xref: /openbmc/linux/arch/arm/common/bL_switcher.c (revision d0bd7f2a)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/smp.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 #include <linux/sysfs.h>
34 #include <linux/irqchip/arm-gic.h>
35 #include <linux/moduleparam.h>
36 
37 #include <asm/smp_plat.h>
38 #include <asm/cputype.h>
39 #include <asm/suspend.h>
40 #include <asm/mcpm.h>
41 #include <asm/bL_switcher.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/power_cpu_migrate.h>
45 
46 
47 /*
48  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49  * __attribute_const__ and we don't want the compiler to assume any
50  * constness here as the value _does_ change along some code paths.
51  */
52 
53 static int read_mpidr(void)
54 {
55 	unsigned int id;
56 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
57 	return id & MPIDR_HWID_BITMASK;
58 }
59 
60 /*
61  * bL switcher core code.
62  */
63 
64 static void bL_do_switch(void *_arg)
65 {
66 	unsigned ib_mpidr, ib_cpu, ib_cluster;
67 	long volatile handshake, **handshake_ptr = _arg;
68 
69 	pr_debug("%s\n", __func__);
70 
71 	ib_mpidr = cpu_logical_map(smp_processor_id());
72 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
73 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
74 
75 	/* Advertise our handshake location */
76 	if (handshake_ptr) {
77 		handshake = 0;
78 		*handshake_ptr = &handshake;
79 	} else
80 		handshake = -1;
81 
82 	/*
83 	 * Our state has been saved at this point.  Let's release our
84 	 * inbound CPU.
85 	 */
86 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
87 	sev();
88 
89 	/*
90 	 * From this point, we must assume that our counterpart CPU might
91 	 * have taken over in its parallel world already, as if execution
92 	 * just returned from cpu_suspend().  It is therefore important to
93 	 * be very careful not to make any change the other guy is not
94 	 * expecting.  This is why we need stack isolation.
95 	 *
96 	 * Fancy under cover tasks could be performed here.  For now
97 	 * we have none.
98 	 */
99 
100 	/*
101 	 * Let's wait until our inbound is alive.
102 	 */
103 	while (!handshake) {
104 		wfe();
105 		smp_mb();
106 	}
107 
108 	/* Let's put ourself down. */
109 	mcpm_cpu_power_down();
110 
111 	/* should never get here */
112 	BUG();
113 }
114 
115 /*
116  * Stack isolation.  To ensure 'current' remains valid, we just use another
117  * piece of our thread's stack space which should be fairly lightly used.
118  * The selected area starts just above the thread_info structure located
119  * at the very bottom of the stack, aligned to a cache line, and indexed
120  * with the cluster number.
121  */
122 #define STACK_SIZE 512
123 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
124 static int bL_switchpoint(unsigned long _arg)
125 {
126 	unsigned int mpidr = read_mpidr();
127 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
128 	void *stack = current_thread_info() + 1;
129 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
130 	stack += clusterid * STACK_SIZE + STACK_SIZE;
131 	call_with_stack(bL_do_switch, (void *)_arg, stack);
132 	BUG();
133 }
134 
135 /*
136  * Generic switcher interface
137  */
138 
139 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
140 static int bL_switcher_cpu_pairing[NR_CPUS];
141 
142 /*
143  * bL_switch_to - Switch to a specific cluster for the current CPU
144  * @new_cluster_id: the ID of the cluster to switch to.
145  *
146  * This function must be called on the CPU to be switched.
147  * Returns 0 on success, else a negative status code.
148  */
149 static int bL_switch_to(unsigned int new_cluster_id)
150 {
151 	unsigned int mpidr, this_cpu, that_cpu;
152 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
153 	struct completion inbound_alive;
154 	long volatile *handshake_ptr;
155 	int ipi_nr, ret;
156 
157 	this_cpu = smp_processor_id();
158 	ob_mpidr = read_mpidr();
159 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
160 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
161 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
162 
163 	if (new_cluster_id == ob_cluster)
164 		return 0;
165 
166 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
167 	ib_mpidr = cpu_logical_map(that_cpu);
168 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
169 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
170 
171 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
172 		 this_cpu, ob_mpidr, ib_mpidr);
173 
174 	this_cpu = smp_processor_id();
175 
176 	/* Close the gate for our entry vectors */
177 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
178 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
179 
180 	/* Install our "inbound alive" notifier. */
181 	init_completion(&inbound_alive);
182 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
183 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
184 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
185 
186 	/*
187 	 * Let's wake up the inbound CPU now in case it requires some delay
188 	 * to come online, but leave it gated in our entry vector code.
