1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/cpu.h> 20 #include <linux/cpumask.h> 21 #include <linux/kthread.h> 22 #include <linux/wait.h> 23 #include <linux/time.h> 24 #include <linux/clockchips.h> 25 #include <linux/hrtimer.h> 26 #include <linux/tick.h> 27 #include <linux/notifier.h> 28 #include <linux/mm.h> 29 #include <linux/mutex.h> 30 #include <linux/smp.h> 31 #include <linux/spinlock.h> 32 #include <linux/string.h> 33 #include <linux/sysfs.h> 34 #include <linux/irqchip/arm-gic.h> 35 #include <linux/moduleparam.h> 36 37 #include <asm/smp_plat.h> 38 #include <asm/cputype.h> 39 #include <asm/suspend.h> 40 #include <asm/mcpm.h> 41 #include <asm/bL_switcher.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/power_cpu_migrate.h> 45 46 47 /* 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 49 * __attribute_const__ and we don't want the compiler to assume any 50 * constness here as the value _does_ change along some code paths. 51 */ 52 53 static int read_mpidr(void) 54 { 55 unsigned int id; 56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 57 return id & MPIDR_HWID_BITMASK; 58 } 59 60 /* 61 * bL switcher core code. 62 */ 63 64 static void bL_do_switch(void *_arg) 65 { 66 unsigned ib_mpidr, ib_cpu, ib_cluster; 67 long volatile handshake, **handshake_ptr = _arg; 68 69 pr_debug("%s\n", __func__); 70 71 ib_mpidr = cpu_logical_map(smp_processor_id()); 72 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 73 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 74 75 /* Advertise our handshake location */ 76 if (handshake_ptr) { 77 handshake = 0; 78 *handshake_ptr = &handshake; 79 } else 80 handshake = -1; 81 82 /* 83 * Our state has been saved at this point. Let's release our 84 * inbound CPU. 85 */ 86 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 87 sev(); 88 89 /* 90 * From this point, we must assume that our counterpart CPU might 91 * have taken over in its parallel world already, as if execution 92 * just returned from cpu_suspend(). It is therefore important to 93 * be very careful not to make any change the other guy is not 94 * expecting. This is why we need stack isolation. 95 * 96 * Fancy under cover tasks could be performed here. For now 97 * we have none. 98 */ 99 100 /* 101 * Let's wait until our inbound is alive. 102 */ 103 while (!handshake) { 104 wfe(); 105 smp_mb(); 106 } 107 108 /* Let's put ourself down. */ 109 mcpm_cpu_power_down(); 110 111 /* should never get here */ 112 BUG(); 113 } 114 115 /* 116 * Stack isolation. To ensure 'current' remains valid, we just use another 117 * piece of our thread's stack space which should be fairly lightly used. 118 * The selected area starts just above the thread_info structure located 119 * at the very bottom of the stack, aligned to a cache line, and indexed 120 * with the cluster number. 121 */ 122 #define STACK_SIZE 512 123 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 124 static int bL_switchpoint(unsigned long _arg) 125 { 126 unsigned int mpidr = read_mpidr(); 127 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 128 void *stack = current_thread_info() + 1; 129 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 130 stack += clusterid * STACK_SIZE + STACK_SIZE; 131 call_with_stack(bL_do_switch, (void *)_arg, stack); 132 BUG(); 133 } 134 135 /* 136 * Generic switcher interface 137 */ 138 139 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 140 static int bL_switcher_cpu_pairing[NR_CPUS]; 141 142 /* 143 * bL_switch_to - Switch to a specific cluster for the current CPU 144 * @new_cluster_id: the ID of the cluster to switch to. 145 * 146 * This function must be called on the CPU to be switched. 147 * Returns 0 on success, else a negative status code. 148 */ 149 static int bL_switch_to(unsigned int new_cluster_id) 150 { 151 unsigned int mpidr, this_cpu, that_cpu; 152 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 153 struct completion inbound_alive; 154 struct tick_device *tdev; 155 enum clock_event_mode tdev_mode; 156 long volatile *handshake_ptr; 157 int ipi_nr, ret; 158 159 this_cpu = smp_processor_id(); 160 ob_mpidr = read_mpidr(); 161 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 162 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 163 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 164 165 if (new_cluster_id == ob_cluster) 166 return 0; 167 168 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 169 ib_mpidr = cpu_logical_map(that_cpu); 170 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 171 