xref: /openbmc/linux/arch/arm/boot/compressed/head.S (revision 50df3be7)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *  linux/arch/arm/boot/compressed/head.S
4 *
5 *  Copyright (C) 1996-2002 Russell King
6 *  Copyright (C) 2004 Hyok S. Choi (MPU support)
7 */
8#include <linux/linkage.h>
9#include <asm/assembler.h>
10#include <asm/v7m.h>
11
12#include "efi-header.S"
13
14 AR_CLASS(	.arch	armv7-a	)
15 M_CLASS(	.arch	armv7-m	)
16
17/*
18 * Debugging stuff
19 *
20 * Note that these macros must not contain any code which is not
21 * 100% relocatable.  Any attempt to do so will result in a crash.
22 * Please select one of the following when turning on debugging.
23 */
24#ifdef DEBUG
25
26#if defined(CONFIG_DEBUG_ICEDCC)
27
28#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) || defined(CONFIG_CPU_V7)
29		.macro	loadsp, rb, tmp1, tmp2
30		.endm
31		.macro	writeb, ch, rb
32		mcr	p14, 0, \ch, c0, c5, 0
33		.endm
34#elif defined(CONFIG_CPU_XSCALE)
35		.macro	loadsp, rb, tmp1, tmp2
36		.endm
37		.macro	writeb, ch, rb
38		mcr	p14, 0, \ch, c8, c0, 0
39		.endm
40#else
41		.macro	loadsp, rb, tmp1, tmp2
42		.endm
43		.macro	writeb, ch, rb
44		mcr	p14, 0, \ch, c1, c0, 0
45		.endm
46#endif
47
48#else
49
50#include CONFIG_DEBUG_LL_INCLUDE
51
52		.macro	writeb,	ch, rb
53		senduart \ch, \rb
54		.endm
55
56#if defined(CONFIG_ARCH_SA1100)
57		.macro	loadsp, rb, tmp1, tmp2
58		mov	\rb, #0x80000000	@ physical base address
59#ifdef CONFIG_DEBUG_LL_SER3
60		add	\rb, \rb, #0x00050000	@ Ser3
61#else
62		add	\rb, \rb, #0x00010000	@ Ser1
63#endif
64		.endm
65#else
66		.macro	loadsp,	rb, tmp1, tmp2
67		addruart \rb, \tmp1, \tmp2
68		.endm
69#endif
70#endif
71#endif
72
73		.macro	kputc,val
74		mov	r0, \val
75		bl	putc
76		.endm
77
78		.macro	kphex,val,len
79		mov	r0, \val
80		mov	r1, #\len
81		bl	phex
82		.endm
83
84		.macro	debug_reloc_start
85#ifdef DEBUG
86		kputc	#'\n'
87		kphex	r6, 8		/* processor id */
88		kputc	#':'
89		kphex	r7, 8		/* architecture id */
90#ifdef CONFIG_CPU_CP15
91		kputc	#':'
92		mrc	p15, 0, r0, c1, c0
93		kphex	r0, 8		/* control reg */
94#endif
95		kputc	#'\n'
96		kphex	r5, 8		/* decompressed kernel start */
97		kputc	#'-'
98		kphex	r9, 8		/* decompressed kernel end  */
99		kputc	#'>'
100		kphex	r4, 8		/* kernel execution address */
101		kputc	#'\n'
102#endif
103		.endm
104
105		.macro	debug_reloc_end
106#ifdef DEBUG
107		kphex	r5, 8		/* end of kernel */
108		kputc	#'\n'
109		mov	r0, r4
110		bl	memdump		/* dump 256 bytes at start of kernel */
111#endif
112		.endm
113
114		/*
115		 * Debug kernel copy by printing the memory addresses involved
116		 */
117		.macro dbgkc, begin, end, cbegin, cend
118#ifdef DEBUG
119		kputc   #'\n'
120		kputc   #'C'
121		kputc   #':'
122		kputc   #'0'
123		kputc   #'x'
124		kphex   \begin, 8	/* Start of compressed kernel */
125		kputc	#'-'
126		kputc	#'0'
127		kputc	#'x'
128		kphex	\end, 8		/* End of compressed kernel */
129		kputc	#'-'
130		kputc	#'>'
131		kputc   #'0'
132		kputc   #'x'
133		kphex   \cbegin, 8	/* Start of kernel copy */
134		kputc	#'-'
135		kputc	#'0'
136		kputc	#'x'
137		kphex	\cend, 8	/* End of kernel copy */
138		kputc	#'\n'
139		kputc	#'\r'
140#endif
141		.endm
142
143		.section ".start", #alloc, #execinstr
144/*
145 * sort out different calling conventions
146 */
147		.align
148		/*
149		 * Always enter in ARM state for CPUs that support the ARM ISA.
