardless of when bL_switch_request() 342 * returns. When @completer is supplied, no new switch request is permitted 343 * for the affected CPU until after the switch is complete, and @completer 344 * has returned. 345 */ 346 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 347 bL_switch_completion_handler completer, 348 void *completer_cookie) 349 { 350 struct bL_thread *t; 351 352 if (cpu >= ARRAY_SIZE(bL_threads)) { 353 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 354 return -EINVAL; 355 } 356 357 t = &bL_threads[cpu]; 358 359 if (IS_ERR(t->task)) 360 return PTR_ERR(t->task); 361 if (!t->task) 362 return -ESRCH; 363 364 spin_lock(&t->lock); 365 if (t->completer) { 366 spin_unlock(&t->lock); 367 return -EBUSY; 368 } 369 t->completer = completer; 370 t->completer_cookie = completer_cookie; 371 t->wanted_cluster = new_cluster_id; 372 spin_unlock(&t->lock); 373 wake_up(&t->wq); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 377 378 /* 379 * Activation and configuration code. 380 */ 381 382 static DEFINE_MUTEX(bL_switcher_activation_lock); 383 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 384 static unsigned int bL_switcher_active; 385 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 386 static cpumask_t bL_switcher_removed_logical_cpus; 387 388 int bL_switcher_register_notifier(struct notifier_block *nb) 389 { 390 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 391 } 392 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 393 394 int bL_switcher_unregister_notifier(struct notifier_block *nb) 395 { 396 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 397 } 398 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 399 400 static int bL_activation_notify(unsigned long val) 401 { 402 int ret; 403 404 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 405 if (ret & NOTIFY_STOP_MASK) 406 pr_err("%s: notifier chain failed with status 0x%x\n", 407 __func__, ret); 408 return notifier_to_errno(ret); 409 } 410 411 static void bL_switcher_restore_cpus(void) 412 { 413 int i; 414 415 for_each_cpu(i, &bL_switcher_removed_logical_cpus) { 416 struct device *cpu_dev = get_cpu_device(i); 417 int ret = device_online(cpu_dev); 418 if (ret) 419 dev_err(cpu_dev, "switcher: unable to restore CPU\n"); 420 } 421 } 422 423 static int bL_switcher_halve_cpus(void) 424 { 425 int i, j, cluster_0, gic_id, ret; 426 unsigned int cpu, cluster, mask; 427 cpumask_t available_cpus; 428 429 /* First pass to validate what we have */ 430 mask = 0; 431 for_each_online_cpu(i) { 432 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 433 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 434 if (cluster >= 2) { 435 pr_err("%s: only dual cluster systems are supported\n", __func__); 436 return -EINVAL; 437 } 438 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 439 return -EINVAL; 440 mask |= (1 << cluster); 441 } 442 if (mask != 3) { 443 pr_err("%s: no CPU pairing possible\n", __func__); 444 return -EINVAL; 445 } 446 447 /* 448 * Now let's do the pairing. We match each CPU with another CPU 449 * from a different cluster. To get a uniform scheduling behavior 450 * without fiddling with CPU topology and compute capacity data, 451 * we'll use logical CPUs initially belonging to the same cluster. 452 */ 453 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 454 cpumask_copy(&available_cpus, cpu_online_mask); 455 cluster_0 = -1; 456 for_each_cpu(i, &available_cpus) { 457 int match = -1; 458 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 459 if (cluster_0 == -1) 460 cluster_0 = cluster; 461 if (cluster != cluster_0) 462 continue; 463 cpumask_clear_cpu(i, &available_cpus); 464 for_each_cpu(j, &available_cpus) { 465 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 466 /* 467 * Let's remember the last match to create "odd" 468 * pairings on purpose in order for other code not 469 * to assume any relation between physical and 470 * logical CPU numbers. 471 */ 472 if (cluster != cluster_0) 473 match = j; 474 } 475 if (match != -1) { 476 bL_switcher_cpu_pairing[i] = match; 477 cpumask_clear_cpu(match, &available_cpus); 478 pr_info("CPU%d paired with CPU%d\n", i, match); 479 } 480 } 481 482 /* 483 * Now we disable the unwanted CPUs i.e. everything that has no 484 * pairing information (that includes the pairing counterparts). 