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 172 173 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 174 this_cpu, ob_mpidr, ib_mpidr); 175 176 this_cpu = smp_processor_id(); 177 178 /* Close the gate for our entry vectors */ 179 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 180 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 181 182 /* Install our "inbound alive" notifier. */ 183 init_completion(&inbound_alive); 184 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 185 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 186 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 187 188 /* 189 * Let's wake up the inbound CPU now in case it requires some delay 190 * to come online, but leave it gated in our entry vector code. 191 */ 192 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 193 if (ret) { 194 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 195 return ret; 196 } 197 198 /* 199 * Raise a SGI on the inbound CPU to make sure it doesn't stall 200 * in a possible WFI, such as in bL_power_down(). 201 */ 202 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 203 204 /* 205 * Wait for the inbound to come up. This allows for other 206 * tasks to be scheduled in the mean time. 207 */ 208 wait_for_completion(&inbound_alive); 209 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 210 211 /* 212 * From this point we are entering the switch critical zone 213 * and can't take any interrupts anymore. 214 */ 215 local_irq_disable(); 216 local_fiq_disable(); 217 trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr); 218 219 /* redirect GIC's SGIs to our counterpart */ 220 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 221 222 tdev = tick_get_device(this_cpu); 223 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) 224 tdev = NULL; 225 if (tdev) { 226 tdev_mode = tdev->evtdev->mode; 227 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 228 } 229 230 ret = cpu_pm_enter(); 231 232 /* we can not tolerate errors at this point */ 233 if (ret) 234 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 235 236 /* Swap the physical CPUs in the logical map for this logical CPU. */ 237 cpu_logical_map(this_cpu) = ib_mpidr; 238 cpu_logical_map(that_cpu) = ob_mpidr; 239 240 /* Let's do the actual CPU switch. */ 241 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 242 if (ret > 0) 243 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 244 245 /* We are executing on the inbound CPU at this point */ 246 mpidr = read_mpidr(); 247 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 248 BUG_ON(mpidr != ib_mpidr); 249 250 mcpm_cpu_powered_up(); 251 252 ret = cpu_pm_exit(); 253 254 if (tdev) { 255 clockevents_set_mode(tdev->evtdev, tdev_mode); 256 clockevents_program_event(tdev->evtdev, 257 tdev->evtdev->next_event, 1); 258 } 259 260 trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr); 261 local_fiq_enable(); 262 local_irq_enable(); 263 264 *handshake_ptr = 1; 265 dsb_sev(); 266 267 if (ret) 268 pr_err("%s exiting with error %d\n", __func__, ret); 269 return ret; 270 } 271 272 struct bL_thread { 273 spinlock_t lock; 274 struct task_struct *task; 275 wait_queue_head_t wq; 276 int wanted_cluster; 277 struct completion started; 278 bL_switch_completion_handler completer; 279 void *completer_cookie; 280 }; 281 282 static struct bL_thread bL_threads[NR_CPUS]; 283 284 static int bL_switcher_thread(void *arg) 285 { 286 struct bL_thread *t = arg; 287 struct sched_param param = { .sched_priority = 1 }; 288 int cluster; 289 bL_switch_completion_handler completer; 290 void *completer_cookie; 291 292 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 293 complete(&t->started); 294 295 do { 296 if (signal_pending(current)) 297 flush_signals(current); 298 wait_event_interruptible(t->wq, 299 t->wanted_cluster != -1 || 300 kthread_should_stop()); 301 302 spin_lock(&t->lock); 303 cluster = t->wanted_cluster; 304 completer = t->completer; 305 completer_cookie = t->completer_cookie; 306 t->wanted_cluster = -1; 307 t->completer = NULL; 308 spin_unlock(&t->lock); 309 310 if (cluster != -1) { 311 bL_switch_to(cluster); 312 313 if (completer) 314 completer(completer_cookie); 315 } 316 } while (!kthread_should_stop()); 317 318 return 0; 319 } 320 321 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 322 { 323 struct task_struct *task; 324 325 task = kthread_create_on_node(bL_switcher_thread, arg, 326 cpu_to_node(cpu), "kswitcher_%d", cpu); 327 if (!IS_ERR(task)) { 328 kthread_bind(task, cpu); 329 wake_up_process(task); 330 } else 331 pr_err("%s failed for CPU %d\n", __func__, cpu); 332 return task; 333 } 334 335 /* 336 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 337 * with completion notification via a callback 338 * 339 * @cpu: the CPU to switch 340 * @new_cluster_id: the ID of the cluster to switch to. 341 * @completer: switch completion callback. if non-NULL, 342 * @completer(@completer_cookie) will be called on completion of 343 * the switch, in non-atomic context. 