189 	 */
190 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
191 	if (ret) {
192 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
193 		return ret;
194 	}
195 
196 	/*
197 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
198 	 * in a possible WFI, such as in bL_power_down().
199 	 */
200 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
201 
202 	/*
203 	 * Wait for the inbound to come up.  This allows for other
204 	 * tasks to be scheduled in the mean time.
205 	 */
206 	wait_for_completion(&inbound_alive);
207 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
208 
209 	/*
210 	 * From this point we are entering the switch critical zone
211 	 * and can't take any interrupts anymore.
212 	 */
213 	local_irq_disable();
214 	local_fiq_disable();
215 	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
216 
217 	/* redirect GIC's SGIs to our counterpart */
218 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
219 
220 	tick_suspend_local();
221 
222 	ret = cpu_pm_enter();
223 
224 	/* we can not tolerate errors at this point */
225 	if (ret)
226 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
227 
228 	/* Swap the physical CPUs in the logical map for this logical CPU. */
229 	cpu_logical_map(this_cpu) = ib_mpidr;
230 	cpu_logical_map(that_cpu) = ob_mpidr;
231 
232 	/* Let's do the actual CPU switch. */
233 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
234 	if (ret > 0)
235 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
236 
237 	/* We are executing on the inbound CPU at this point */
238 	mpidr = read_mpidr();
239 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
240 	BUG_ON(mpidr != ib_mpidr);
241 
242 	mcpm_cpu_powered_up();
243 
244 	ret = cpu_pm_exit();
245 
246 	tick_resume_local();
247 
248 	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
249 	local_fiq_enable();
250 	local_irq_enable();
251 
252 	*handshake_ptr = 1;
253 	dsb_sev();
254 
255 	if (ret)
256 		pr_err("%s exiting with error %d\n", __func__, ret);
257 	return ret;
258 }
259 
260 struct bL_thread {
261 	spinlock_t lock;
262 	struct task_struct *task;
263 	wait_queue_head_t wq;
264 	int wanted_cluster;
265 	struct completion started;
266 	bL_switch_completion_handler completer;
267 	void *completer_cookie;
268 };
269 
270 static struct bL_thread bL_threads[NR_CPUS];
271 
272 static int bL_switcher_thread(void *arg)
273 {
274 	struct bL_thread *t = arg;
275 	struct sched_param param = { .sched_priority = 1 };
276 	int cluster;
277 	bL_switch_completion_handler completer;
278 	void *completer_cookie;
279 
280 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
281 	complete(&t->started);
282 
283 	do {
284 		if (signal_pending(current))
285 			flush_signals(current);
286 		wait_event_interruptible(t->wq,
287 				t->wanted_cluster != -1 ||
288 				kthread_should_stop());
289 
290 		spin_lock(&t->lock);
291 		cluster = t->wanted_cluster;
292 		completer = t->completer;
293 		completer_cookie = t->completer_cookie;
294 		t->wanted_cluster = -1;
295 		t->completer = NULL;
296 		spin_unlock(&t->lock);
297 
298 		if (cluster != -1) {
299 			bL_switch_to(cluster);
300 
301 			if (completer)
302 				completer(completer_cookie);
303 		}
304 	} while (!kthread_should_stop());
305 
306 	return 0;
307 }
308 
309 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
310 {
311 	struct task_struct *task;
312 
313 	task = kthread_create_on_node(bL_switcher_thread, arg,
314 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
315 	if (!IS_ERR(task)) {
316 		kthread_bind(task, cpu);
317 		wake_up_process(task);
318 	} else
319 		pr_err("%s failed for CPU %d\n", __func__, cpu);
320 	return task;
321 }
322 
323 /*
324  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
325  *      with completion notification via a callback
326  *
327  * @cpu: the CPU to switch
328  * @new_cluster_id: the ID of the cluster to switch to.
329  * @completer: switch completion callback.  if non-NULL,
330  *	@completer(@completer_cookie) will be called on completion of
331  *	the switch, in non-atomic context.
332  * @completer_cookie: opaque context argument for @completer.
333  *
334  * This function causes a cluster switch on the given CPU by waking up
335  * the appropriate switcher thread.  This function may or may not return
336  * before the switch has occurred.
