xref: /openbmc/linux/arch/arm/common/bL_switcher.c (revision d2999e1b)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/smp.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 #include <linux/sysfs.h>
34 #include <linux/irqchip/arm-gic.h>
35 #include <linux/moduleparam.h>
36 
37 #include <asm/smp_plat.h>
38 #include <asm/cputype.h>
39 #include <asm/suspend.h>
40 #include <asm/mcpm.h>
41 #include <asm/bL_switcher.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/power_cpu_migrate.h>
45 
46 
47 /*
48  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49  * __attribute_const__ and we don't want the compiler to assume any
50  * constness here as the value _does_ change along some code paths.
51  */
52 
53 static int read_mpidr(void)
54 {
55 	unsigned int id;
56 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
57 	return id & MPIDR_HWID_BITMASK;
58 }
59 
60 /*
61  * Get a global nanosecond time stamp for tracing.
62  */
63 static s64 get_ns(void)
64 {
65 	struct timespec ts;
66 	getnstimeofday(&ts);
67 	return timespec_to_ns(&ts);
68 }
69 
70 /*
71  * bL switcher core code.
72  */
73 
74 static void bL_do_switch(void *_arg)
75 {
76 	unsigned ib_mpidr, ib_cpu, ib_cluster;
77 	long volatile handshake, **handshake_ptr = _arg;
78 
79 	pr_debug("%s\n", __func__);
80 
81 	ib_mpidr = cpu_logical_map(smp_processor_id());
82 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
83 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
84 
85 	/* Advertise our handshake location */
86 	if (handshake_ptr) {
87 		handshake = 0;
88 		*handshake_ptr = &handshake;
89 	} else
90 		handshake = -1;
91 
92 	/*
93 	 * Our state has been saved at this point.  Let's release our
94 	 * inbound CPU.
95 	 */
96 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
97 	sev();
98 
99 	/*
100 	 * From this point, we must assume that our counterpart CPU might
101 	 * have taken over in its parallel world already, as if execution
102 	 * just returned from cpu_suspend().  It is therefore important to
103 	 * be very careful not to make any change the other guy is not
104 	 * expecting.  This is why we need stack isolation.
105 	 *
106 	 * Fancy under cover tasks could be performed here.  For now
107 	 * we have none.
108 	 */
109 
110 	/*
111 	 * Let's wait until our inbound is alive.
112 	 */
113 	while (!handshake) {
114 		wfe();
115 		smp_mb();
116 	}
117 
118 	/* Let's put ourself down. */
119 	mcpm_cpu_power_down();
120 
121 	/* should never get here */
122 	BUG();
123 }
124 
125 /*
126  * Stack isolation.  To ensure 'current' remains valid, we just use another
127  * piece of our thread's stack space which should be fairly lightly used.
128  * The selected area starts just above the thread_info structure located
129  * at the very bottom of the stack, aligned to a cache line, and indexed
130  * with the cluster number.
131  */
132 #define STACK_SIZE 512
133 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
134 static int bL_switchpoint(unsigned long _arg)
135 {
136 	unsigned int mpidr = read_mpidr();
137 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
138 	void *stack = current_thread_info() + 1;
139 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
140 	stack += clusterid * STACK_SIZE + STACK_SIZE;
141 	call_with_stack(bL_do_switch, (void *)_arg, stack);
142 	BUG();
143 }
144 
145 /*
146  * Generic switcher interface
147  */
148 
149 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
150 static int bL_switcher_cpu_pairing[NR_CPUS];
151 
152 /*
153  * bL_switch_to - Switch to a specific cluster for the current CPU
154  * @new_cluster_id: the ID of the cluster to switch to.
155  *
156  * This function must be called on the CPU to be switched.
157  * Returns 0 on success, else a negative status code.