344 * @completer_cookie: opaque context argument for @completer. 345 * 346 * This function causes a cluster switch on the given CPU by waking up 347 * the appropriate switcher thread. This function may or may not return 348 * before the switch has occurred. 349 * 350 * If a @completer callback function is supplied, it will be called when 351 * the switch is complete. This can be used to determine asynchronously 352 * when the switch is complete, regardless of when bL_switch_request() 353 * returns. When @completer is supplied, no new switch request is permitted 354 * for the affected CPU until after the switch is complete, and @completer 355 * has returned. 356 */ 357 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 358 bL_switch_completion_handler completer, 359 void *completer_cookie) 360 { 361 struct bL_thread *t; 362 363 if (cpu >= ARRAY_SIZE(bL_threads)) { 364 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 365 return -EINVAL; 366 } 367 368 t = &bL_threads[cpu]; 369 370 if (IS_ERR(t->task)) 371 return PTR_ERR(t->task); 372 if (!t->task) 373 return -ESRCH; 374 375 spin_lock(&t->lock); 376 if (t->completer) { 377 spin_unlock(&t->lock); 378 return -EBUSY; 379 } 380 t->completer = completer; 381 t->completer_cookie = completer_cookie; 382 t->wanted_cluster = new_cluster_id; 383 spin_unlock(&t->lock); 384 wake_up(&t->wq); 385 return 0; 386 } 387 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 388 389 /* 390 * Activation and configuration code. 391 */ 392 393 static DEFINE_MUTEX(bL_switcher_activation_lock); 394 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 395 static unsigned int bL_switcher_active; 396 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 397 static cpumask_t bL_switcher_removed_logical_cpus; 398 399 int bL_switcher_register_notifier(struct notifier_block *nb) 400 { 401 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 402 } 403 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 404 405 int bL_switcher_unregister_notifier(struct notifier_block *nb) 406 { 407 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 408 } 409 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 410 411 static int bL_activation_notify(unsigned long val) 412 { 413 int ret; 414 415 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 416 if (ret & NOTIFY_STOP_MASK) 417 pr_err("%s: notifier chain failed with status 0x%x\n", 418 __func__, ret); 419 return notifier_to_errno(ret); 420 } 421 422 static void bL_switcher_restore_cpus(void) 423 { 424 int i; 425 426 for_each_cpu(i, &bL_switcher_removed_logical_cpus) { 427 struct device *cpu_dev = get_cpu_device(i); 428 int ret = device_online(cpu_dev); 429 if (ret) 430 dev_err(cpu_dev, "switcher: unable to restore CPU\n"); 431 } 432 } 433 434 static int bL_switcher_halve_cpus(void) 435 { 436 int i, j, cluster_0, gic_id, ret; 437 unsigned int cpu, cluster, mask; 438 cpumask_t available_cpus; 439 440 /* First pass to validate what we have */ 441 mask = 0; 442 for_each_online_cpu(i) { 443 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 444 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 445 if (cluster >= 2) { 446 pr_err("%s: only dual cluster systems are supported\n", __func__); 447 return -EINVAL; 448 } 449 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 450 return -EINVAL; 451 mask |= (1 << cluster); 452 } 453 if (mask != 3) { 454 pr_err("%s: no CPU pairing possible\n", __func__); 455 return -EINVAL; 456 } 457 458 /* 459 * Now let's do the pairing. We match each CPU with another CPU 460 * from a different cluster. To get a uniform scheduling behavior 461 * without fiddling with CPU topology and compute capacity data, 462 * we'll use logical CPUs initially belonging to the same cluster. 