150		 * As of today (2014) that's exactly the members of the A and R
151		 * classes.
152		 */
153 AR_CLASS(	.arm	)
154start:
155		.type	start,#function
156		/*
157		 * These 7 nops along with the 1 nop immediately below for
158		 * !THUMB2 form 8 nops that make the compressed kernel bootable
159		 * on legacy ARM systems that were assuming the kernel in a.out
160		 * binary format. The boot loaders on these systems would
161		 * jump 32 bytes into the image to skip the a.out header.
162		 * with these 8 nops filling exactly 32 bytes, things still
163		 * work as expected on these legacy systems. Thumb2 mode keeps
164		 * 7 of the nops as it turns out that some boot loaders
165		 * were patching the initial instructions of the kernel, i.e
166		 * had started to exploit this "patch area".
167		 */
168		.rept	7
169		__nop
170		.endr
171#ifndef CONFIG_THUMB2_KERNEL
172		__nop
173#else
174 AR_CLASS(	sub	pc, pc, #3	)	@ A/R: switch to Thumb2 mode
175  M_CLASS(	nop.w			)	@ M: already in Thumb2 mode
176		.thumb
177#endif
178		W(b)	1f
179
180		.word	_magic_sig	@ Magic numbers to help the loader
181		.word	_magic_start	@ absolute load/run zImage address
182		.word	_magic_end	@ zImage end address
183		.word	0x04030201	@ endianness flag
184		.word	0x45454545	@ another magic number to indicate
185		.word	_magic_table	@ additional data table
186
187		__EFI_HEADER
1881:
189 ARM_BE8(	setend	be		)	@ go BE8 if compiled for BE8
190 AR_CLASS(	mrs	r9, cpsr	)
191#ifdef CONFIG_ARM_VIRT_EXT
192		bl	__hyp_stub_install	@ get into SVC mode, reversibly
193#endif
194		mov	r7, r1			@ save architecture ID
195		mov	r8, r2			@ save atags pointer
196
197#ifndef CONFIG_CPU_V7M
198		/*
199		 * Booting from Angel - need to enter SVC mode and disable
200		 * FIQs/IRQs (numeric definitions from angel arm.h source).
201		 * We only do this if we were in user mode on entry.
202		 */
203		mrs	r2, cpsr		@ get current mode
204		tst	r2, #3			@ not user?
205		bne	not_angel
206		mov	r0, #0x17		@ angel_SWIreason_EnterSVC
207 ARM(		swi	0x123456	)	@ angel_SWI_ARM
208 THUMB(		svc	0xab		)	@ angel_SWI_THUMB
209not_angel:
210		safe_svcmode_maskall r0
211		msr	spsr_cxsf, r9		@ Save the CPU boot mode in
212						@ SPSR
213#endif
214		/*
215		 * Note that some cache flushing and other stuff may
216		 * be needed here - is there an Angel SWI call for this?
217		 */
218
219		/*
220		 * some architecture specific code can be inserted
221		 * by the linker here, but it should preserve r7, r8, and r9.