337  *
338  * If a @completer callback function is supplied, it will be called when
339  * the switch is complete.  This can be used to determine asynchronously
340  * when the switch is complete, regardless of when bL_switch_request()
341  * returns.  When @completer is supplied, no new switch request is permitted
342  * for the affected CPU until after the switch is complete, and @completer
343  * has returned.
344  */
345 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
346 			 bL_switch_completion_handler completer,
347 			 void *completer_cookie)
348 {
349 	struct bL_thread *t;
350 
351 	if (cpu >= ARRAY_SIZE(bL_threads)) {
352 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
353 		return -EINVAL;
354 	}
355 
356 	t = &bL_threads[cpu];
357 
358 	if (IS_ERR(t->task))
359 		return PTR_ERR(t->task);
360 	if (!t->task)
361 		return -ESRCH;
362 
363 	spin_lock(&t->lock);
364 	if (t->completer) {
365 		spin_unlock(&t->lock);
366 		return -EBUSY;
367 	}
368 	t->completer = completer;
369 	t->completer_cookie = completer_cookie;
370 	t->wanted_cluster = new_cluster_id;
371 	spin_unlock(&t->lock);
372 	wake_up(&t->wq);
373 	return 0;
374 }
375 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
376 
377 /*
378  * Activation and configuration code.
379  */
380 
381 static DEFINE_MUTEX(bL_switcher_activation_lock);
382 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
383 static unsigned int bL_switcher_active;
384 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
385 static cpumask_t bL_switcher_removed_logical_cpus;
386 
387 int bL_switcher_register_notifier(struct notifier_block *nb)
388 {
389 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
390 }
391 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
392 
393 int bL_switcher_unregister_notifier(struct notifier_block *nb)
394 {
395 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
396 }
397 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
398 
399 static int bL_activation_notify(unsigned long val)
400 {
401 	int ret;
402 
403 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
404 	if (ret & NOTIFY_STOP_MASK)
405 		pr_err("%s: notifier chain failed with status 0x%x\n",
406 			__func__, ret);
407 	return notifier_to_errno(ret);
408 }
409 
410 static void bL_switcher_restore_cpus(void)
411 {
412 	int i;
413 
414 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
415 		struct device *cpu_dev = get_cpu_device(i);
416 		int ret = device_online(cpu_dev);
417 		if (ret)
418 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
419 	}
420 }
421 
422 static int bL_switcher_halve_cpus(void)
423 {
424 	int i, j, cluster_0, gic_id, ret;
425 	unsigned int cpu, cluster, mask;
426 	cpumask_t available_cpus;
427 
428 	/* First pass to validate what we have */
429 	mask = 0;
430 	for_each_online_cpu(i) {
431 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
432 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
433 		if (cluster >= 2) {
434 			pr_err("%s: only dual cluster systems are supported\n", __func__);
435 			return -EINVAL;
436 		}
437 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
438 			return -EINVAL;
439 		mask |= (1 << cluster);
440 	}
441 	if (mask != 3) {
442 		pr_err("%s: no CPU pairing possible\n", __func__);
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * Now let's do the pairing.  We match each CPU with another CPU
448 	 * from a different cluster.  To get a uniform scheduling behavior
449 	 * without fiddling with CPU topology and compute capacity data,
450 	 * we'll use logical CPUs initially belonging to the same cluster.
451 	 */
452 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
453 	cpumask_copy(&available_cpus, cpu_online_mask);
454 	cluster_0 = -1;
455 	for_each_cpu(i, &available_cpus) {
456 		int match = -1;
457 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
458 		if (cluster_0 == -1)
459 			cluster_0 = cluster;
460 		if (cluster != cluster_0)
461 			continue;
462 		cpumask_clear_cpu(i, &available_cpus);
463 		for_each_cpu(j, &available_cpus) {
464 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
465 			/*
466 			 * Let's remember the last match to create "odd"
467 			 * pairings on purpose in order for other code not
468 			 * to assume any relation between physical and
469 			 * logical CPU numbers.
470 			 */
471 			if (cluster != cluster_0)
472 				match = j;
473 		}
474 		if (match != -1) {
475 			bL_switcher_cpu_pairing[i] = match;
476 			cpumask_clear_cpu(match, &available_cpus);
477 			pr_info("CPU%d paired with CPU%d\n", i, match);
478 		}
479 	}
480 
481 	/*
482 	 * Now we disable the unwanted CPUs i.e. everything that has no
483 	 * pairing information (that includes the pairing counterparts).