463 */ 464 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 465 cpumask_copy(&available_cpus, cpu_online_mask); 466 cluster_0 = -1; 467 for_each_cpu(i, &available_cpus) { 468 int match = -1; 469 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 470 if (cluster_0 == -1) 471 cluster_0 = cluster; 472 if (cluster != cluster_0) 473 continue; 474 cpumask_clear_cpu(i, &available_cpus); 475 for_each_cpu(j, &available_cpus) { 476 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 477 /* 478 * Let's remember the last match to create "odd" 479 * pairings on purpose in order for other code not 480 * to assume any relation between physical and 481 * logical CPU numbers. 482 */ 483 if (cluster != cluster_0) 484 match = j; 485 } 486 if (match != -1) { 487 bL_switcher_cpu_pairing[i] = match; 488 cpumask_clear_cpu(match, &available_cpus); 489 pr_info("CPU%d paired with CPU%d\n", i, match); 490 } 491 } 492 493 /* 494 * Now we disable the unwanted CPUs i.e. everything that has no 495 * pairing information (that includes the pairing counterparts). 496 */ 497 cpumask_clear(&bL_switcher_removed_logical_cpus); 498 for_each_online_cpu(i) { 499 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 500 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 501 502 /* Let's take note of the GIC ID for this CPU */ 503 gic_id = gic_get_cpu_id(i); 504 if (gic_id < 0) { 505 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 506 bL_switcher_restore_cpus(); 507 return -EINVAL; 508 } 509 bL_gic_id[cpu][cluster] = gic_id; 510 pr_info("GIC ID for CPU %u cluster %u is %u\n", 511 cpu, cluster, gic_id); 512 513 if (bL_switcher_cpu_pairing[i] != -1) { 514 bL_switcher_cpu_original_cluster[i] = cluster; 515 continue; 516 } 517 518 ret = device_offline(get_cpu_device(i)); 519 if (ret) { 520 bL_switcher_restore_cpus(); 521 return ret; 522 } 523 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 524 } 525 526 return 0; 527 } 528 529 /* Determine the logical CPU a given physical CPU is grouped on. */ 530 int bL_switcher_get_logical_index(u32 mpidr) 531 { 532 int cpu; 533 534 if (!bL_switcher_active) 535 return -EUNATCH; 536 537 mpidr &= MPIDR_HWID_BITMASK; 538 for_each_online_cpu(cpu) { 539 int pairing = bL_switcher_cpu_pairing[cpu]; 540 if (pairing == -1) 541 continue; 542 if ((mpidr == cpu_logical_map(cpu)) || 543 (mpidr == cpu_logical_map(pairing))) 544 return cpu; 545 } 546 return -EINVAL; 547 } 548 549 static void bL_switcher_trace_trigger_cpu(void *__always_unused info) 550 { 551 trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr()); 552 } 553 554 int bL_switcher_trace_trigger(void) 555 { 556 int ret; 557 558 preempt_disable(); 559 560 bL_switcher_trace_trigger_cpu(NULL); 561 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); 562 563 preempt_enable(); 564 565 return ret; 566 } 567 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); 568 569 static int bL_switcher_enable(void) 570 { 571 int cpu, ret; 572 573 mutex_lock(&bL_switcher_activation_lock); 574 lock_device_hotplug(); 575 if (bL_switcher_active) { 576 unlock_device_hotplug(); 577 mutex_unlock(&bL_switcher_activation_lock); 578 return 0; 579 } 580 581 pr_info("big.LITTLE switcher initializing\n"); 582 583 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 584 if (ret) 585 goto error; 586 587 ret = bL_switcher_halve_cpus(); 588 if (ret) 589 goto error; 590 591 bL_switcher_trace_trigger(); 592 593 for_each_online_cpu(cpu) { 594 struct bL_thread *t = &bL_threads[cpu]; 595 spin_lock_init(&t->lock); 596 init_waitqueue_head(&t->wq); 597 init_completion(&t->started); 598 t->wanted_cluster = -1; 599 t->task = bL_switcher_thread_create(cpu, t); 600 } 601 602 bL_switcher_active = 1; 603 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 604 pr_info("big.LITTLE switcher initialized\n"); 605 goto out; 606 607 error: 608 pr_warn("big.LITTLE switcher initialization failed\n"); 609 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 610 611 out: 612 unlock_device_hotplug(); 613 mutex_unlock(&bL_switcher_activation_lock); 614 return ret; 615 } 616 617 #ifdef CONFIG_SYSFS 618 619 static void bL_switcher_disable(void) 620 { 621 unsigned int cpu, cluster; 622 struct bL_thread *t; 623 struct task_struct *task; 624 625 mutex_lock(&bL_switcher_activation_lock); 626 lock_device_hotplug(); 627 628 if (!bL_switcher_active) 629 goto out; 630 631 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 632 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 633 goto out; 634 } 635 636 bL_switcher_active = 0; 637 638 /* 639 * To deactivate the switcher, we must shut down the switcher 640 * threads to prevent any other requests from being accepted. 641 * Then, if the final cluster for given logical CPU is not the 642 * same as the original one, we'll recreate a switcher thread 643 * just for the purpose of switching the CPU back without any 644 * possibility for interference from external requests. 