222		 */
223
224		.text
225
226#ifdef CONFIG_AUTO_ZRELADDR
227		/*
228		 * Find the start of physical memory.  As we are executing
229		 * without the MMU on, we are in the physical address space.
230		 * We just need to get rid of any offset by aligning the
231		 * address.
232		 *
233		 * This alignment is a balance between the requirements of
234		 * different platforms - we have chosen 128MB to allow
235		 * platforms which align the start of their physical memory
236		 * to 128MB to use this feature, while allowing the zImage
237		 * to be placed within the first 128MB of memory on other
238		 * platforms.  Increasing the alignment means we place
239		 * stricter alignment requirements on the start of physical
240		 * memory, but relaxing it means that we break people who
241		 * are already placing their zImage in (eg) the top 64MB
242		 * of this range.
243		 */
244		mov	r4, pc
245		and	r4, r4, #0xf8000000
246		/* Determine final kernel image address. */
247		add	r4, r4, #TEXT_OFFSET
248#else
249		ldr	r4, =zreladdr
250#endif
251
252		/*
253		 * Set up a page table only if it won't overwrite ourself.
254		 * That means r4 < pc || r4 - 16k page directory > &_end.
255		 * Given that r4 > &_end is most unfrequent, we add a rough
256		 * additional 1MB of room for a possible appended DTB.
257		 */
258		mov	r0, pc
259		cmp	r0, r4
260		ldrcc	r0, LC0+32
261		addcc	r0, r0, pc
262		cmpcc	r4, r0
263		orrcc	r4, r4, #1		@ remember we skipped cache_on
264		blcs	cache_on
265
266restart:	adr	r0, LC0
267		ldmia	r0, {r1, r2, r3, r6, r10, r11, r12}
268		ldr	sp, [r0, #28]
269
270		/*
271		 * We might be running at a different address.  We need
272		 * to fix up various pointers.
273		 */
274		sub	r0, r0, r1		@ calculate the delta offset
275		add	r6, r6, r0		@ _edata
276		add	r10, r10, r0		@ inflated kernel size location
277
278		/*
279		 * The kernel build system appends the size of the
280		 * decompressed kernel at the end of the compressed data
281		 * in little-endian form.
282		 */
283		ldrb	r9, [r10, #0]
284		ldrb	lr, [r10, #1]
285		orr	r9, r9, lr, lsl #8
286		ldrb	lr, [r10, #2]
287		ldrb	r10, [r10, #3]
288		orr	r9, r9, lr, lsl #16
289		orr	r9, r9, r10, lsl #24
290
291#ifndef CONFIG_ZBOOT_ROM
292		/* malloc space is above the relocated stack (64k max) */
293		add	sp, sp, r0
294		add	r10, sp, #0x10000
295#else
296		/*
297		 * With ZBOOT_ROM the bss/stack is non relocatable,
298		 * but someone could still run this code from RAM,
299		 * in which case our reference is _edata.
300		 */
301		mov	r10, r6
302#endif
303
304		mov	r5, #0			@ init dtb size to 0
305#ifdef CONFIG_ARM_APPENDED_DTB
306/*
307 *   r0  = delta
308 *   r2  = BSS start
309 *   r3  = BSS end
310 *   r4  = final kernel address (possibly with LSB set)
311 *   r5  = appended dtb size (still unknown)
312 *   r6  = _edata
313 *   r7  = architecture ID
314 *   r8  = atags/device tree pointer
315 *   r9  = size of decompressed image
316 *   r10 = end of this image, including  bss/stack/malloc space if non XIP
317 *   r11 = GOT start
318 *   r12 = GOT end
319 *   sp  = stack pointer
320 *
321 * if there are device trees (dtb) appended to zImage, advance r10 so that the
322 * dtb data will get relocated along with the kernel if necessary.