158  */
159 static int bL_switch_to(unsigned int new_cluster_id)
160 {
161 	unsigned int mpidr, this_cpu, that_cpu;
162 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
163 	struct completion inbound_alive;
164 	struct tick_device *tdev;
165 	enum clock_event_mode tdev_mode;
166 	long volatile *handshake_ptr;
167 	int ipi_nr, ret;
168 
169 	this_cpu = smp_processor_id();
170 	ob_mpidr = read_mpidr();
171 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
172 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
173 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
174 
175 	if (new_cluster_id == ob_cluster)
176 		return 0;
177 
178 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
179 	ib_mpidr = cpu_logical_map(that_cpu);
180 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
181 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
182 
183 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
184 		 this_cpu, ob_mpidr, ib_mpidr);
185 
186 	this_cpu = smp_processor_id();
187 
188 	/* Close the gate for our entry vectors */
189 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
190 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
191 
192 	/* Install our "inbound alive" notifier. */
193 	init_completion(&inbound_alive);
194 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
195 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
196 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
197 
198 	/*
199 	 * Let's wake up the inbound CPU now in case it requires some delay
200 	 * to come online, but leave it gated in our entry vector code.
201 	 */
202 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
203 	if (ret) {
204 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
205 		return ret;
206 	}
207 
208 	/*
209 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
210 	 * in a possible WFI, such as in bL_power_down().
211 	 */
212 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
213 
214 	/*
215 	 * Wait for the inbound to come up.  This allows for other
216 	 * tasks to be scheduled in the mean time.
217 	 */
218 	wait_for_completion(&inbound_alive);
219 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
220 
221 	/*
222 	 * From this point we are entering the switch critical zone
223 	 * and can't take any interrupts anymore.
224 	 */
225 	local_irq_disable();
226 	local_fiq_disable();
227 	trace_cpu_migrate_begin(get_ns(), ob_mpidr);
228 
229 	/* redirect GIC's SGIs to our counterpart */
230 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
231 
232 	tdev = tick_get_device(this_cpu);
233 	if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
234 		tdev = NULL;
235 	if (tdev) {
236 		tdev_mode = tdev->evtdev->mode;
237 		clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
238 	}
239 
240 	ret = cpu_pm_enter();
241 
242 	/* we can not tolerate errors at this point */
243 	if (ret)
244 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
245 
246 	/* Swap the physical CPUs in the logical map for this logical CPU. */
247 	cpu_logical_map(this_cpu) = ib_mpidr;
248 	cpu_logical_map(that_cpu) = ob_mpidr;
249 
250 	/* Let's do the actual CPU switch. */
251 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
252 	if (ret > 0)
253 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
254 
255 	/* We are executing on the inbound CPU at this point */
256 	mpidr = read_mpidr();
257 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
258 	BUG_ON(mpidr != ib_mpidr);
259 
260 	mcpm_cpu_powered_up();
261 
262 	ret = cpu_pm_exit();
263 
264 	if (tdev) {
265 		clockevents_set_mode(tdev->evtdev, tdev_mode);
266 		clockevents_program_event(tdev->evtdev,
267 					  tdev->evtdev->next_event, 1);
268 	}
269 
270 	trace_cpu_migrate_finish(get_ns(), ib_mpidr);