484 	 */
485 	cpumask_clear(&bL_switcher_removed_logical_cpus);
486 	for_each_online_cpu(i) {
487 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
488 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
489 
490 		/* Let's take note of the GIC ID for this CPU */
491 		gic_id = gic_get_cpu_id(i);
492 		if (gic_id < 0) {
493 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
494 			bL_switcher_restore_cpus();
495 			return -EINVAL;
496 		}
497 		bL_gic_id[cpu][cluster] = gic_id;
498 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
499 			cpu, cluster, gic_id);
500 
501 		if (bL_switcher_cpu_pairing[i] != -1) {
502 			bL_switcher_cpu_original_cluster[i] = cluster;
503 			continue;
504 		}
505 
506 		ret = device_offline(get_cpu_device(i));
507 		if (ret) {
508 			bL_switcher_restore_cpus();
509 			return ret;
510 		}
511 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
512 	}
513 
514 	return 0;
515 }
516 
517 /* Determine the logical CPU a given physical CPU is grouped on. */
518 int bL_switcher_get_logical_index(u32 mpidr)
519 {
520 	int cpu;
521 
522 	if (!bL_switcher_active)
523 		return -EUNATCH;
524 
525 	mpidr &= MPIDR_HWID_BITMASK;
526 	for_each_online_cpu(cpu) {
527 		int pairing = bL_switcher_cpu_pairing[cpu];
528 		if (pairing == -1)
529 			continue;
530 		if ((mpidr == cpu_logical_map(cpu)) ||
531 		    (mpidr == cpu_logical_map(pairing)))
532 			return cpu;
533 	}
534 	return -EINVAL;
535 }
536 
537 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
538 {
539 	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
540 }
541 
542 int bL_switcher_trace_trigger(void)
543 {
544 	int ret;
545 
546 	preempt_disable();
547 
548 	bL_switcher_trace_trigger_cpu(NULL);
549 	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
550 
551 	preempt_enable();
552 
553 	return ret;
554 }
555 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
556 
557 static int bL_switcher_enable(void)
558 {
559 	int cpu, ret;
560 
561 	mutex_lock(&bL_switcher_activation_lock);
562 	lock_device_hotplug();
563 	if (bL_switcher_active) {
564 		unlock_device_hotplug();
565 		mutex_unlock(&bL_switcher_activation_lock);
566 		return 0;
567 	}
568 
569 	pr_info("big.LITTLE switcher initializing\n");
570 
571 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
572 	if (ret)
573 		goto error;
574 
575 	ret = bL_switcher_halve_cpus();
576 	if (ret)
577 		goto error;
578 
579 	bL_switcher_trace_trigger();
580 
581 	for_each_online_cpu(cpu) {
582 		struct bL_thread *t = &bL_threads[cpu];
583 		spin_lock_init(&t->lock);
584 		init_waitqueue_head(&t->wq);
585 		init_completion(&t->started);
586 		t->wanted_cluster = -1;
587 		t->task = bL_switcher_thread_create(cpu, t);
588 	}
589 
590 	bL_switcher_active = 1;
591 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
592 	pr_info("big.LITTLE switcher initialized\n");
593 	goto out;
594 
595 error:
596 	pr_warn("big.LITTLE switcher initialization failed\n");
597 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
598 
599 out:
600 	unlock_device_hotplug();
601 	mutex_unlock(&bL_switcher_activation_lock);
602 	return ret;
603 }
604 
605 #ifdef CONFIG_SYSFS
606 
607 static void bL_switcher_disable(void)
608 {
609 	unsigned int cpu, cluster;
610 	struct bL_thread *t;
611 	struct task_struct *task;
612 
613 	mutex_lock(&bL_switcher_activation_lock);
614 	lock_device_hotplug();
615 
616 	if (!bL_switcher_active)
617 		goto out;
618 
619 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
620 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
621 		goto out;
622 	}
623 
624 	bL_switcher_active = 0;
625 
626 	/*
627 	 * To deactivate the switcher, we must shut down the switcher
628 	 * threads to prevent any other requests from being accepted.
629 	 * Then, if the final cluster for given logical CPU is not the
630 	 * same as the original one, we'll recreate a switcher thread
631 	 * just for the purpose of switching the CPU back without any
632 	 * possibility for interference from external requests.
