1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/cpu.h> 20 #include <linux/cpumask.h> 21 #include <linux/kthread.h> 22 #include <linux/wait.h> 23 #include <linux/time.h> 24 #include <linux/clockchips.h> 25 #include <linux/hrtimer.h> 26 #include <linux/tick.h> 27 #include <linux/notifier.h> 28 #include <linux/mm.h> 29 #include <linux/mutex.h> 30 #include <linux/smp.h> 31 #include <linux/spinlock.h> 32 #include <linux/string.h> 33 #include <linux/sysfs.h> 34 #include <linux/irqchip/arm-gic.h> 35 #include <linux/moduleparam.h> 36 37 #include <asm/smp_plat.h> 38 #include <asm/cputype.h> 39 #include <asm/suspend.h> 40 #include <asm/mcpm.h> 41 #include <asm/bL_switcher.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/power_cpu_migrate.h> 45 46 47 /* 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 49 * __attribute_const__ and we don't want the compiler to assume any 50 * constness here as the value _does_ change along some code paths. 51 */ 52 53 static int read_mpidr(void) 54 { 55 unsigned int id; 56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 57 return id & MPIDR_HWID_BITMASK; 58 } 59 60 /* 61 * bL switcher core code. 62 */ 63 64 static void bL_do_switch(void *_arg) 65 { 66 unsigned ib_mpidr, ib_cpu, ib_cluster; 67 long volatile handshake, **handshake_ptr = _arg; 68 69 pr_debug("%s\n", __func__); 70 71 ib_mpidr = cpu_logical_map(smp_processor_id()); 72 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 73 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 74 75 /* Advertise our handshake location */ 76 if (handshake_ptr) { 77 handshake = 0; 78 *handshake_ptr = &handshake; 79 } else 80 handshake = -1; 81 82 /* 83 * Our state has been saved at this point. Let's release our 84 * inbound CPU. 85 */ 86 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 87 sev(); 88 89 /* 90 * From this point, we must assume that our counterpart CPU might 91 * have taken over in its parallel world already, as if execution 92 * just returned from cpu_suspend(). It is therefore important to 93 * be very careful not to make any change the other guy is not 94 * expecting. This is why we need stack isolation. 95 * 96 * Fancy under cover tasks could be performed here. For now 97 * we have none. 98 */ 99 100 /* 101 * Let's wait until our inbound is alive. 102 */ 103 while (!handshake) { 104 wfe(); 105 smp_mb(); 106 } 107 108 /* Let's put ourself down. */ 109 mcpm_cpu_power_down(); 110 111 /* should never get here */ 112 BUG(); 113 } 114 115 /* 116 * Stack isolation. To ensure 'current' remains valid, we just use another 117 * piece of our thread's stack space which should be fairly lightly used. 118 * The selected area starts just above the thread_info structure located 119 * at the very bottom of the stack, aligned to a cache line, and indexed 120 * with the cluster number. 121 */ 122 #define STACK_SIZE 512 123 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 124 static int bL_switchpoint(unsigned long _arg) 125 { 126 unsigned int mpidr = read_mpidr(); 127 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 128 void *stack = current_thread_info() + 1; 129 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 130 stack += clusterid * STACK_SIZE + STACK_SIZE; 131 call_with_stack(bL_do_switch, (void *)_arg, stack); 132 BUG(); 133 } 134 135 /* 136 * Generic switcher interface 137 */ 138 139 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 140 static int bL_switcher_cpu_pairing[NR_CPUS]; 141 142 /* 143 * bL_switch_to - Switch to a specific cluster for the current CPU 144 * @new_cluster_id: the ID of the cluster to switch to. 145 * 146 * This function must be called on the CPU to be switched. 147 * Returns 0 on success, else a negative status code. 148 */ 149 static int bL_switch_to(unsigned int new_cluster_id) 150 { 151 unsigned int mpidr, this_cpu, that_cpu; 152 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 153 struct completion inbound_alive; 154 long volatile *handshake_ptr; 155 int ipi_nr, ret; 156 157 this_cpu = smp_processor_id(); 158 ob_mpidr = read_mpidr(); 159 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 160 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 161 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 162 163 if (new_cluster_id == ob_cluster) 164 return 0; 165 166 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 167 ib_mpidr = cpu_logical_map(that_cpu); 168 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 