271 	local_fiq_enable();
272 	local_irq_enable();
273 
274 	*handshake_ptr = 1;
275 	dsb_sev();
276 
277 	if (ret)
278 		pr_err("%s exiting with error %d\n", __func__, ret);
279 	return ret;
280 }
281 
282 struct bL_thread {
283 	spinlock_t lock;
284 	struct task_struct *task;
285 	wait_queue_head_t wq;
286 	int wanted_cluster;
287 	struct completion started;
288 	bL_switch_completion_handler completer;
289 	void *completer_cookie;
290 };
291 
292 static struct bL_thread bL_threads[NR_CPUS];
293 
294 static int bL_switcher_thread(void *arg)
295 {
296 	struct bL_thread *t = arg;
297 	struct sched_param param = { .sched_priority = 1 };
298 	int cluster;
299 	bL_switch_completion_handler completer;
300 	void *completer_cookie;
301 
302 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
303 	complete(&t->started);
304 
305 	do {
306 		if (signal_pending(current))
307 			flush_signals(current);
308 		wait_event_interruptible(t->wq,
309 				t->wanted_cluster != -1 ||
310 				kthread_should_stop());
311 
312 		spin_lock(&t->lock);
313 		cluster = t->wanted_cluster;
314 		completer = t->completer;
315 		completer_cookie = t->completer_cookie;
316 		t->wanted_cluster = -1;
317 		t->completer = NULL;
318 		spin_unlock(&t->lock);
319 
320 		if (cluster != -1) {
321 			bL_switch_to(cluster);
322 
323 			if (completer)
324 				completer(completer_cookie);
325 		}
326 	} while (!kthread_should_stop());
327 
328 	return 0;
329 }
330 
331 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
332 {
333 	struct task_struct *task;
334 
335 	task = kthread_create_on_node(bL_switcher_thread, arg,
336 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
337 	if (!IS_ERR(task)) {
338 		kthread_bind(task, cpu);
339 		wake_up_process(task);
340 	} else
341 		pr_err("%s failed for CPU %d\n", __func__, cpu);
342 	return task;
343 }
344 
345 /*
346  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
347  *      with completion notification via a callback
348  *
349  * @cpu: the CPU to switch
350  * @new_cluster_id: the ID of the cluster to switch to.
351  * @completer: switch completion callback.  if non-NULL,
352  *	@completer(@completer_cookie) will be called on completion of
353  *	the switch, in non-atomic context.
354  * @completer_cookie: opaque context argument for @completer.
355  *
356  * This function causes a cluster switch on the given CPU by waking up
357  * the appropriate switcher thread.  This function may or may not return
358  * before the switch has occurred.
359  *
360  * If a @completer callback function is supplied, it will be called when
361  * the switch is complete.  This can be used to determine asynchronously
362  * when the switch is complete, regardless of when bL_switch_request()
363  * returns.  When @completer is supplied, no new switch request is permitted
364  * for the affected CPU until after the switch is complete, and @completer
365  * has returned.
366  */
367 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
368 			 bL_switch_completion_handler completer,
369 			 void *completer_cookie)
370 {
371 	struct bL_thread *t;
372 
373 	if (cpu >= ARRAY_SIZE(bL_threads)) {
374 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
375 		return -EINVAL;
376 	}
377 
378 	t = &bL_threads[cpu];
379 
380 	if (IS_ERR(t->task))
381 		return PTR_ERR(t->task);
382 	if (!t->task)
383 		return -ESRCH;
384 
385 	spin_lock(&t->lock);
386 	if (t->completer) {
387 		spin_unlock(&t->lock);
388 		return -EBUSY;
389 	}
390 	t->completer = completer;
391 	t->completer_cookie = completer_cookie;
392 	t->wanted_cluster = new_cluster_id;
393 	spin_unlock(&t->lock);
394 	wake_up(&t->wq);
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
398 
399 /*
400  * Activation and configuration code.