323 */
324
325		ldr	lr, [r6, #0]
326#ifndef __ARMEB__
327		ldr	r1, =0xedfe0dd0		@ sig is 0xd00dfeed big endian
328#else
329		ldr	r1, =0xd00dfeed
330#endif
331		cmp	lr, r1
332		bne	dtb_check_done		@ not found
333
334#ifdef CONFIG_ARM_ATAG_DTB_COMPAT
335		/*
336		 * OK... Let's do some funky business here.
337		 * If we do have a DTB appended to zImage, and we do have
338		 * an ATAG list around, we want the later to be translated
339		 * and folded into the former here. No GOT fixup has occurred
340		 * yet, but none of the code we're about to call uses any
341		 * global variable.
342		*/
343
344		/* Get the initial DTB size */
345		ldr	r5, [r6, #4]
346#ifndef __ARMEB__
347		/* convert to little endian */
348		eor	r1, r5, r5, ror #16
349		bic	r1, r1, #0x00ff0000
350		mov	r5, r5, ror #8
351		eor	r5, r5, r1, lsr #8
352#endif
353		/* 50% DTB growth should be good enough */
354		add	r5, r5, r5, lsr #1
355		/* preserve 64-bit alignment */
356		add	r5, r5, #7
357		bic	r5, r5, #7
358		/* clamp to 32KB min and 1MB max */
359		cmp	r5, #(1 << 15)
360		movlo	r5, #(1 << 15)
361		cmp	r5, #(1 << 20)
362		movhi	r5, #(1 << 20)
363		/* temporarily relocate the stack past the DTB work space */
364		add	sp, sp, r5
365
366		stmfd	sp!, {r0-r3, ip, lr}
367		mov	r0, r8
368		mov	r1, r6
369		mov	r2, r5
370		bl	atags_to_fdt
371
372		/*
373		 * If returned value is 1, there is no ATAG at the location
374		 * pointed by r8.  Try the typical 0x100 offset from start
375		 * of RAM and hope for the best.
376		 */
377		cmp	r0, #1
378		sub	r0, r4, #TEXT_OFFSET
379		bic	r0, r0, #1
380		add	r0, r0, #0x100
381		mov	r1, r6
382		mov	r2, r5
383		bleq	atags_to_fdt
384
385		ldmfd	sp!, {r0-r3, ip, lr}
386		sub	sp, sp, r5
387#endif
388
389		mov	r8, r6			@ use the appended device tree
390
391		/*
392		 * Make sure that the DTB doesn't end up in the final
393		 * kernel's .bss area. To do so, we adjust the decompressed
394		 * kernel size to compensate if that .bss size is larger
395		 * than the relocated code.
396		 */
397		ldr	r5, =_kernel_bss_size
398		adr	r1, wont_overwrite
399		sub	r1, r6, r1
400		subs	r1, r5, r1
401		addhi	r9, r9, r1
402
403		/* Get the current DTB size */
404		ldr	r5, [r6, #4]
405#ifndef __ARMEB__
406		/* convert r5 (dtb size) to little endian */
407		eor	r1, r5, r5, ror #16
408		bic	r1, r1, #0x00ff0000
409		mov	r5, r5, ror #8
410		eor	r5, r5, r1, lsr #8
411#endif
412
413		/* preserve 64-bit alignment */
414		add	r5, r5, #7
415		bic	r5, r5, #7
416
417		/* relocate some pointers past the appended dtb */
418		add	r6, r6, r5
419		add	r10, r10, r5
420		add	sp, sp, r5
421dtb_check_done:
422#endif
423
424/*
425 * Check to see if we will overwrite ourselves.
426 *   r4  = final kernel address (possibly with LSB set)
427 *   r9  = size of decompressed image
428 *   r10 = end of this image, including  bss/stack/malloc space if non XIP
429 * We basically want:
430 *   r4 - 16k page directory >= r10 -> OK
431 *   r4 + image length <= address of wont_overwrite -> OK
432 * Note: the possible LSB in r4 is harmless here.
