xref: /openbmc/linux/arch/arm/common/bL_switcher.c (revision e8f6f3b4)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/smp.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 #include <linux/sysfs.h>
34 #include <linux/irqchip/arm-gic.h>
35 #include <linux/moduleparam.h>
36 
37 #include <asm/smp_plat.h>
38 #include <asm/cputype.h>
39 #include <asm/suspend.h>
40 #include <asm/mcpm.h>
41 #include <asm/bL_switcher.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/power_cpu_migrate.h>
45 
46 
47 /*
48  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49  * __attribute_const__ and we don't want the compiler to assume any
50  * constness here as the value _does_ change along some code paths.
51  */
52 
53 static int read_mpidr(void)
54 {
55 	unsigned int id;
56 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
57 	return id & MPIDR_HWID_BITMASK;
58 }
59 
60 /*
61  * bL switcher core code.
62  */
63 
64 static void bL_do_switch(void *_arg)
65 {
66 	unsigned ib_mpidr, ib_cpu, ib_cluster;
67 	long volatile handshake, **handshake_ptr = _arg;
68 
69 	pr_debug("%s\n", __func__);
70 
71 	ib_mpidr = cpu_logical_map(smp_processor_id());
72 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
73 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
74 
75 	/* Advertise our handshake location */
76 	if (handshake_ptr) {
77 		handshake = 0;
78 		*handshake_ptr = &handshake;
79 	} else
80 		handshake = -1;
81 
82 	/*
83 	 * Our state has been saved at this point.  Let's release our
84 	 * inbound CPU.
85 	 */
86 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
87 	sev();
88 
89 	/*
90 	 * From this point, we must assume that our counterpart CPU might
91 	 * have taken over in its parallel world already, as if execution
92 	 * just returned from cpu_suspend().  It is therefore important to
93 	 * be very careful not to make any change the other guy is not
94 	 * expecting.  This is why we need stack isolation.
95 	 *
96 	 * Fancy under cover tasks could be performed here.  For now
97 	 * we have none.
98 	 */
99 
100 	/*
101 	 * Let's wait until our inbound is alive.
102 	 */
103 	while (!handshake) {
104 		wfe();
105 		smp_mb();
106 	}
107 
108 	/* Let's put ourself down. */
109 	mcpm_cpu_power_down();
110 
111 	/* should never get here */
112 	BUG();
113 }
114 
115 /*
116  * Stack isolation.  To ensure 'current' remains valid, we just use another
117  * piece of our thread's stack space which should be fairly lightly used.
118  * The selected area starts just above the thread_info structure located
119  * at the very bottom of the stack, aligned to a cache line, and indexed
120  * with the cluster number.
121  */
122 #define STACK_SIZE 512
123 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
124 static int bL_switchpoint(unsigned long _arg)
125 {
126 	unsigned int mpidr = read_mpidr();
127 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
128 	void *stack = current_thread_info() + 1;
129 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
130 	stack += clusterid * STACK_SIZE + STACK_SIZE;
131 	call_with_stack(bL_do_switch, (void *)_arg, stack);
132 	BUG();
133 }
134 
135 /*
136  * Generic switcher interface
137  */
138 
139 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
140 static int bL_switcher_cpu_pairing[NR_CPUS];
141 
142 /*
143  * bL_switch_to - Switch to a specific cluster for the current CPU
144  * @new_cluster_id: the ID of the cluster to switch to.
145  *
146  * This function must be called on the CPU to be switched.
147  * Returns 0 on success, else a negative status code.
148  */
149 static int bL_switch_to(unsigned int new_cluster_id)
150 {
151 	unsigned int mpidr, this_cpu, that_cpu;
152 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
153 	struct completion inbound_alive;
154 	struct tick_device *tdev;
155 	enum clock_event_mode tdev_mode;
156 	long volatile *handshake_ptr;
157 	int ipi_nr, ret;
158 
159 	this_cpu = smp_processor_id();
160 	ob_mpidr = read_mpidr();
161 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
162 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
163 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
164 
165 	if (new_cluster_id == ob_cluster)
166 		return 0;
167 
168 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
169 	ib_mpidr = cpu_logical_map(that_cpu);
170 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
171 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
172 
173 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
174 		 this_cpu, ob_mpidr, ib_mpidr);
175 
176 	this_cpu = smp_processor_id();
177 
178 	/* Close the gate for our entry vectors */
179 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
180 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
181 
182 	/* Install our "inbound alive" notifier. */
183 	init_completion(&inbound_alive);
184 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
185 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
186 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
187 
188 	/*
189 	 * Let's wake up the inbound CPU now in case it requires some delay
190 	 * to come online, but leave it gated in our entry vector code.