169 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 170 171 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 172 this_cpu, ob_mpidr, ib_mpidr); 173 174 this_cpu = smp_processor_id(); 175 176 /* Close the gate for our entry vectors */ 177 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 178 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 179 180 /* Install our "inbound alive" notifier. */ 181 init_completion(&inbound_alive); 182 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 183 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 184 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 185 186 /* 187 * Let's wake up the inbound CPU now in case it requires some delay 188 * to come online, but leave it gated in our entry vector code. 189 */ 190 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 191 if (ret) { 192 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 193 return ret; 194 } 195 196 /* 197 * Raise a SGI on the inbound CPU to make sure it doesn't stall 198 * in a possible WFI, such as in bL_power_down(). 199 */ 200 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 201 202 /* 203 * Wait for the inbound to come up. This allows for other 204 * tasks to be scheduled in the mean time. 205 */ 206 wait_for_completion(&inbound_alive); 207 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 208 209 /* 210 * From this point we are entering the switch critical zone 211 * and can't take any interrupts anymore. 212 */ 213 local_irq_disable(); 214 local_fiq_disable(); 215 trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr); 216 217 /* redirect GIC's SGIs to our counterpart */ 218 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 219 220 tick_suspend_local(); 221 222 ret = cpu_pm_enter(); 223 224 /* we can not tolerate errors at this point */ 225 if (ret) 226 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 227 228 /* Swap the physical CPUs in the logical map for this logical CPU. */ 229 cpu_logical_map(this_cpu) = ib_mpidr; 230 cpu_logical_map(that_cpu) = ob_mpidr; 231 232 /* Let's do the actual CPU switch. */ 233 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 234 if (ret > 0) 235 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 236 237 /* We are executing on the inbound CPU at this point */ 238 mpidr = read_mpidr(); 239 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 240 BUG_ON(mpidr != ib_mpidr); 241 242 mcpm_cpu_powered_up(); 243 244 ret = cpu_pm_exit(); 245 246 tick_resume_local(); 247 248 trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr); 249 local_fiq_enable(); 250 local_irq_enable(); 251 252 *handshake_ptr = 1; 253 dsb_sev(); 254 255 if (ret) 256 pr_err("%s exiting with error %d\n", __func__, ret); 257 return ret; 258 } 259 260 struct bL_thread { 261 spinlock_t lock; 262 struct task_struct *task; 263 wait_queue_head_t wq; 264 int wanted_cluster; 265 struct completion started; 266 bL_switch_completion_handler completer; 267 void *completer_cookie; 268 }; 269 270 static struct bL_thread bL_threads[NR_CPUS]; 271 272 static int bL_switcher_thread(void *arg) 273 { 274 struct bL_thread *t = arg; 275 struct sched_param param = { .sched_priority = 1 }; 276 int cluster; 277 bL_switch_completion_handler completer; 278 void *completer_cookie; 279 280 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 281 complete(&t->started); 282 283 do { 284 if (signal_pending(current)) 285 flush_signals(current); 286 wait_event_interruptible(t->wq, 287 t->wanted_cluster != -1 || 288 kthread_should_stop()); 289 290 spin_lock(&t->lock); 291 cluster = t->wanted_cluster; 292 completer = t->completer; 293 completer_cookie = t->completer_cookie; 294 t->wanted_cluster = -1; 295 t->completer = NULL; 296 spin_unlock(&t->lock); 297 298 if (cluster != -1) { 299 bL_switch_to(cluster); 300 301 if (completer) 302 completer(completer_cookie); 303 } 304 } while (!kthread_should_stop()); 305 306 return 0; 307 } 308 309 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 310 { 311 struct task_struct *task; 312 313 task = kthread_create_on_node(bL_switcher_thread, arg, 314 cpu_to_node(cpu), "kswitcher_%d", cpu); 315 if (!IS_ERR(task)) { 316 kthread_bind(task, cpu); 317 wake_up_process(task); 318 } else 319 pr_err("%s failed for CPU %d\n", __func__, cpu); 320 return task; 321 } 322 323 /* 324 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 325 * with completion notification via a callback 326 * 327 * @cpu: the CPU to switch 328 * @new_cluster_id: the ID of the cluster to switch to. 329 * @completer: switch completion callback. if non-NULL, 330 * @completer(@completer_cookie) will be called on completion of 331 * the switch, in non-atomic context. 