401  */
402 
403 static DEFINE_MUTEX(bL_switcher_activation_lock);
404 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
405 static unsigned int bL_switcher_active;
406 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
407 static cpumask_t bL_switcher_removed_logical_cpus;
408 
409 int bL_switcher_register_notifier(struct notifier_block *nb)
410 {
411 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
412 }
413 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
414 
415 int bL_switcher_unregister_notifier(struct notifier_block *nb)
416 {
417 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
418 }
419 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
420 
421 static int bL_activation_notify(unsigned long val)
422 {
423 	int ret;
424 
425 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
426 	if (ret & NOTIFY_STOP_MASK)
427 		pr_err("%s: notifier chain failed with status 0x%x\n",
428 			__func__, ret);
429 	return notifier_to_errno(ret);
430 }
431 
432 static void bL_switcher_restore_cpus(void)
433 {
434 	int i;
435 
436 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
437 		struct device *cpu_dev = get_cpu_device(i);
438 		int ret = device_online(cpu_dev);
439 		if (ret)
440 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
441 	}
442 }
443 
444 static int bL_switcher_halve_cpus(void)
445 {
446 	int i, j, cluster_0, gic_id, ret;
447 	unsigned int cpu, cluster, mask;
448 	cpumask_t available_cpus;
449 
450 	/* First pass to validate what we have */
451 	mask = 0;
452 	for_each_online_cpu(i) {
453 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
454 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
455 		if (cluster >= 2) {
456 			pr_err("%s: only dual cluster systems are supported\n", __func__);
457 			return -EINVAL;
458 		}
459 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
460 			return -EINVAL;
461 		mask |= (1 << cluster);
462 	}
463 	if (mask != 3) {
464 		pr_err("%s: no CPU pairing possible\n", __func__);
465 		return -EINVAL;
466 	}
467 
468 	/*
469 	 * Now let's do the pairing.  We match each CPU with another CPU
470 	 * from a different cluster.  To get a uniform scheduling behavior
471 	 * without fiddling with CPU topology and compute capacity data,
472 	 * we'll use logical CPUs initially belonging to the same cluster.
473 	 */
474 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
475 	cpumask_copy(&available_cpus, cpu_online_mask);
476 	cluster_0 = -1;
477 	for_each_cpu(i, &available_cpus) {
478 		int match = -1;
479 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
480 		if (cluster_0 == -1)
481 			cluster_0 = cluster;
482 		if (cluster != cluster_0)
483 			continue;
484 		cpumask_clear_cpu(i, &available_cpus);
485 		for_each_cpu(j, &available_cpus) {
486 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
487 			/*
488 			 * Let's remember the last match to create "odd"
489 			 * pairings on purpose in order for other code not
490 			 * to assume any relation between physical and
491 			 * logical CPU numbers.
492 			 */
493 			if (cluster != cluster_0)
494 				match = j;
495 		}
496 		if (match != -1) {
497 			bL_switcher_cpu_pairing[i] = match;
498 			cpumask_clear_cpu(match, &available_cpus);
499 			pr_info("CPU%d paired with CPU%d\n", i, match);
500 		}
501 	}
502 
503 	/*
504 	 * Now we disable the unwanted CPUs i.e. everything that has no
505 	 * pairing information (that includes the pairing counterparts).
506 	 */
507 	cpumask_clear(&bL_switcher_removed_logical_cpus);
508 	for_each_online_cpu(i) {
509 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
510 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
511 
512 		/* Let's take note of the GIC ID for this CPU */