433 */
434		add	r10, r10, #16384
435		cmp	r4, r10
436		bhs	wont_overwrite
437		add	r10, r4, r9
438		adr	r9, wont_overwrite
439		cmp	r10, r9
440		bls	wont_overwrite
441
442/*
443 * Relocate ourselves past the end of the decompressed kernel.
444 *   r6  = _edata
445 *   r10 = end of the decompressed kernel
446 * Because we always copy ahead, we need to do it from the end and go
447 * backward in case the source and destination overlap.
448 */
449		/*
450		 * Bump to the next 256-byte boundary with the size of
451		 * the relocation code added. This avoids overwriting
452		 * ourself when the offset is small.
453		 */
454		add	r10, r10, #((reloc_code_end - restart + 256) & ~255)
455		bic	r10, r10, #255
456
457		/* Get start of code we want to copy and align it down. */
458		adr	r5, restart
459		bic	r5, r5, #31
460
461/* Relocate the hyp vector base if necessary */
462#ifdef CONFIG_ARM_VIRT_EXT
463		mrs	r0, spsr
464		and	r0, r0, #MODE_MASK
465		cmp	r0, #HYP_MODE
466		bne	1f
467
468		/*
469		 * Compute the address of the hyp vectors after relocation.
470		 * This requires some arithmetic since we cannot directly
471		 * reference __hyp_stub_vectors in a PC-relative way.
472		 * Call __hyp_set_vectors with the new address so that we
473		 * can HVC again after the copy.
474		 */
4750:		adr	r0, 0b
476		movw	r1, #:lower16:__hyp_stub_vectors - 0b
477		movt	r1, #:upper16:__hyp_stub_vectors - 0b
478		add	r0, r0, r1
479		sub	r0, r0, r5
480		add	r0, r0, r10
481		bl	__hyp_set_vectors
4821:
483#endif
484
485		sub	r9, r6, r5		@ size to copy
486		add	r9, r9, #31		@ rounded up to a multiple
487		bic	r9, r9, #31		@ ... of 32 bytes
488		add	r6, r9, r5
489		add	r9, r9, r10
490
491#ifdef DEBUG
492		sub     r10, r6, r5
493		sub     r10, r9, r10
494		/*
495		 * We are about to copy the kernel to a new memory area.
496		 * The boundaries of the new memory area can be found in
497		 * r10 and r9, whilst r5 and r6 contain the boundaries
498		 * of the memory we are going to copy.
499		 * Calling dbgkc will help with the printing of this
500		 * information.
501		 */
502		dbgkc	r5, r6, r10, r9
503#endif
504
5051:		ldmdb	r6!, {r0 - r3, r10 - r12, lr}
506		cmp	r6, r5
507		stmdb	r9!, {r0 - r3, r10 - r12, lr}
508		bhi	1b
509
510		/* Preserve offset to relocated code. */
511		sub	r6, r9, r6
512
513#ifndef CONFIG_ZBOOT_ROM
514		/* cache_clean_flush may use the stack, so relocate it */
515		add	sp, sp, r6
516#endif
517
518		bl	cache_clean_flush
519
520		badr	r0, restart
521		add	r0, r0, r6
522		mov	pc, r0
523
524wont_overwrite:
525/*
526 * If delta is zero, we are running at the address we were linked at.
527 *   r0  = delta
528 *   r2  = BSS start
529 *   r3  = BSS end
530 *   r4  = kernel execution address (possibly with LSB set)
531 *   r5  = appended dtb size (0 if not present)
532 *   r7  = architecture ID
533 *   r8  = atags pointer
534 *   r11 = GOT start
535 *   r12 = GOT end
536 *   sp  = stack pointer
537 */
538		orrs	r1, r0, r5
539		beq	not_relocated
540
541		add	r11, r11, r0
542		add	r12, r12, r0
543
544#ifndef CONFIG_ZBOOT_ROM
545		/*
546		 * If we're running fully PIC === CONFIG_ZBOOT_ROM = n,
547		 * we need to fix up pointers into the BSS region.
548		 * Note that the stack pointer has already been fixed up.
