1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/cpu.h> 20 #include <linux/cpumask.h> 21 #include <linux/kthread.h> 22 #include <linux/wait.h> 23 #include <linux/time.h> 24 #include <linux/clockchips.h> 25 #include <linux/hrtimer.h> 26 #include <linux/tick.h> 27 #include <linux/notifier.h> 28 #include <linux/mm.h> 29 #include <linux/mutex.h> 30 #include <linux/smp.h> 31 #include <linux/spinlock.h> 32 #include <linux/string.h> 33 #include <linux/sysfs.h> 34 #include <linux/irqchip/arm-gic.h> 35 #include <linux/moduleparam.h> 36 37 #include <asm/smp_plat.h> 38 #include <asm/cputype.h> 39 #include <asm/suspend.h> 40 #include <asm/mcpm.h> 41 #include <asm/bL_switcher.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/power_cpu_migrate.h> 45 46 47 /* 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 49 * __attribute_const__ and we don't want the compiler to assume any 50 * constness here as the value _does_ change along some code paths. 51 */ 52 53 static int read_mpidr(void) 54 { 55 unsigned int id; 56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 57 return id & MPIDR_HWID_BITMASK; 58 } 59 60 /* 61 * Get a global nanosecond time stamp for tracing. 62 */ 63 static s64 get_ns(void) 64 { 65 struct timespec ts; 66 getnstimeofday(&ts); 67 return timespec_to_ns(&ts); 68 } 69 70 /* 71 * bL switcher core code. 72 */ 73 74 static void bL_do_switch(void *_arg) 75 { 76 unsigned ib_mpidr, ib_cpu, ib_cluster; 77 long volatile handshake, **handshake_ptr = _arg; 78 79 pr_debug("%s\n", __func__); 80 81 ib_mpidr = cpu_logical_map(smp_processor_id()); 82 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 83 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 84 85 /* Advertise our handshake location */ 86 if (handshake_ptr) { 87 handshake = 0; 88 *handshake_ptr = &handshake; 89 } else 90 handshake = -1; 91 92 /* 93 * Our state has been saved at this point. Let's release our 94 * inbound CPU. 95 */ 96 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 97 sev(); 98 99 /* 100 * From this point, we must assume that our counterpart CPU might 101 * have taken over in its parallel world already, as if execution 102 * just returned from cpu_suspend(). It is therefore important to 103 * be very careful not to make any change the other guy is not 104 * expecting. This is why we need stack isolation. 105 * 106 * Fancy under cover tasks could be performed here. For now 107 * we have none. 108 */ 109 110 /* 111 * Let's wait until our inbound is alive. 112 */ 113 while (!handshake) { 114 wfe(); 115 smp_mb(); 116 } 117 118 /* Let's put ourself down. */ 119 mcpm_cpu_power_down(); 120 121 /* should never get here */ 122 BUG(); 123 } 124 125 /* 126 * Stack isolation. To ensure 'current' remains valid, we just use another 127 * piece of our thread's stack space which should be fairly lightly used. 128 * The selected area starts just above the thread_info structure located 129 * at the very bottom of the stack, aligned to a cache line, and indexed 130 * with the cluster number. 131 */ 132 #define STACK_SIZE 512 133 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 134 static int bL_switchpoint(unsigned long _arg) 135 { 136 unsigned int mpidr = read_mpidr(); 137 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 138 void *stack = current_thread_info() + 1; 139 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 140 stack += clusterid * STACK_SIZE + STACK_SIZE; 141 call_with_stack(bL_do_switch, (void *)_arg, stack); 142 BUG(); 143 } 144 145 /* 146 * Generic switcher interface 147 */ 148 149 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 150 static int bL_switcher_cpu_pairing[NR_CPUS]; 151 152 /* 153 * bL_switch_to - Switch to a specific cluster for the current CPU 154 * @new_cluster_id: the ID of the cluster to switch to. 155 * 156 * This function must be called on the CPU to be switched. 157 * Returns 0 on success, else a negative status code. 158 */ 159 static int bL_switch_to(unsigned int new_cluster_id) 160 { 161 unsigned int mpidr, this_cpu, that_cpu; 162 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 163 struct completion inbound_alive; 164 struct tick_device *tdev; 165 enum clock_event_mode tdev_mode; 166 long volatile *handshake_ptr; 167 int ipi_nr, ret; 168 169 this_cpu = smp_processor_id(); 170 ob_mpidr = read_mpidr(); 171 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 172 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 173 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 174 175 if (new_cluster_id == ob_cluster) 176 return 0; 177 178 