332 * @completer_cookie: opaque context argument for @completer. 333 * 334 * This function causes a cluster switch on the given CPU by waking up 335 * the appropriate switcher thread. This function may or may not return 336 * before the switch has occurred. 337 * 338 * If a @completer callback function is supplied, it will be called when 339 * the switch is complete. This can be used to determine asynchronously 340 * when the switch is complete, regardless of when bL_switch_request() 341 * returns. When @completer is supplied, no new switch request is permitted 342 * for the affected CPU until after the switch is complete, and @completer 343 * has returned. 344 */ 345 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 346 bL_switch_completion_handler completer, 347 void *completer_cookie) 348 { 349 struct bL_thread *t; 350 351 if (cpu >= ARRAY_SIZE(bL_threads)) { 352 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 353 return -EINVAL; 354 } 355 356 t = &bL_threads[cpu]; 357 358 if (IS_ERR(t->task)) 359 return PTR_ERR(t->task); 360 if (!t->task) 361 return -ESRCH; 362 363 spin_lock(&t->lock); 364 if (t->completer) { 365 spin_unlock(&t->lock); 366 return -EBUSY; 367 } 368 t->completer = completer; 369 t->completer_cookie = completer_cookie; 370 t->wanted_cluster = new_cluster_id; 371 spin_unlock(&t->lock); 372 wake_up(&t->wq); 373 return 0; 374 } 375 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 376 377 /* 378 * Activation and configuration code. 379 */ 380 381 static DEFINE_MUTEX(bL_switcher_activation_lock); 382 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 383 static unsigned int bL_switcher_active; 384 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 385 static cpumask_t bL_switcher_removed_logical_cpus; 386 387 int bL_switcher_register_notifier(struct notifier_block *nb) 388 { 389 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 390 } 391 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 392 393 int bL_switcher_unregister_notifier(struct notifier_block *nb) 394 { 395 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 396 } 397 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 398 399 static int bL_activation_notify(unsigned long val) 400 { 401 int ret; 402 403 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 404 if (ret & NOTIFY_STOP_MASK) 405 pr_err("%s: notifier chain failed with status 0x%x\n", 406 __func__, ret); 407 return notifier_to_errno(ret); 408 } 409 410 static void bL_switcher_restore_cpus(void) 411 { 412 int i; 413 414 for_each_cpu(i, &bL_switcher_removed_logical_cpus) { 415 struct device *cpu_dev = get_cpu_device(i); 416 int ret = device_online(cpu_dev); 417 if (ret) 418 dev_err(cpu_dev, "switcher: unable to restore CPU\n"); 419 } 420 } 421 422 static int bL_switcher_halve_cpus(void) 423 { 424 int i, j, cluster_0, gic_id, ret; 425 unsigned int cpu, cluster, mask; 426 cpumask_t available_cpus; 427 428 /* First pass to validate what we have */ 429 mask = 0; 430 for_each_online_cpu(i) { 431 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 432 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 433 if (cluster >= 2) { 434 pr_err("%s: only dual cluster systems are supported\n", __func__); 435 return -EINVAL; 436 } 437 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 438 return -EINVAL; 439 mask |= (1 << cluster); 440 } 441 if (mask != 3) { 442 pr_err("%s: no CPU pairing possible\n", __func__); 443 return -EINVAL; 444 } 445 446 /* 447 * Now let's do the pairing. We match each CPU with another CPU 448 * from a different cluster. To get a uniform scheduling behavior 449 * without fiddling with CPU topology and compute capacity data, 450 * we'll use logical CPUs initially belonging to the same cluster. 451 */ 452 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 453 cpumask_copy(&available_cpus, cpu_online_mask); 454 cluster_0 = -1; 455 for_each_cpu(i, &available_cpus) { 456 int match = -1; 457 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 458 if (cluster_0 == -1) 459 cluster_0 = cluster; 460 if (cluster != cluster_0) 461 continue; 462 cpumask_clear_cpu(i, &available_cpus); 463 for_each_cpu(j, &available_cpus) { 464 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 465 /* 466 * Let's remember the last match to create "odd" 467 * pairings on purpose in order for other code not 468 * to assume any relation between physical and 469 * logical CPU numbers. 