191 	 */
192 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
193 	if (ret) {
194 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
195 		return ret;
196 	}
197 
198 	/*
199 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
200 	 * in a possible WFI, such as in bL_power_down().
201 	 */
202 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
203 
204 	/*
205 	 * Wait for the inbound to come up.  This allows for other
206 	 * tasks to be scheduled in the mean time.
207 	 */
208 	wait_for_completion(&inbound_alive);
209 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
210 
211 	/*
212 	 * From this point we are entering the switch critical zone
213 	 * and can't take any interrupts anymore.
214 	 */
215 	local_irq_disable();
216 	local_fiq_disable();
217 	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
218 
219 	/* redirect GIC's SGIs to our counterpart */
220 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
221 
222 	tdev = tick_get_device(this_cpu);
223 	if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
224 		tdev = NULL;
225 	if (tdev) {
226 		tdev_mode = tdev->evtdev->mode;
227 		clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
228 	}
229 
230 	ret = cpu_pm_enter();
231 
232 	/* we can not tolerate errors at this point */
233 	if (ret)
234 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
235 
236 	/* Swap the physical CPUs in the logical map for this logical CPU. */
237 	cpu_logical_map(this_cpu) = ib_mpidr;
238 	cpu_logical_map(that_cpu) = ob_mpidr;
239 
240 	/* Let's do the actual CPU switch. */
241 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
242 	if (ret > 0)
243 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
244 
245 	/* We are executing on the inbound CPU at this point */
246 	mpidr = read_mpidr();
247 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
248 	BUG_ON(mpidr != ib_mpidr);
249 
250 	mcpm_cpu_powered_up();
251 
252 	ret = cpu_pm_exit();
253 
254 	if (tdev) {
255 		clockevents_set_mode(tdev->evtdev, tdev_mode);
256 		clockevents_program_event(tdev->evtdev,
257 					  tdev->evtdev->next_event, 1);
258 	}
259 
260 	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
261 	local_fiq_enable();
262 	local_irq_enable();
263 
264 	*handshake_ptr = 1;
265 	dsb_sev();
266 
267 	if (ret)
268 		pr_err("%s exiting with error %d\n", __func__, ret);
269 	return ret;
270 }
271 
272 struct bL_thread {
273 	spinlock_t lock;
274 	struct task_struct *task;
275 	wait_queue_head_t wq;
276 	int wanted_cluster;
277 	struct completion started;
278 	bL_switch_completion_handler completer;
279 	void *completer_cookie;
280 };
281 
282 static struct bL_thread bL_threads[NR_CPUS];
283 
284 static int bL_switcher_thread(void *arg)
285 {
286 	struct bL_thread *t = arg;
287 	struct sched_param param = { .sched_priority = 1 };
288 	int cluster;
289 	bL_switch_completion_handler completer;
290 	void *completer_cookie;
291 
292 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
293 	complete(&t->started);
294 
295 	do {
296 		if (signal_pending(current))
297 			flush_signals(current);
298 		wait_event_interruptible(t->wq,
299 				t->wanted_cluster != -1 ||
300 				kthread_should_stop());
301 
302 		spin_lock(&t->lock);
303 		cluster = t->wanted_cluster;
304 		completer = t->completer;
305 		completer_cookie = t->completer_cookie;
306 		t->wanted_cluster = -1;
307 		t->completer = NULL;
308 		spin_unlock(&t->lock);
309 
310 		if (cluster != -1) {
311 			bL_switch_to(cluster);
312 
313 			if (completer)
314 				completer(completer_cookie);
315 		}
316 	} while (!kthread_should_stop());
317 
318 	return 0;
319 }
320 
321 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
322 {
323 	struct task_struct *task;
324 
325 	task = kthread_create_on_node(bL_switcher_thread, arg,
326 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
327 	if (!IS_ERR(task)) {
328 		kthread_bind(task, cpu);
329 		wake_up_process(task);
330 	} else
331 		pr_err("%s failed for CPU %d\n", __func__, cpu);
332 	return task;
333 }
334 
335 /*
336  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
337  *      with completion notification via a callback
338  *
339  * @cpu: the CPU to switch
340  * @new_cluster_id: the ID of the cluster to switch to.
341  * @completer: switch completion callback.  if non-NULL,
342  *	@completer(@completer_cookie) will be called on completion of
343  *	the switch, in non-atomic context.
344  * @completer_cookie: opaque context argument for @completer.