485 */ 486 cpumask_clear(&bL_switcher_removed_logical_cpus); 487 for_each_online_cpu(i) { 488 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 489 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 490 491 /* Let's take note of the GIC ID for this CPU */ 492 gic_id = gic_get_cpu_id(i); 493 if (gic_id < 0) { 494 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 495 bL_switcher_restore_cpus(); 496 return -EINVAL; 497 } 498 bL_gic_id[cpu][cluster] = gic_id; 499 pr_info("GIC ID for CPU %u cluster %u is %u\n", 500 cpu, cluster, gic_id); 501 502 if (bL_switcher_cpu_pairing[i] != -1) { 503 bL_switcher_cpu_original_cluster[i] = cluster; 504 continue; 505 } 506 507 ret = device_offline(get_cpu_device(i)); 508 if (ret) { 509 bL_switcher_restore_cpus(); 510 return ret; 511 } 512 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 513 } 514 515 return 0; 516 } 517 518 /* Determine the logical CPU a given physical CPU is grouped on. */ 519 int bL_switcher_get_logical_index(u32 mpidr) 520 { 521 int cpu; 522 523 if (!bL_switcher_active) 524 return -EUNATCH; 525 526 mpidr &= MPIDR_HWID_BITMASK; 527 for_each_online_cpu(cpu) { 528 int pairing = bL_switcher_cpu_pairing[cpu]; 529 if (pairing == -1) 530 continue; 531 if ((mpidr == cpu_logical_map(cpu)) || 532 (mpidr == cpu_logical_map(pairing))) 533 return cpu; 534 } 535 return -EINVAL; 536 } 537 538 static void bL_switcher_trace_trigger_cpu(void *__always_unused info) 539 { 540 trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr()); 541 } 542 543 int bL_switcher_trace_trigger(void) 544 { 545 int ret; 546 547 preempt_disable(); 548 549 bL_switcher_trace_trigger_cpu(NULL); 550 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); 551 552 preempt_enable(); 553 554 return ret; 555 } 556 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); 557 558 static int bL_switcher_enable(void) 559 { 560 int cpu, ret; 561 562 mutex_lock(&bL_switcher_activation_lock); 563 lock_device_hotplug(); 564 if (bL_switcher_active) { 565 unlock_device_hotplug(); 566 mutex_unlock(&bL_switcher_activation_lock); 567 return 0; 568 } 569 570 pr_info("big.LITTLE switcher initializing\n"); 571 572 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 573 if (ret) 574 goto error; 575 576 ret = bL_switcher_halve_cpus(); 577 if (ret) 578 goto error; 579 580 bL_switcher_trace_trigger(); 581 582 for_each_online_cpu(cpu) { 583 struct bL_thread *t = &bL_threads[cpu]; 584 spin_lock_init(&t->lock); 585 init_waitqueue_head(&t->wq); 586 init_completion(&t->started); 587 t->wanted_cluster = -1; 588 t->task = bL_switcher_thread_create(cpu, t); 589 } 590 591 bL_switcher_active = 1; 592 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 593 pr_info("big.LITTLE switcher initialized\n"); 594 goto out; 595 596 error: 597 pr_warn("big.LITTLE switcher initialization failed\n"); 598 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 599 600 out: 601 unlock_device_hotplug(); 602 mutex_unlock(&bL_switcher_activation_lock); 603 return ret; 604 } 605 606 #ifdef CONFIG_SYSFS 607 608 static void bL_switcher_disable(void) 609 { 610 unsigned int cpu, cluster; 611 struct bL_thread *t; 612 struct task_struct *task; 613 614 mutex_lock(&bL_switcher_activation_lock); 615 lock_device_hotplug(); 616 617 if (!bL_switcher_active) 618 goto out; 619 620 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 621 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 622 goto out; 623 } 624 625 bL_switcher_active = 0; 626 627 /* 628 * To deactivate the switcher, we must shut down the switcher 629 * threads to prevent any other requests from being accepted. 630 * Then, if the final cluster for given logical CPU is not the 631 * same as the original one, we'll recreate a switcher thread 632 * just for the purpose of switching the CPU back without any 633 * possibility for interference from external requests. 