549		 */
550		add	r2, r2, r0
551		add	r3, r3, r0
552
553		/*
554		 * Relocate all entries in the GOT table.
555		 * Bump bss entries to _edata + dtb size
556		 */
5571:		ldr	r1, [r11, #0]		@ relocate entries in the GOT
558		add	r1, r1, r0		@ This fixes up C references
559		cmp	r1, r2			@ if entry >= bss_start &&
560		cmphs	r3, r1			@       bss_end > entry
561		addhi	r1, r1, r5		@    entry += dtb size
562		str	r1, [r11], #4		@ next entry
563		cmp	r11, r12
564		blo	1b
565
566		/* bump our bss pointers too */
567		add	r2, r2, r5
568		add	r3, r3, r5
569
570#else
571
572		/*
573		 * Relocate entries in the GOT table.  We only relocate
574		 * the entries that are outside the (relocated) BSS region.
575		 */
5761:		ldr	r1, [r11, #0]		@ relocate entries in the GOT
577		cmp	r1, r2			@ entry < bss_start ||
578		cmphs	r3, r1			@ _end < entry
579		addlo	r1, r1, r0		@ table.  This fixes up the
580		str	r1, [r11], #4		@ C references.
581		cmp	r11, r12
582		blo	1b
583#endif
584
585not_relocated:	mov	r0, #0
5861:		str	r0, [r2], #4		@ clear bss
587		str	r0, [r2], #4
588		str	r0, [r2], #4
589		str	r0, [r2], #4
590		cmp	r2, r3
591		blo	1b
592
593		/*
594		 * Did we skip the cache setup earlier?
595		 * That is indicated by the LSB in r4.
596		 * Do it now if so.
597		 */
598		tst	r4, #1
599		bic	r4, r4, #1
600		blne	cache_on
601
602/*
603 * The C runtime environment should now be setup sufficiently.
604 * Set up some pointers, and start decompressing.
605 *   r4  = kernel execution address
606 *   r7  = architecture ID
607 *   r8  = atags pointer
608 */
609		mov	r0, r4
610		mov	r1, sp			@ malloc space above stack
611		add	r2, sp, #0x10000	@ 64k max
612		mov	r3, r7
613		bl	decompress_kernel
614		bl	cache_clean_flush
615		bl	cache_off
616
617#ifdef CONFIG_ARM_VIRT_EXT
618		mrs	r0, spsr		@ Get saved CPU boot mode
619		and	r0, r0, #MODE_MASK
620		cmp	r0, #HYP_MODE		@ if not booted in HYP mode...
621		bne	__enter_kernel		@ boot kernel directly
622
623		adr	r12, .L__hyp_reentry_vectors_offset
624		ldr	r0, [r12]
625		add	r0, r0, r12
626
627		bl	__hyp_set_vectors
628		__HVC(0)			@ otherwise bounce to hyp mode
629
630		b	.			@ should never be reached
631
632		.align	2
633.L__hyp_reentry_vectors_offset:	.long	__hyp_reentry_vectors - .
634#else
635		b	__enter_kernel
636#endif
637
638		.align	2
639		.type	LC0, #object
640LC0:		.word	LC0			@ r1
641		.word	__bss_start		@ r2
642		.word	_end			@ r3
643		.word	_edata			@ r6
644		.word	input_data_end - 4	@ r10 (inflated size location)
645		.word	_got_start		@ r11
646		.word	_got_end		@ ip
647		.word	.L_user_stack_end	@ sp
648		.word	_end - restart + 16384 + 1024*1024
649		.size	LC0, . - LC0
650
651#ifdef CONFIG_ARCH_RPC
652		.globl	params
653params:		ldr	r0, =0x10000100		@ params_phys for RPC
654		mov	pc, lr
655		.ltorg
656		.align
657#endif
658
659/*
660 * Turn on the cache.  We need to setup some page tables so that we
661 * can have both the I and D caches on.