345  *
346  * This function causes a cluster switch on the given CPU by waking up
347  * the appropriate switcher thread.  This function may or may not return
348  * before the switch has occurred.
349  *
350  * If a @completer callback function is supplied, it will be called when
351  * the switch is complete.  This can be used to determine asynchronously
352  * when the switch is complete, regardless of when bL_switch_request()
353  * returns.  When @completer is supplied, no new switch request is permitted
354  * for the affected CPU until after the switch is complete, and @completer
355  * has returned.
356  */
357 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
358 			 bL_switch_completion_handler completer,
359 			 void *completer_cookie)
360 {
361 	struct bL_thread *t;
362 
363 	if (cpu >= ARRAY_SIZE(bL_threads)) {
364 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
365 		return -EINVAL;
366 	}
367 
368 	t = &bL_threads[cpu];
369 
370 	if (IS_ERR(t->task))
371 		return PTR_ERR(t->task);
372 	if (!t->task)
373 		return -ESRCH;
374 
375 	spin_lock(&t->lock);
376 	if (t->completer) {
377 		spin_unlock(&t->lock);
378 		return -EBUSY;
379 	}
380 	t->completer = completer;
381 	t->completer_cookie = completer_cookie;
382 	t->wanted_cluster = new_cluster_id;
383 	spin_unlock(&t->lock);
384 	wake_up(&t->wq);
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
388 
389 /*
390  * Activation and configuration code.
391  */
392 
393 static DEFINE_MUTEX(bL_switcher_activation_lock);
394 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
395 static unsigned int bL_switcher_active;
396 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
397 static cpumask_t bL_switcher_removed_logical_cpus;
398 
399 int bL_switcher_register_notifier(struct notifier_block *nb)
400 {
401 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
402 }
403 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
404 
405 int bL_switcher_unregister_notifier(struct notifier_block *nb)
406 {
407 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
408 }
409 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
410 
411 static int bL_activation_notify(unsigned long val)
412 {
413 	int ret;
414 
415 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
416 	if (ret & NOTIFY_STOP_MASK)
417 		pr_err("%s: notifier chain failed with status 0x%x\n",
418 			__func__, ret);
419 	return notifier_to_errno(ret);
420 }
421 
422 static void bL_switcher_restore_cpus(void)
423 {
424 	int i;
425 
426 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
427 		struct device *cpu_dev = get_cpu_device(i);
428 		int ret = device_online(cpu_dev);
429 		if (ret)
430 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
431 	}
432 }
433 
434 static int bL_switcher_halve_cpus(void)
435 {
436 	int i, j, cluster_0, gic_id, ret;
437 	unsigned int cpu, cluster, mask;
438 	cpumask_t available_cpus;
439 
440 	/* First pass to validate what we have */
441 	mask = 0;
442 	for_each_online_cpu(i) {
443 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
444 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
445 		if (cluster >= 2) {
446 			pr_err("%s: only dual cluster systems are supported\n", __func__);
447 			return -EINVAL;
448 		}
449 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
450 			return -EINVAL;
451 		mask |= (1 << cluster);
452 	}
453 	if (mask != 3) {
454 		pr_err("%s: no CPU pairing possible\n", __func__);
455 		return -EINVAL;
456 	}
457 
458 	/*
459 	 * Now let's do the pairing.  We match each CPU with another CPU
460 	 * from a different cluster.  To get a uniform scheduling behavior
461 	 * without fiddling with CPU topology and compute capacity data,
462 	 * we'll use logical CPUs initially belonging to the same cluster.
463 	 */
464 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
465 	cpumask_copy(&available_cpus, cpu_online_mask);
466 	cluster_0 = -1;
467 	for_each_cpu(i, &available_cpus) {
468 		int match = -1;
469 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
470 		if (cluster_0 == -1)
471 			cluster_0 = cluster;
472 		if (cluster != cluster_0)
473 			continue;
474 		cpumask_clear_cpu(i, &available_cpus);
475 		for_each_cpu(j, &available_cpus) {
476 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
477 			/*
478 			 * Let's remember the last match to create "odd"
479 			 * pairings on purpose in order for other code not
480 			 * to assume any relation between physical and
481 			 * logical CPU numbers.
482 			 */
483 			if (cluster != cluster_0)
484 				match = j;
485 		}
486 		if (match != -1) {
487 			bL_switcher_cpu_pairing[i] = match;
488 			cpumask_clear_cpu(match, &available_cpus);
489 			pr_info("CPU%d paired with CPU%d\n", i, match);
490 		}
491 	}
492 
493 	/*
494 	 * Now we disable the unwanted CPUs i.e. everything that has no
495 	 * pairing information (that includes the pairing counterparts).