470 */ 471 if (cluster != cluster_0) 472 match = j; 473 } 474 if (match != -1) { 475 bL_switcher_cpu_pairing[i] = match; 476 cpumask_clear_cpu(match, &available_cpus); 477 pr_info("CPU%d paired with CPU%d\n", i, match); 478 } 479 } 480 481 /* 482 * Now we disable the unwanted CPUs i.e. everything that has no 483 * pairing information (that includes the pairing counterparts). 484 */ 485 cpumask_clear(&bL_switcher_removed_logical_cpus); 486 for_each_online_cpu(i) { 487 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 488 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 489 490 /* Let's take note of the GIC ID for this CPU */ 491 gic_id = gic_get_cpu_id(i); 492 if (gic_id < 0) { 493 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 494 bL_switcher_restore_cpus(); 495 return -EINVAL; 496 } 497 bL_gic_id[cpu][cluster] = gic_id; 498 pr_info("GIC ID for CPU %u cluster %u is %u\n", 499 cpu, cluster, gic_id); 500 501 if (bL_switcher_cpu_pairing[i] != -1) { 502 bL_switcher_cpu_original_cluster[i] = cluster; 503 continue; 504 } 505 506 ret = device_offline(get_cpu_device(i)); 507 if (ret) { 508 bL_switcher_restore_cpus(); 509 return ret; 510 } 511 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 512 } 513 514 return 0; 515 } 516 517 /* Determine the logical CPU a given physical CPU is grouped on. */ 518 int bL_switcher_get_logical_index(u32 mpidr) 519 { 520 int cpu; 521 522 if (!bL_switcher_active) 523 return -EUNATCH; 524 525 mpidr &= MPIDR_HWID_BITMASK; 526 for_each_online_cpu(cpu) { 527 int pairing = bL_switcher_cpu_pairing[cpu]; 528 if (pairing == -1) 529 continue; 530 if ((mpidr == cpu_logical_map(cpu)) || 531 (mpidr == cpu_logical_map(pairing))) 532 return cpu; 533 } 534 return -EINVAL; 535 } 536 537 static void bL_switcher_trace_trigger_cpu(void *__always_unused info) 538 { 539 trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr()); 540 } 541 542 int bL_switcher_trace_trigger(void) 543 { 544 int ret; 545 546 preempt_disable(); 547 548 bL_switcher_trace_trigger_cpu(NULL); 549 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); 550 551 preempt_enable(); 552 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); 556 557 static int bL_switcher_enable(void) 558 { 559 int cpu, ret; 560 561 mutex_lock(&bL_switcher_activation_lock); 562 lock_device_hotplug(); 563 if (bL_switcher_active) { 564 unlock_device_hotplug(); 565 mutex_unlock(&bL_switcher_activation_lock); 566 return 0; 567 } 568 569 pr_info("big.LITTLE switcher initializing\n"); 570 571 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 572 if (ret) 573 goto error; 574 575 ret = bL_switcher_halve_cpus(); 576 if (ret) 577 goto error; 578 579 bL_switcher_trace_trigger(); 580 581 for_each_online_cpu(cpu) { 582 struct bL_thread *t = &bL_threads[cpu]; 583 spin_lock_init(&t->lock); 584 init_waitqueue_head(&t->wq); 585 init_completion(&t->started); 586 t->wanted_cluster = -1; 587 t->task = bL_switcher_thread_create(cpu, t); 588 } 589 590 bL_switcher_active = 1; 591 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 592 pr_info("big.LITTLE switcher initialized\n"); 593 goto out; 594 595 error: 596 pr_warn("big.LITTLE switcher initialization failed\n"); 597 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 598 599 out: 600 unlock_device_hotplug(); 601 mutex_unlock(&bL_switcher_activation_lock); 602 return ret; 603 } 604 605 #ifdef CONFIG_SYSFS 606 607 static void bL_switcher_disable(void) 608 { 609 unsigned int cpu, cluster; 610 struct bL_thread *t; 611 struct task_struct *task; 612 613 mutex_lock(&bL_switcher_activation_lock); 614 lock_device_hotplug(); 615 616 if (!bL_switcher_active) 617 goto out; 618 619 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 620 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 621 goto out; 622 } 623 624 bL_switcher_active = 0; 625 626 /* 627 * To deactivate the switcher, we must shut down the switcher 628 * threads to prevent any other requests from being accepted. 629 * Then, if the final cluster for given logical CPU is not the 630 * same as the original one, we'll recreate a switcher thread 631 * just for the purpose of switching the CPU back without any 632 * possibility for interference from external requests. 