662 *
663 * We place the page tables 16k down from the kernel execution address,
664 * and we hope that nothing else is using it.  If we're using it, we
665 * will go pop!
666 *
667 * On entry,
668 *  r4 = kernel execution address
669 *  r7 = architecture number
670 *  r8 = atags pointer
671 * On exit,
672 *  r0, r1, r2, r3, r9, r10, r12 corrupted
673 * This routine must preserve:
674 *  r4, r7, r8
675 */
676		.align	5
677cache_on:	mov	r3, #8			@ cache_on function
678		b	call_cache_fn
679
680/*
681 * Initialize the highest priority protection region, PR7
682 * to cover all 32bit address and cacheable and bufferable.
683 */
684__armv4_mpu_cache_on:
685		mov	r0, #0x3f		@ 4G, the whole
686		mcr	p15, 0, r0, c6, c7, 0	@ PR7 Area Setting
687		mcr 	p15, 0, r0, c6, c7, 1
688
689		mov	r0, #0x80		@ PR7
690		mcr	p15, 0, r0, c2, c0, 0	@ D-cache on
691		mcr	p15, 0, r0, c2, c0, 1	@ I-cache on
692		mcr	p15, 0, r0, c3, c0, 0	@ write-buffer on
693
694		mov	r0, #0xc000
695		mcr	p15, 0, r0, c5, c0, 1	@ I-access permission
696		mcr	p15, 0, r0, c5, c0, 0	@ D-access permission
697
698		mov	r0, #0
699		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
700		mcr	p15, 0, r0, c7, c5, 0	@ flush(inval) I-Cache
701		mcr	p15, 0, r0, c7, c6, 0	@ flush(inval) D-Cache
702		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
703						@ ...I .... ..D. WC.M
704		orr	r0, r0, #0x002d		@ .... .... ..1. 11.1
705		orr	r0, r0, #0x1000		@ ...1 .... .... ....
706
707		mcr	p15, 0, r0, c1, c0, 0	@ write control reg
708
709		mov	r0, #0
710		mcr	p15, 0, r0, c7, c5, 0	@ flush(inval) I-Cache
711		mcr	p15, 0, r0, c7, c6, 0	@ flush(inval) D-Cache
712		mov	pc, lr
713
714__armv3_mpu_cache_on:
715		mov	r0, #0x3f		@ 4G, the whole
716		mcr	p15, 0, r0, c6, c7, 0	@ PR7 Area Setting
717
718		mov	r0, #0x80		@ PR7
719		mcr	p15, 0, r0, c2, c0, 0	@ cache on
720		mcr	p15, 0, r0, c3, c0, 0	@ write-buffer on
721
722		mov	r0, #0xc000
723		mcr	p15, 0, r0, c5, c0, 0	@ access permission
724
725		mov	r0, #0
726		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
727		/*
728		 * ?? ARMv3 MMU does not allow reading the control register,
729		 * does this really work on ARMv3 MPU?
730		 */
731		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
732						@ .... .... .... WC.M
733		orr	r0, r0, #0x000d		@ .... .... .... 11.1
734		/* ?? this overwrites the value constructed above? */
735		mov	r0, #0
736		mcr	p15, 0, r0, c1, c0, 0	@ write control reg
737
738		/* ?? invalidate for the second time? */
739		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
740		mov	pc, lr
741
742#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
743#define CB_BITS 0x08
744#else
745#define CB_BITS 0x0c
746#endif
747
748__setup_mmu:	sub	r3, r4, #16384		@ Page directory size
749		bic	r3, r3, #0xff		@ Align the pointer
750		bic	r3, r3, #0x3f00
751/*
752 * Initialise the page tables, turning on the cacheable and bufferable
753 * bits for the RAM area only.