513 		gic_id = gic_get_cpu_id(i);
514 		if (gic_id < 0) {
515 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
516 			bL_switcher_restore_cpus();
517 			return -EINVAL;
518 		}
519 		bL_gic_id[cpu][cluster] = gic_id;
520 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
521 			cpu, cluster, gic_id);
522 
523 		if (bL_switcher_cpu_pairing[i] != -1) {
524 			bL_switcher_cpu_original_cluster[i] = cluster;
525 			continue;
526 		}
527 
528 		ret = device_offline(get_cpu_device(i));
529 		if (ret) {
530 			bL_switcher_restore_cpus();
531 			return ret;
532 		}
533 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
534 	}
535 
536 	return 0;
537 }
538 
539 /* Determine the logical CPU a given physical CPU is grouped on. */
540 int bL_switcher_get_logical_index(u32 mpidr)
541 {
542 	int cpu;
543 
544 	if (!bL_switcher_active)
545 		return -EUNATCH;
546 
547 	mpidr &= MPIDR_HWID_BITMASK;
548 	for_each_online_cpu(cpu) {
549 		int pairing = bL_switcher_cpu_pairing[cpu];
550 		if (pairing == -1)
551 			continue;
552 		if ((mpidr == cpu_logical_map(cpu)) ||
553 		    (mpidr == cpu_logical_map(pairing)))
554 			return cpu;
555 	}
556 	return -EINVAL;
557 }
558 
559 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
560 {
561 	trace_cpu_migrate_current(get_ns(), read_mpidr());
562 }
563 
564 int bL_switcher_trace_trigger(void)
565 {
566 	int ret;
567 
568 	preempt_disable();
569 
570 	bL_switcher_trace_trigger_cpu(NULL);
571 	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
572 
573 	preempt_enable();
574 
575 	return ret;
576 }
577 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
578 
579 static int bL_switcher_enable(void)
580 {
581 	int cpu, ret;
582 
583 	mutex_lock(&bL_switcher_activation_lock);
584 	lock_device_hotplug();
585 	if (bL_switcher_active) {
586 		unlock_device_hotplug();
587 		mutex_unlock(&bL_switcher_activation_lock);
588 		return 0;
589 	}
590 
591 	pr_info("big.LITTLE switcher initializing\n");
592 
593 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
594 	if (ret)
595 		goto error;
596 
597 	ret = bL_switcher_halve_cpus();
598 	if (ret)
599 		goto error;
600 
601 	bL_switcher_trace_trigger();
602 
603 	for_each_online_cpu(cpu) {
604 		struct bL_thread *t = &bL_threads[cpu];
605 		spin_lock_init(&t->lock);
606 		init_waitqueue_head(&t->wq);
607 		init_completion(&t->started);
608 		t->wanted_cluster = -1;
609 		t->task = bL_switcher_thread_create(cpu, t);
610 	}
611 
612 	bL_switcher_active = 1;
613 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
614 	pr_info("big.LITTLE switcher initialized\n");
615 	goto out;
616 
617 error:
618 	pr_warn("big.LITTLE switcher initialization failed\n");
619 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
620 
621 out:
622 	unlock_device_hotplug();
623 	mutex_unlock(&bL_switcher_activation_lock);
624 	return ret;
625 }
626 
627 #ifdef CONFIG_SYSFS
628 
629 static void bL_switcher_disable(void)
630 {
631 	unsigned int cpu, cluster;
632 	struct bL_thread *t;
633 	struct task_struct *task;
634 
635 	mutex_lock(&bL_switcher_activation_lock);
636 	lock_device_hotplug();
637 
638 	if (!bL_switcher_active)
639 		goto out;
640 
641 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
642 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
643 		goto out;
644 	}
645 
646 	bL_switcher_active = 0;
647 
648 	/*
649 	 * To deactivate the switcher, we must shut down the switcher
650 	 * threads to prevent any other requests from being accepted.
651 	 * Then, if the final cluster for given logical CPU is not the
652 	 * same as the original one, we'll recreate a switcher thread
653 	 * just for the purpose of switching the CPU back without any
654 	 * possibility for interference from external requests.