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 179 ib_mpidr = cpu_logical_map(that_cpu); 180 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 181 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 182 183 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 184 this_cpu, ob_mpidr, ib_mpidr); 185 186 this_cpu = smp_processor_id(); 187 188 /* Close the gate for our entry vectors */ 189 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 190 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 191 192 /* Install our "inbound alive" notifier. */ 193 init_completion(&inbound_alive); 194 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 195 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 196 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 197 198 /* 199 * Let's wake up the inbound CPU now in case it requires some delay 200 * to come online, but leave it gated in our entry vector code. 201 */ 202 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 203 if (ret) { 204 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 205 return ret; 206 } 207 208 /* 209 * Raise a SGI on the inbound CPU to make sure it doesn't stall 210 * in a possible WFI, such as in bL_power_down(). 211 */ 212 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 213 214 /* 215 * Wait for the inbound to come up. This allows for other 216 * tasks to be scheduled in the mean time. 217 */ 218 wait_for_completion(&inbound_alive); 219 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 220 221 /* 222 * From this point we are entering the switch critical zone 223 * and can't take any interrupts anymore. 224 */ 225 local_irq_disable(); 226 local_fiq_disable(); 227 trace_cpu_migrate_begin(get_ns(), ob_mpidr); 228 229 /* redirect GIC's SGIs to our counterpart */ 230 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 231 232 tdev = tick_get_device(this_cpu); 233 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) 234 tdev = NULL; 235 if (tdev) { 236 tdev_mode = tdev->evtdev->mode; 237 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 238 } 239 240 ret = cpu_pm_enter(); 241 242 /* we can not tolerate errors at this point */ 243 if (ret) 244 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 245 246 /* Swap the physical CPUs in the logical map for this logical CPU. */ 247 cpu_logical_map(this_cpu) = ib_mpidr; 248 cpu_logical_map(that_cpu) = ob_mpidr; 249 250 /* Let's do the actual CPU switch. */ 251 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 252 if (ret > 0) 253 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 254 255 /* We are executing on the inbound CPU at this point */ 256 mpidr = read_mpidr(); 257 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 258 BUG_ON(mpidr != ib_mpidr); 259 260 mcpm_cpu_powered_up(); 261 262 ret = cpu_pm_exit(); 263 264 if (tdev) { 265 clockevents_set_mode(tdev->evtdev, tdev_mode); 266 clockevents_program_event(tdev->evtdev, 267 tdev->evtdev->next_event, 1); 268 } 269 270 trace_cpu_migrate_finish(get_ns(), ib_mpidr); 271 local_fiq_enable(); 272 local_irq_enable(); 273 274 *handshake_ptr = 1; 275 dsb_sev(); 276 277 if (ret) 278 pr_err("%s exiting with error %d\n", __func__, ret); 279 return ret; 280 } 281 282 struct bL_thread { 283 spinlock_t lock; 284 struct task_struct *task; 285 wait_queue_head_t wq; 286 int wanted_cluster; 287 struct completion started; 288 bL_switch_completion_handler completer; 289 void *completer_cookie; 290 }; 291 292 static struct bL_thread bL_threads[NR_CPUS]; 293 294 static int bL_switcher_thread(void *arg) 295 { 296 struct bL_thread *t = arg; 297 struct sched_param param = { .sched_priority = 1 }; 298 int cluster; 299 bL_switch_completion_handler completer; 300 void *completer_cookie; 301 302 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 303 complete(&t->started); 304 305 do { 306 if (signal_pending(current)) 307 flush_signals(current); 308 wait_event_interruptible(t->wq, 309 t->wanted_cluster != -1 || 310 kthread_should_stop()); 311 312 spin_lock(&t->lock); 313 cluster = t->wanted_cluster; 314 completer = t->completer; 315 completer_cookie = t->completer_cookie; 316 t->wanted_cluster = -1; 317 t->completer = NULL; 318 spin_unlock(&t->lock); 319 320 if (cluster != -1) { 321 bL_switch_to(cluster); 322 323 if (completer) 324 completer(completer_cookie); 325 } 326 } while (!kthread_should_stop()); 327 328 return 0; 329 } 330 331 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 332 { 333 struct task_struct *task; 334 335 task = kthread_create_on_node(bL_switcher_thread, arg, 336 cpu_to_node(cpu), "kswitcher_%d", cpu); 337 if (!IS_ERR(task)) { 338 kthread_bind(task, cpu); 339 wake_up_process(task); 340 } else 341 pr_err("%s failed for CPU %d\n", __func__, cpu); 342 return task; 343 } 344 345 /* 346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 347 * with completion notification via a callback 348 * 349 * @cpu: the CPU to switch 350 * @new_cluster_id: the ID of the cluster to switch to. 351 * @completer: switch completion callback. if non-NULL, 352 * @completer(@completer_cookie) will be called on completion of 353 * the switch, in non-atomic context. 