634 */ 635 for_each_online_cpu(cpu) { 636 t = &bL_threads[cpu]; 637 task = t->task; 638 t->task = NULL; 639 if (!task || IS_ERR(task)) 640 continue; 641 kthread_stop(task); 642 /* no more switch may happen on this CPU at this point */ 643 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 644 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 645 continue; 646 init_completion(&t->started); 647 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 648 task = bL_switcher_thread_create(cpu, t); 649 if (!IS_ERR(task)) { 650 wait_for_completion(&t->started); 651 kthread_stop(task); 652 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 653 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 654 continue; 655 } 656 /* If execution gets here, we're in trouble. */ 657 pr_crit("%s: unable to restore original cluster for CPU %d\n", 658 __func__, cpu); 659 pr_crit("%s: CPU %d can't be restored\n", 660 __func__, bL_switcher_cpu_pairing[cpu]); 661 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 662 &bL_switcher_removed_logical_cpus); 663 } 664 665 bL_switcher_restore_cpus(); 666 bL_switcher_trace_trigger(); 667 668 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 669 670 out: 671 unlock_device_hotplug(); 672 mutex_unlock(&bL_switcher_activation_lock); 673 } 674 675 static ssize_t bL_switcher_active_show(struct kobject *kobj, 676 struct kobj_attribute *attr, char *buf) 677 { 678 return sprintf(buf, "%u\n", bL_switcher_active); 679 } 680 681 static ssize_t bL_switcher_active_store(struct kobject *kobj, 682 struct kobj_attribute *attr, const char *buf, size_t count) 683 { 684 int ret; 685 686 switch (buf[0]) { 687 case '0': 688 bL_switcher_disable(); 689 ret = 0; 690 break; 691 case '1': 692 ret = bL_switcher_enable(); 693 break; 694 default: 695 ret = -EINVAL; 696 } 697 698 return (ret >= 0) ? count : ret; 699 } 700 701 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, 702 struct kobj_attribute *attr, const char *buf, size_t count) 703 { 704 int ret = bL_switcher_trace_trigger(); 705 706 return ret ? ret : count; 707 } 708 709 static struct kobj_attribute bL_switcher_active_attr = 710 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 711 712 static struct kobj_attribute bL_switcher_trace_trigger_attr = 713 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); 714 715 static struct attribute *bL_switcher_attrs[] = { 716 &bL_switcher_active_attr.attr, 717 &bL_switcher_trace_trigger_attr.attr, 718 NULL, 719 }; 720 721 static struct attribute_group bL_switcher_attr_group = { 722 .attrs = bL_switcher_attrs, 723 }; 724 725 static struct kobject *bL_switcher_kobj; 726 727 static int __init bL_switcher_sysfs_init(void) 728 { 729 int ret; 730 731 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 732 if (!bL_switcher_kobj) 733 return -ENOMEM; 734 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 735 if (ret) 736 kobject_put(bL_switcher_kobj); 737 return ret; 738 } 739 740 #endif /* CONFIG_SYSFS */ 741 742 bool bL_switcher_get_enabled(void) 743 { 744 mutex_lock(&bL_switcher_activation_lock); 745 746 return bL_switcher_active; 747 } 748 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 749 750 void bL_switcher_put_enabled(void) 751 { 752 mutex_unlock(&bL_switcher_activation_lock); 753 } 754 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 755 756 /* 757 * Veto any CPU hotplug operation on those CPUs we've removed 758 * while the switcher is active. 759 * We're just not ready to deal with that given the trickery involved. 760 */ 761 static int bL_switcher_cpu_pre(unsigned int cpu) 762 { 763 int pairing; 764 765 if (!bL_switcher_active) 766 return 0; 767 768 pairing = bL_switcher_cpu_pairing[cpu]; 769 770 if (pairing == -1) 771 return -EINVAL; 772 return 0; 773 } 774 775 static bool no_bL_switcher; 776 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 777 778 static int __init bL_switcher_init(void) 779 { 780 int ret; 781 782 if (!mcpm_is_available()) 783 return -ENODEV; 784 785 cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare", 786 bL_switcher_cpu_pre, NULL); 787 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown", 788 NULL, bL_switcher_cpu_pre); 789 if (ret < 0) { 790 cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE); 791 pr_err("bL_switcher: Failed to allocate a hotplug state\n"); 792 return ret; 793 } 794 if (!no_bL_switcher) { 795 ret = bL_switcher_enable(); 796 if (ret) 797 return ret; 798 } 799 800 #ifdef CONFIG_SYSFS 801 ret = bL_switcher_sysfs_init(); 802 if (ret) 803 pr_err("%s: unable to create sysfs entry\n", __func__); 804 #endif 805 806 return 0; 807 } 808 809 late_initcall(bL_switcher_init); 810