655 	 */
656 	for_each_online_cpu(cpu) {
657 		t = &bL_threads[cpu];
658 		task = t->task;
659 		t->task = NULL;
660 		if (!task || IS_ERR(task))
661 			continue;
662 		kthread_stop(task);
663 		/* no more switch may happen on this CPU at this point */
664 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
665 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
666 			continue;
667 		init_completion(&t->started);
668 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
669 		task = bL_switcher_thread_create(cpu, t);
670 		if (!IS_ERR(task)) {
671 			wait_for_completion(&t->started);
672 			kthread_stop(task);
673 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
674 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
675 				continue;
676 		}
677 		/* If execution gets here, we're in trouble. */
678 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
679 			__func__, cpu);
680 		pr_crit("%s: CPU %d can't be restored\n",
681 			__func__, bL_switcher_cpu_pairing[cpu]);
682 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
683 				  &bL_switcher_removed_logical_cpus);
684 	}
685 
686 	bL_switcher_restore_cpus();
687 	bL_switcher_trace_trigger();
688 
689 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
690 
691 out:
692 	unlock_device_hotplug();
693 	mutex_unlock(&bL_switcher_activation_lock);
694 }
695 
696 static ssize_t bL_switcher_active_show(struct kobject *kobj,
697 		struct kobj_attribute *attr, char *buf)
698 {
699 	return sprintf(buf, "%u\n", bL_switcher_active);
700 }
701 
702 static ssize_t bL_switcher_active_store(struct kobject *kobj,
703 		struct kobj_attribute *attr, const char *buf, size_t count)
704 {
705 	int ret;
706 
707 	switch (buf[0]) {
708 	case '0':
709 		bL_switcher_disable();
710 		ret = 0;
711 		break;
712 	case '1':
713 		ret = bL_switcher_enable();
714 		break;
715 	default:
716 		ret = -EINVAL;
717 	}
718 
719 	return (ret >= 0) ? count : ret;
720 }
721 
722 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
723 		struct kobj_attribute *attr, const char *buf, size_t count)
724 {
725 	int ret = bL_switcher_trace_trigger();
726 
727 	return ret ? ret : count;
728 }
729 
730 static struct kobj_attribute bL_switcher_active_attr =
731 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
732 
733 static struct kobj_attribute bL_switcher_trace_trigger_attr =
734 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
735 
736 static struct attribute *bL_switcher_attrs[] = {
737 	&bL_switcher_active_attr.attr,
738 	&bL_switcher_trace_trigger_attr.attr,
739 	NULL,
740 };
741 
742 static struct attribute_group bL_switcher_attr_group = {
743 	.attrs = bL_switcher_attrs,
744 };
745 
746 static struct kobject *bL_switcher_kobj;
747 
748 static int __init bL_switcher_sysfs_init(void)
749 {
750 	int ret;
751 
752 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
753 	if (!bL_switcher_kobj)
754 		return -ENOMEM;
755 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
756 	if (ret)
757 		kobject_put(bL_switcher_kobj);
758 	return ret;
759 }
760 
761 #endif  /* CONFIG_SYSFS */
762 
763 bool bL_switcher_get_enabled(void)
764 {
765 	mutex_lock(&bL_switcher_activation_lock);
766 
767 	return bL_switcher_active;
768 }
769 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
770 
771 void bL_switcher_put_enabled(void)
772 {
773 	mutex_unlock(&bL_switcher_activation_lock);
774 }
775 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
776 
777 /*
778  * Veto any CPU hotplug operation on those CPUs we've removed
779  * while the switcher is active.
780  * We're just not ready to deal with that given the trickery involved.
781  */
782 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
783 					unsigned long action, void *hcpu)
784 {
785 	if (bL_switcher_active) {
786 		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
787 		switch (action & 0xf) {
788 		case CPU_UP_PREPARE:
789 		case CPU_DOWN_PREPARE:
790 			if (pairing == -1)
791 				return NOTIFY_BAD;
792 		}
793 	}
794 	return NOTIFY_DONE;
795 }
796 
797 static bool no_bL_switcher;
798 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
799 
800 static int __init bL_switcher_init(void)
801 {
802 	int ret;
803 
804 	if (!mcpm_is_available())
805 		return -ENODEV;
806 
807 	cpu_notifier(bL_switcher_hotplug_callback, 0);
808 
809 	if (!no_bL_switcher) {
810 		ret = bL_switcher_enable();
811 		if (ret)
812 			return ret;
813 	}
814 
815 #ifdef CONFIG_SYSFS
816 	ret = bL_switcher_sysfs_init();
817 	if (ret)
818 		pr_err("%s: unable to create sysfs entry\n", __func__);
819 #endif
820 
821 	return 0;
822 }
823 
824 late_initcall(bL_switcher_init);
825