633 */ 634 for_each_online_cpu(cpu) { 635 t = &bL_threads[cpu]; 636 task = t->task; 637 t->task = NULL; 638 if (!task || IS_ERR(task)) 639 continue; 640 kthread_stop(task); 641 /* no more switch may happen on this CPU at this point */ 642 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 643 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 644 continue; 645 init_completion(&t->started); 646 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 647 task = bL_switcher_thread_create(cpu, t); 648 if (!IS_ERR(task)) { 649 wait_for_completion(&t->started); 650 kthread_stop(task); 651 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 652 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 653 continue; 654 } 655 /* If execution gets here, we're in trouble. */ 656 pr_crit("%s: unable to restore original cluster for CPU %d\n", 657 __func__, cpu); 658 pr_crit("%s: CPU %d can't be restored\n", 659 __func__, bL_switcher_cpu_pairing[cpu]); 660 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 661 &bL_switcher_removed_logical_cpus); 662 } 663 664 bL_switcher_restore_cpus(); 665 bL_switcher_trace_trigger(); 666 667 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 668 669 out: 670 unlock_device_hotplug(); 671 mutex_unlock(&bL_switcher_activation_lock); 672 } 673 674 static ssize_t bL_switcher_active_show(struct kobject *kobj, 675 struct kobj_attribute *attr, char *buf) 676 { 677 return sprintf(buf, "%u\n", bL_switcher_active); 678 } 679 680 static ssize_t bL_switcher_active_store(struct kobject *kobj, 681 struct kobj_attribute *attr, const char *buf, size_t count) 682 { 683 int ret; 684 685 switch (buf[0]) { 686 case '0': 687 bL_switcher_disable(); 688 ret = 0; 689 break; 690 case '1': 691 ret = bL_switcher_enable(); 692 break; 693 default: 694 ret = -EINVAL; 695 } 696 697 return (ret >= 0) ? count : ret; 698 } 699 700 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, 701 struct kobj_attribute *attr, const char *buf, size_t count) 702 { 703 int ret = bL_switcher_trace_trigger(); 704 705 return ret ? ret : count; 706 } 707 708 static struct kobj_attribute bL_switcher_active_attr = 709 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 710 711 static struct kobj_attribute bL_switcher_trace_trigger_attr = 712 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); 713 714 static struct attribute *bL_switcher_attrs[] = { 715 &bL_switcher_active_attr.attr, 716 &bL_switcher_trace_trigger_attr.attr, 717 NULL, 718 }; 719 720 static struct attribute_group bL_switcher_attr_group = { 721 .attrs = bL_switcher_attrs, 722 }; 723 724 static struct kobject *bL_switcher_kobj; 725 726 static int __init bL_switcher_sysfs_init(void) 727 { 728 int ret; 729 730 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 731 if (!bL_switcher_kobj) 732 return -ENOMEM; 733 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 734 if (ret) 735 kobject_put(bL_switcher_kobj); 736 return ret; 737 } 738 739 #endif /* CONFIG_SYSFS */ 740 741 bool bL_switcher_get_enabled(void) 742 { 743 mutex_lock(&bL_switcher_activation_lock); 744 745 return bL_switcher_active; 746 } 747 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 748 749 void bL_switcher_put_enabled(void) 750 { 751 mutex_unlock(&bL_switcher_activation_lock); 752 } 753 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 754 755 /* 756 * Veto any CPU hotplug operation on those CPUs we've removed 757 * while the switcher is active. 758 * We're just not ready to deal with that given the trickery involved. 759 */ 760 static int bL_switcher_hotplug_callback(struct notifier_block *nfb, 761 unsigned long action, void *hcpu) 762 { 763 if (bL_switcher_active) { 764 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; 765 switch (action & 0xf) { 766 case CPU_UP_PREPARE: 767 case CPU_DOWN_PREPARE: 768 if (pairing == -1) 769 return NOTIFY_BAD; 770 } 771 } 772 return NOTIFY_DONE; 773 } 774 775 static bool no_bL_switcher; 776 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 777 778 static int __init bL_switcher_init(void) 779 { 780 int ret; 781 782 if (!mcpm_is_available()) 783 return -ENODEV; 784 785 cpu_notifier(bL_switcher_hotplug_callback, 0); 786 787 if (!no_bL_switcher) { 788 ret = bL_switcher_enable(); 789 if (ret) 790 return ret; 791 } 792 793 #ifdef CONFIG_SYSFS 794 ret = bL_switcher_sysfs_init(); 795 if (ret) 796 pr_err("%s: unable to create sysfs entry\n", __func__); 797 #endif 798 799 return 0; 800 } 801 802 late_initcall(bL_switcher_init); 803