354 * @completer_cookie: opaque context argument for @completer. 355 * 356 * This function causes a cluster switch on the given CPU by waking up 357 * the appropriate switcher thread. This function may or may not return 358 * before the switch has occurred. 359 * 360 * If a @completer callback function is supplied, it will be called when 361 * the switch is complete. This can be used to determine asynchronously 362 * when the switch is complete, regardless of when bL_switch_request() 363 * returns. When @completer is supplied, no new switch request is permitted 364 * for the affected CPU until after the switch is complete, and @completer 365 * has returned. 366 */ 367 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 368 bL_switch_completion_handler completer, 369 void *completer_cookie) 370 { 371 struct bL_thread *t; 372 373 if (cpu >= ARRAY_SIZE(bL_threads)) { 374 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 375 return -EINVAL; 376 } 377 378 t = &bL_threads[cpu]; 379 380 if (IS_ERR(t->task)) 381 return PTR_ERR(t->task); 382 if (!t->task) 383 return -ESRCH; 384 385 spin_lock(&t->lock); 386 if (t->completer) { 387 spin_unlock(&t->lock); 388 return -EBUSY; 389 } 390 t->completer = completer; 391 t->completer_cookie = completer_cookie; 392 t->wanted_cluster = new_cluster_id; 393 spin_unlock(&t->lock); 394 wake_up(&t->wq); 395 return 0; 396 } 397 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 398 399 /* 400 * Activation and configuration code. 401 */ 402 403 static DEFINE_MUTEX(bL_switcher_activation_lock); 404 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 405 static unsigned int bL_switcher_active; 406 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 407 static cpumask_t bL_switcher_removed_logical_cpus; 408 409 int bL_switcher_register_notifier(struct notifier_block *nb) 410 { 411 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 412 } 413 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 414 415 int bL_switcher_unregister_notifier(struct notifier_block *nb) 416 { 417 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 418 } 419 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 420 421 static int bL_activation_notify(unsigned long val) 422 { 423 int ret; 424 425 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 426 if (ret & NOTIFY_STOP_MASK) 427 pr_err("%s: notifier chain failed with status 0x%x\n", 428 __func__, ret); 429 return notifier_to_errno(ret); 430 } 431 432 static void bL_switcher_restore_cpus(void) 433 { 434 int i; 435 436 for_each_cpu(i, &bL_switcher_removed_logical_cpus) { 437 struct device *cpu_dev = get_cpu_device(i); 438 int ret = device_online(cpu_dev); 439 if (ret) 440 dev_err(cpu_dev, "switcher: unable to restore CPU\n"); 441 } 442 } 443 444 static int bL_switcher_halve_cpus(void) 445 { 446 int i, j, cluster_0, gic_id, ret; 447 unsigned int cpu, cluster, mask; 448 cpumask_t available_cpus; 449 450 /* First pass to validate what we have */ 451 mask = 0; 452 for_each_online_cpu(i) { 453 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 454 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 455 if (cluster >= 2) { 456 pr_err("%s: only dual cluster systems are supported\n", __func__); 457 return -EINVAL; 458 } 459 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 460 return -EINVAL; 461 mask |= (1 << cluster); 462 } 463 if (mask != 3) { 464 pr_err("%s: no CPU pairing possible\n", __func__); 465 return -EINVAL; 466 } 467 468 /* 469 * Now let's do the pairing. We match each CPU with another CPU 470 * from a different cluster. To get a uniform scheduling behavior 471 * without fiddling with CPU topology and compute capacity data, 472 * we'll use logical CPUs initially belonging to the same cluster. 