633 	 */
634 	for_each_online_cpu(cpu) {
635 		t = &bL_threads[cpu];
636 		task = t->task;
637 		t->task = NULL;
638 		if (!task || IS_ERR(task))
639 			continue;
640 		kthread_stop(task);
641 		/* no more switch may happen on this CPU at this point */
642 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
643 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
644 			continue;
645 		init_completion(&t->started);
646 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
647 		task = bL_switcher_thread_create(cpu, t);
648 		if (!IS_ERR(task)) {
649 			wait_for_completion(&t->started);
650 			kthread_stop(task);
651 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
652 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
653 				continue;
654 		}
655 		/* If execution gets here, we're in trouble. */
656 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
657 			__func__, cpu);
658 		pr_crit("%s: CPU %d can't be restored\n",
659 			__func__, bL_switcher_cpu_pairing[cpu]);
660 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
661 				  &bL_switcher_removed_logical_cpus);
662 	}
663 
664 	bL_switcher_restore_cpus();
665 	bL_switcher_trace_trigger();
666 
667 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
668 
669 out:
670 	unlock_device_hotplug();
671 	mutex_unlock(&bL_switcher_activation_lock);
672 }
673 
674 static ssize_t bL_switcher_active_show(struct kobject *kobj,
675 		struct kobj_attribute *attr, char *buf)
676 {
677 	return sprintf(buf, "%u\n", bL_switcher_active);
678 }
679 
680 static ssize_t bL_switcher_active_store(struct kobject *kobj,
681 		struct kobj_attribute *attr, const char *buf, size_t count)
682 {
683 	int ret;
684 
685 	switch (buf[0]) {
686 	case '0':
687 		bL_switcher_disable();
688 		ret = 0;
689 		break;
690 	case '1':
691 		ret = bL_switcher_enable();
692 		break;
693 	default:
694 		ret = -EINVAL;
695 	}
696 
697 	return (ret >= 0) ? count : ret;
698 }
699 
700 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
701 		struct kobj_attribute *attr, const char *buf, size_t count)
702 {
703 	int ret = bL_switcher_trace_trigger();
704 
705 	return ret ? ret : count;
706 }
707 
708 static struct kobj_attribute bL_switcher_active_attr =
709 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
710 
711 static struct kobj_attribute bL_switcher_trace_trigger_attr =
712 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
713 
714 static struct attribute *bL_switcher_attrs[] = {
715 	&bL_switcher_active_attr.attr,
716 	&bL_switcher_trace_trigger_attr.attr,
717 	NULL,
718 };
719 
720 static struct attribute_group bL_switcher_attr_group = {
721 	.attrs = bL_switcher_attrs,
722 };
723 
724 static struct kobject *bL_switcher_kobj;
725 
726 static int __init bL_switcher_sysfs_init(void)
727 {
728 	int ret;
729 
730 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
731 	if (!bL_switcher_kobj)
732 		return -ENOMEM;
733 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
734 	if (ret)
735 		kobject_put(bL_switcher_kobj);
736 	return ret;
737 }
738 
739 #endif  /* CONFIG_SYSFS */
740 
741 bool bL_switcher_get_enabled(void)
742 {
743 	mutex_lock(&bL_switcher_activation_lock);
744 
745 	return bL_switcher_active;
746 }
747 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
748 
749 void bL_switcher_put_enabled(void)
750 {
751 	mutex_unlock(&bL_switcher_activation_lock);
752 }
753 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
754 
755 /*
756  * Veto any CPU hotplug operation on those CPUs we've removed
757  * while the switcher is active.
758  * We're just not ready to deal with that given the trickery involved.
759  */
760 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
761 					unsigned long action, void *hcpu)
762 {
763 	if (bL_switcher_active) {
764 		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
765 		switch (action & 0xf) {
766 		case CPU_UP_PREPARE:
767 		case CPU_DOWN_PREPARE:
768 			if (pairing == -1)
769 				return NOTIFY_BAD;
770 		}
771 	}
772 	return NOTIFY_DONE;
773 }
774 
775 static bool no_bL_switcher;
776 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
777 
778 static int __init bL_switcher_init(void)
779 {
780 	int ret;
781 
782 	if (!mcpm_is_available())
783 		return -ENODEV;
784 
785 	cpu_notifier(bL_switcher_hotplug_callback, 0);
786 
787 	if (!no_bL_switcher) {
788 		ret = bL_switcher_enable();
789 		if (ret)
790 			return ret;
791 	}
792 
793 #ifdef CONFIG_SYSFS
794 	ret = bL_switcher_sysfs_init();
795 	if (ret)
796 		pr_err("%s: unable to create sysfs entry\n", __func__);
797 #endif
798 
799 	return 0;
800 }
801 
802 late_initcall(bL_switcher_init);
803