496 	 */
497 	cpumask_clear(&bL_switcher_removed_logical_cpus);
498 	for_each_online_cpu(i) {
499 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
500 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
501 
502 		/* Let's take note of the GIC ID for this CPU */
503 		gic_id = gic_get_cpu_id(i);
504 		if (gic_id < 0) {
505 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
506 			bL_switcher_restore_cpus();
507 			return -EINVAL;
508 		}
509 		bL_gic_id[cpu][cluster] = gic_id;
510 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
511 			cpu, cluster, gic_id);
512 
513 		if (bL_switcher_cpu_pairing[i] != -1) {
514 			bL_switcher_cpu_original_cluster[i] = cluster;
515 			continue;
516 		}
517 
518 		ret = device_offline(get_cpu_device(i));
519 		if (ret) {
520 			bL_switcher_restore_cpus();
521 			return ret;
522 		}
523 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
524 	}
525 
526 	return 0;
527 }
528 
529 /* Determine the logical CPU a given physical CPU is grouped on. */
530 int bL_switcher_get_logical_index(u32 mpidr)
531 {
532 	int cpu;
533 
534 	if (!bL_switcher_active)
535 		return -EUNATCH;
536 
537 	mpidr &= MPIDR_HWID_BITMASK;
538 	for_each_online_cpu(cpu) {
539 		int pairing = bL_switcher_cpu_pairing[cpu];
540 		if (pairing == -1)
541 			continue;
542 		if ((mpidr == cpu_logical_map(cpu)) ||
543 		    (mpidr == cpu_logical_map(pairing)))
544 			return cpu;
545 	}
546 	return -EINVAL;
547 }
548 
549 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
550 {
551 	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
552 }
553 
554 int bL_switcher_trace_trigger(void)
555 {
556 	int ret;
557 
558 	preempt_disable();
559 
560 	bL_switcher_trace_trigger_cpu(NULL);
561 	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
562 
563 	preempt_enable();
564 
565 	return ret;
566 }
567 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
568 
569 static int bL_switcher_enable(void)
570 {
571 	int cpu, ret;
572 
573 	mutex_lock(&bL_switcher_activation_lock);
574 	lock_device_hotplug();
575 	if (bL_switcher_active) {
576 		unlock_device_hotplug();
577 		mutex_unlock(&bL_switcher_activation_lock);
578 		return 0;
579 	}
580 
581 	pr_info("big.LITTLE switcher initializing\n");
582 
583 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
584 	if (ret)
585 		goto error;
586 
587 	ret = bL_switcher_halve_cpus();
588 	if (ret)
589 		goto error;
590 
591 	bL_switcher_trace_trigger();
592 
593 	for_each_online_cpu(cpu) {
594 		struct bL_thread *t = &bL_threads[cpu];
595 		spin_lock_init(&t->lock);
596 		init_waitqueue_head(&t->wq);
597 		init_completion(&t->started);
598 		t->wanted_cluster = -1;
599 		t->task = bL_switcher_thread_create(cpu, t);
600 	}
601 
602 	bL_switcher_active = 1;
603 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
604 	pr_info("big.LITTLE switcher initialized\n");
605 	goto out;
606 
607 error:
608 	pr_warn("big.LITTLE switcher initialization failed\n");
609 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
610 
611 out:
612 	unlock_device_hotplug();
613 	mutex_unlock(&bL_switcher_activation_lock);
614 	return ret;
615 }
616 
617 #ifdef CONFIG_SYSFS
618 
619 static void bL_switcher_disable(void)
620 {
621 	unsigned int cpu, cluster;
622 	struct bL_thread *t;
623 	struct task_struct *task;
624 
625 	mutex_lock(&bL_switcher_activation_lock);
626 	lock_device_hotplug();
627 
628 	if (!bL_switcher_active)
629 		goto out;
630 
631 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
632 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
633 		goto out;
634 	}
635 
636 	bL_switcher_active = 0;
637 
638 	/*
639 	 * To deactivate the switcher, we must shut down the switcher
640 	 * threads to prevent any other requests from being accepted.
641 	 * Then, if the final cluster for given logical CPU is not the
642 	 * same as the original one, we'll recreate a switcher thread
643 	 * just for the purpose of switching the CPU back without any
644 	 * possibility for interference from external requests.