473 */ 474 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 475 cpumask_copy(&available_cpus, cpu_online_mask); 476 cluster_0 = -1; 477 for_each_cpu(i, &available_cpus) { 478 int match = -1; 479 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 480 if (cluster_0 == -1) 481 cluster_0 = cluster; 482 if (cluster != cluster_0) 483 continue; 484 cpumask_clear_cpu(i, &available_cpus); 485 for_each_cpu(j, &available_cpus) { 486 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 487 /* 488 * Let's remember the last match to create "odd" 489 * pairings on purpose in order for other code not 490 * to assume any relation between physical and 491 * logical CPU numbers. 492 */ 493 if (cluster != cluster_0) 494 match = j; 495 } 496 if (match != -1) { 497 bL_switcher_cpu_pairing[i] = match; 498 cpumask_clear_cpu(match, &available_cpus); 499 pr_info("CPU%d paired with CPU%d\n", i, match); 500 } 501 } 502 503 /* 504 * Now we disable the unwanted CPUs i.e. everything that has no 505 * pairing information (that includes the pairing counterparts). 506 */ 507 cpumask_clear(&bL_switcher_removed_logical_cpus); 508 for_each_online_cpu(i) { 509 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 510 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 511 512 /* Let's take note of the GIC ID for this CPU */ 513 gic_id = gic_get_cpu_id(i); 514 if (gic_id < 0) { 515 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 516 bL_switcher_restore_cpus(); 517 return -EINVAL; 518 } 519 bL_gic_id[cpu][cluster] = gic_id; 520 pr_info("GIC ID for CPU %u cluster %u is %u\n", 521 cpu, cluster, gic_id); 522 523 if (bL_switcher_cpu_pairing[i] != -1) { 524 bL_switcher_cpu_original_cluster[i] = cluster; 525 continue; 526 } 527 528 ret = device_offline(get_cpu_device(i)); 529 if (ret) { 530 bL_switcher_restore_cpus(); 531 return ret; 532 } 533 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 534 } 535 536 return 0; 537 } 538 539 /* Determine the logical CPU a given physical CPU is grouped on. */ 540 int bL_switcher_get_logical_index(u32 mpidr) 541 { 542 int cpu; 543 544 if (!bL_switcher_active) 545 return -EUNATCH; 546 547 mpidr &= MPIDR_HWID_BITMASK; 548 for_each_online_cpu(cpu) { 549 int pairing = bL_switcher_cpu_pairing[cpu]; 550 if (pairing == -1) 551 continue; 552 if ((mpidr == cpu_logical_map(cpu)) || 553 (mpidr == cpu_logical_map(pairing))) 554 return cpu; 555 } 556 return -EINVAL; 557 } 558 559 static void bL_switcher_trace_trigger_cpu(void *__always_unused info) 560 { 561 trace_cpu_migrate_current(get_ns(), read_mpidr()); 562 } 563 564 int bL_switcher_trace_trigger(void) 565 { 566 int ret; 567 568 preempt_disable(); 569 570 bL_switcher_trace_trigger_cpu(NULL); 571 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); 572 573 preempt_enable(); 574 575 return ret; 576 } 577 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); 578 579 static int bL_switcher_enable(void) 580 { 581 int cpu, ret; 582 583 mutex_lock(&bL_switcher_activation_lock); 584 lock_device_hotplug(); 585 if (bL_switcher_active) { 586 unlock_device_hotplug(); 587 mutex_unlock(&bL_switcher_activation_lock); 588 return 0; 589 } 590 591 pr_info("big.LITTLE switcher initializing\n"); 592 593 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 594 if (ret) 595 goto error; 596 597 ret = bL_switcher_halve_cpus(); 598 if (ret) 599 goto error; 600 601 bL_switcher_trace_trigger(); 602 603 for_each_online_cpu(cpu) { 604 struct bL_thread *t = &bL_threads[cpu]; 605 spin_lock_init(&t->lock); 606 init_waitqueue_head(&t->wq); 607 init_completion(&t->started); 608 t->wanted_cluster = -1; 609 t->task = bL_switcher_thread_create(cpu, t); 610 } 611 612 bL_switcher_active = 1; 613 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 614 pr_info("big.LITTLE switcher initialized\n"); 615 goto out; 616 617 error: 618 pr_warn("big.LITTLE switcher initialization failed\n"); 619 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 620 621 out: 622 unlock_device_hotplug(); 623 mutex_unlock(&bL_switcher_activation_lock); 624 return ret; 625 } 626 627 #ifdef CONFIG_SYSFS 628 629 static void bL_switcher_disable(void) 630 { 631 unsigned int cpu, cluster; 632 struct bL_thread *t; 633 struct task_struct *task; 634 635 mutex_lock(&bL_switcher_activation_lock); 636 lock_device_hotplug(); 637 638 if (!bL_switcher_active) 639 goto out; 640 641 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 642 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 643 goto out; 644 } 645 646 bL_switcher_active = 0; 647 648 /* 649 * To deactivate the switcher, we must shut down the switcher 650 * threads to prevent any other requests from being accepted. 651 * Then, if the final cluster for given logical CPU is not the 652 * same as the original one, we'll recreate a switcher thread 653 * just for the purpose of switching the CPU back without any 654 * possibility for interference from external requests. 