645 */ 646 for_each_online_cpu(cpu) { 647 t = &bL_threads[cpu]; 648 task = t->task; 649 t->task = NULL; 650 if (!task || IS_ERR(task)) 651 continue; 652 kthread_stop(task); 653 /* no more switch may happen on this CPU at this point */ 654 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 655 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 656 continue; 657 init_completion(&t->started); 658 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 659 task = bL_switcher_thread_create(cpu, t); 660 if (!IS_ERR(task)) { 661 wait_for_completion(&t->started); 662 kthread_stop(task); 663 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 664 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 665 continue; 666 } 667 /* If execution gets here, we're in trouble. */ 668 pr_crit("%s: unable to restore original cluster for CPU %d\n", 669 __func__, cpu); 670 pr_crit("%s: CPU %d can't be restored\n", 671 __func__, bL_switcher_cpu_pairing[cpu]); 672 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 673 &bL_switcher_removed_logical_cpus); 674 } 675 676 bL_switcher_restore_cpus(); 677 bL_switcher_trace_trigger(); 678 679 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 680 681 out: 682 unlock_device_hotplug(); 683 mutex_unlock(&bL_switcher_activation_lock); 684 } 685 686 static ssize_t bL_switcher_active_show(struct kobject *kobj, 687 struct kobj_attribute *attr, char *buf) 688 { 689 return sprintf(buf, "%u\n", bL_switcher_active); 690 } 691 692 static ssize_t bL_switcher_active_store(struct kobject *kobj, 693 struct kobj_attribute *attr, const char *buf, size_t count) 694 { 695 int ret; 696 697 switch (buf[0]) { 698 case '0': 699 bL_switcher_disable(); 700 ret = 0; 701 break; 702 case '1': 703 ret = bL_switcher_enable(); 704 break; 705 default: 706 ret = -EINVAL; 707 } 708 709 return (ret >= 0) ? count : ret; 710 } 711 712 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, 713 struct kobj_attribute *attr, const char *buf, size_t count) 714 { 715 int ret = bL_switcher_trace_trigger(); 716 717 return ret ? ret : count; 718 } 719 720 static struct kobj_attribute bL_switcher_active_attr = 721 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 722 723 static struct kobj_attribute bL_switcher_trace_trigger_attr = 724 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); 725 726 static struct attribute *bL_switcher_attrs[] = { 727 &bL_switcher_active_attr.attr, 728 &bL_switcher_trace_trigger_attr.attr, 729 NULL, 730 }; 731 732 static struct attribute_group bL_switcher_attr_group = { 733 .attrs = bL_switcher_attrs, 734 }; 735 736 static struct kobject *bL_switcher_kobj; 737 738 static int __init bL_switcher_sysfs_init(void) 739 { 740 int ret; 741 742 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 743 if (!bL_switcher_kobj) 744 return -ENOMEM; 745 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 746 if (ret) 747 kobject_put(bL_switcher_kobj); 748 return ret; 749 } 750 751 #endif /* CONFIG_SYSFS */ 752 753 bool bL_switcher_get_enabled(void) 754 { 755 mutex_lock(&bL_switcher_activation_lock); 756 757 return bL_switcher_active; 758 } 759 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 760 761 void bL_switcher_put_enabled(void) 762 { 763 mutex_unlock(&bL_switcher_activation_lock); 764 } 765 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 766 767 /* 768 * Veto any CPU hotplug operation on those CPUs we've removed 769 * while the switcher is active. 770 * We're just not ready to deal with that given the trickery involved. 771 */ 772 static int bL_switcher_hotplug_callback(struct notifier_block *nfb, 773 unsigned long action, void *hcpu) 774 { 775 if (bL_switcher_active) { 776 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; 777 switch (action & 0xf) { 778 case CPU_UP_PREPARE: 779 case CPU_DOWN_PREPARE: 780 if (pairing == -1) 781 return NOTIFY_BAD; 782 } 783 } 784 return NOTIFY_DONE; 785 } 786 787 static bool no_bL_switcher; 788 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 789 790 static int __init bL_switcher_init(void) 791 { 792 int ret; 793 794 if (!mcpm_is_available()) 795 return -ENODEV; 796 797 cpu_notifier(bL_switcher_hotplug_callback, 0); 798 799 if (!no_bL_switcher) { 800 ret = bL_switcher_enable(); 801 if (ret) 802 return ret; 803 } 804 805 #ifdef CONFIG_SYSFS 806 ret = bL_switcher_sysfs_init(); 807 if (ret) 808 pr_err("%s: unable to create sysfs entry\n", __func__); 809 #endif 810 811 return 0; 812 } 813 814 late_initcall(bL_switcher_init); 815