645 	 */
646 	for_each_online_cpu(cpu) {
647 		t = &bL_threads[cpu];
648 		task = t->task;
649 		t->task = NULL;
650 		if (!task || IS_ERR(task))
651 			continue;
652 		kthread_stop(task);
653 		/* no more switch may happen on this CPU at this point */
654 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
655 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
656 			continue;
657 		init_completion(&t->started);
658 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
659 		task = bL_switcher_thread_create(cpu, t);
660 		if (!IS_ERR(task)) {
661 			wait_for_completion(&t->started);
662 			kthread_stop(task);
663 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
664 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
665 				continue;
666 		}
667 		/* If execution gets here, we're in trouble. */
668 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
669 			__func__, cpu);
670 		pr_crit("%s: CPU %d can't be restored\n",
671 			__func__, bL_switcher_cpu_pairing[cpu]);
672 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
673 				  &bL_switcher_removed_logical_cpus);
674 	}
675 
676 	bL_switcher_restore_cpus();
677 	bL_switcher_trace_trigger();
678 
679 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
680 
681 out:
682 	unlock_device_hotplug();
683 	mutex_unlock(&bL_switcher_activation_lock);
684 }
685 
686 static ssize_t bL_switcher_active_show(struct kobject *kobj,
687 		struct kobj_attribute *attr, char *buf)
688 {
689 	return sprintf(buf, "%u\n", bL_switcher_active);
690 }
691 
692 static ssize_t bL_switcher_active_store(struct kobject *kobj,
693 		struct kobj_attribute *attr, const char *buf, size_t count)
694 {
695 	int ret;
696 
697 	switch (buf[0]) {
698 	case '0':
699 		bL_switcher_disable();
700 		ret = 0;
701 		break;
702 	case '1':
703 		ret = bL_switcher_enable();
704 		break;
705 	default:
706 		ret = -EINVAL;
707 	}
708 
709 	return (ret >= 0) ? count : ret;
710 }
711 
712 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
713 		struct kobj_attribute *attr, const char *buf, size_t count)
714 {
715 	int ret = bL_switcher_trace_trigger();
716 
717 	return ret ? ret : count;
718 }
719 
720 static struct kobj_attribute bL_switcher_active_attr =
721 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
722 
723 static struct kobj_attribute bL_switcher_trace_trigger_attr =
724 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
725 
726 static struct attribute *bL_switcher_attrs[] = {
727 	&bL_switcher_active_attr.attr,
728 	&bL_switcher_trace_trigger_attr.attr,
729 	NULL,
730 };
731 
732 static struct attribute_group bL_switcher_attr_group = {
733 	.attrs = bL_switcher_attrs,
734 };
735 
736 static struct kobject *bL_switcher_kobj;
737 
738 static int __init bL_switcher_sysfs_init(void)
739 {
740 	int ret;
741 
742 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
743 	if (!bL_switcher_kobj)
744 		return -ENOMEM;
745 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
746 	if (ret)
747 		kobject_put(bL_switcher_kobj);
748 	return ret;
749 }
750 
751 #endif  /* CONFIG_SYSFS */
752 
753 bool bL_switcher_get_enabled(void)
754 {
755 	mutex_lock(&bL_switcher_activation_lock);
756 
757 	return bL_switcher_active;
758 }
759 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
760 
761 void bL_switcher_put_enabled(void)
762 {
763 	mutex_unlock(&bL_switcher_activation_lock);
764 }
765 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
766 
767 /*
768  * Veto any CPU hotplug operation on those CPUs we've removed
769  * while the switcher is active.
770  * We're just not ready to deal with that given the trickery involved.
771  */
772 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
773 					unsigned long action, void *hcpu)
774 {
775 	if (bL_switcher_active) {
776 		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
777 		switch (action & 0xf) {
778 		case CPU_UP_PREPARE:
779 		case CPU_DOWN_PREPARE:
780 			if (pairing == -1)
781 				return NOTIFY_BAD;
782 		}
783 	}
784 	return NOTIFY_DONE;
785 }
786 
787 static bool no_bL_switcher;
788 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
789 
790 static int __init bL_switcher_init(void)
791 {
792 	int ret;
793 
794 	if (!mcpm_is_available())
795 		return -ENODEV;
796 
797 	cpu_notifier(bL_switcher_hotplug_callback, 0);
798 
799 	if (!no_bL_switcher) {
800 		ret = bL_switcher_enable();
801 		if (ret)
802 			return ret;
803 	}
804 
805 #ifdef CONFIG_SYSFS
806 	ret = bL_switcher_sysfs_init();
807 	if (ret)
808 		pr_err("%s: unable to create sysfs entry\n", __func__);
809 #endif
810 
811 	return 0;
812 }
813 
814 late_initcall(bL_switcher_init);
815