655 */ 656 for_each_online_cpu(cpu) { 657 t = &bL_threads[cpu]; 658 task = t->task; 659 t->task = NULL; 660 if (!task || IS_ERR(task)) 661 continue; 662 kthread_stop(task); 663 /* no more switch may happen on this CPU at this point */ 664 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 665 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 666 continue; 667 init_completion(&t->started); 668 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 669 task = bL_switcher_thread_create(cpu, t); 670 if (!IS_ERR(task)) { 671 wait_for_completion(&t->started); 672 kthread_stop(task); 673 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 674 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 675 continue; 676 } 677 /* If execution gets here, we're in trouble. */ 678 pr_crit("%s: unable to restore original cluster for CPU %d\n", 679 __func__, cpu); 680 pr_crit("%s: CPU %d can't be restored\n", 681 __func__, bL_switcher_cpu_pairing[cpu]); 682 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 683 &bL_switcher_removed_logical_cpus); 684 } 685 686 bL_switcher_restore_cpus(); 687 bL_switcher_trace_trigger(); 688 689 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 690 691 out: 692 unlock_device_hotplug(); 693 mutex_unlock(&bL_switcher_activation_lock); 694 } 695 696 static ssize_t bL_switcher_active_show(struct kobject *kobj, 697 struct kobj_attribute *attr, char *buf) 698 { 699 return sprintf(buf, "%u\n", bL_switcher_active); 700 } 701 702 static ssize_t bL_switcher_active_store(struct kobject *kobj, 703 struct kobj_attribute *attr, const char *buf, size_t count) 704 { 705 int ret; 706 707 switch (buf[0]) { 708 case '0': 709 bL_switcher_disable(); 710 ret = 0; 711 break; 712 case '1': 713 ret = bL_switcher_enable(); 714 break; 715 default: 716 ret = -EINVAL; 717 } 718 719 return (ret >= 0) ? count : ret; 720 } 721 722 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, 723 struct kobj_attribute *attr, const char *buf, size_t count) 724 { 725 int ret = bL_switcher_trace_trigger(); 726 727 return ret ? ret : count; 728 } 729 730 static struct kobj_attribute bL_switcher_active_attr = 731 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 732 733 static struct kobj_attribute bL_switcher_trace_trigger_attr = 734 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); 735 736 static struct attribute *bL_switcher_attrs[] = { 737 &bL_switcher_active_attr.attr, 738 &bL_switcher_trace_trigger_attr.attr, 739 NULL, 740 }; 741 742 static struct attribute_group bL_switcher_attr_group = { 743 .attrs = bL_switcher_attrs, 744 }; 745 746 static struct kobject *bL_switcher_kobj; 747 748 static int __init bL_switcher_sysfs_init(void) 749 { 750 int ret; 751 752 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 753 if (!bL_switcher_kobj) 754 return -ENOMEM; 755 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 756 if (ret) 757 kobject_put(bL_switcher_kobj); 758 return ret; 759 } 760 761 #endif /* CONFIG_SYSFS */ 762 763 bool bL_switcher_get_enabled(void) 764 { 765 mutex_lock(&bL_switcher_activation_lock); 766 767 return bL_switcher_active; 768 } 769 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 770 771 void bL_switcher_put_enabled(void) 772 { 773 mutex_unlock(&bL_switcher_activation_lock); 774 } 775 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 776 777 /* 778 * Veto any CPU hotplug operation on those CPUs we've removed 779 * while the switcher is active. 780 * We're just not ready to deal with that given the trickery involved. 781 */ 782 static int bL_switcher_hotplug_callback(struct notifier_block *nfb, 783 unsigned long action, void *hcpu) 784 { 785 if (bL_switcher_active) { 786 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; 787 switch (action & 0xf) { 788 case CPU_UP_PREPARE: 789 case CPU_DOWN_PREPARE: 790 if (pairing == -1) 791 return NOTIFY_BAD; 792 } 793 } 794 return NOTIFY_DONE; 795 } 796 797 static bool no_bL_switcher; 798 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 799 800 static int __init bL_switcher_init(void) 801 { 802 int ret; 803 804 if (!mcpm_is_available()) 805 return -ENODEV; 806 807 cpu_notifier(bL_switcher_hotplug_callback, 0); 808 809 if (!no_bL_switcher) { 810 ret = bL_switcher_enable(); 811 if (ret) 812 return ret; 813 } 814 815 #ifdef CONFIG_SYSFS 816 ret = bL_switcher_sysfs_init(); 817 if (ret) 818 pr_err("%s: unable to create sysfs entry\n", __func__); 819 #endif 820 821 return 0; 822 } 823 824 late_initcall(bL_switcher_init); 825