754 */
755		mov	r0, r3
756		mov	r9, r0, lsr #18
757		mov	r9, r9, lsl #18		@ start of RAM
758		add	r10, r9, #0x10000000	@ a reasonable RAM size
759		mov	r1, #0x12		@ XN|U + section mapping
760		orr	r1, r1, #3 << 10	@ AP=11
761		add	r2, r3, #16384
7621:		cmp	r1, r9			@ if virt > start of RAM
763		cmphs	r10, r1			@   && end of RAM > virt
764		bic	r1, r1, #0x1c		@ clear XN|U + C + B
765		orrlo	r1, r1, #0x10		@ Set XN|U for non-RAM
766		orrhs	r1, r1, r6		@ set RAM section settings
767		str	r1, [r0], #4		@ 1:1 mapping
768		add	r1, r1, #1048576
769		teq	r0, r2
770		bne	1b
771/*
772 * If ever we are running from Flash, then we surely want the cache
773 * to be enabled also for our execution instance...  We map 2MB of it
774 * so there is no map overlap problem for up to 1 MB compressed kernel.
775 * If the execution is in RAM then we would only be duplicating the above.
776 */
777		orr	r1, r6, #0x04		@ ensure B is set for this
778		orr	r1, r1, #3 << 10
779		mov	r2, pc
780		mov	r2, r2, lsr #20
781		orr	r1, r1, r2, lsl #20
782		add	r0, r3, r2, lsl #2
783		str	r1, [r0], #4
784		add	r1, r1, #1048576
785		str	r1, [r0]
786		mov	pc, lr
787ENDPROC(__setup_mmu)
788
789@ Enable unaligned access on v6, to allow better code generation
790@ for the decompressor C code:
791__armv6_mmu_cache_on:
792		mrc	p15, 0, r0, c1, c0, 0	@ read SCTLR
793		bic	r0, r0, #2		@ A (no unaligned access fault)
794		orr	r0, r0, #1 << 22	@ U (v6 unaligned access model)
795		mcr	p15, 0, r0, c1, c0, 0	@ write SCTLR
796		b	__armv4_mmu_cache_on
797
798__arm926ejs_mmu_cache_on:
799#ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
800		mov	r0, #4			@ put dcache in WT mode
801		mcr	p15, 7, r0, c15, c0, 0
802#endif
803
804__armv4_mmu_cache_on:
805		mov	r12, lr
806#ifdef CONFIG_MMU
807		mov	r6, #CB_BITS | 0x12	@ U
808		bl	__setup_mmu
809		mov	r0, #0
810		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
811		mcr	p15, 0, r0, c8, c7, 0	@ flush I,D TLBs
812		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
813		orr	r0, r0, #0x5000		@ I-cache enable, RR cache replacement
814		orr	r0, r0, #0x0030
815 ARM_BE8(	orr	r0, r0, #1 << 25 )	@ big-endian page tables
816		bl	__common_mmu_cache_on
817		mov	r0, #0
818		mcr	p15, 0, r0, c8, c7, 0	@ flush I,D TLBs
819#endif
820		mov	pc, r12
821
822__armv7_mmu_cache_on:
823		mov	r12, lr
824#ifdef CONFIG_MMU
825		mrc	p15, 0, r11, c0, c1, 4	@ read ID_MMFR0
826		tst	r11, #0xf		@ VMSA
827		movne	r6, #CB_BITS | 0x02	@ !XN
828		blne	__setup_mmu
829		mov	r0, #0
830		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
831		tst	r11, #0xf		@ VMSA
832		mcrne	p15, 0, r0, c8, c7, 0	@ flush I,D TLBs
833#endif
834		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
835		bic	r0, r0, #1 << 28	@ clear SCTLR.TRE
836		orr	r0, r0, #0x5000		@ I-cache enable, RR cache replacement
837		orr	r0, r0, #0x003c		@ write buffer
838		bic	r0, r0, #2		@ A (no unaligned access fault)
839		orr	r0, r0, #1 << 22	@ U (v6 unaligned access model)
840						@ (needed for ARM1176)
841#ifdef CONFIG_MMU
842 ARM_BE8(	orr	r0, r0, #1 << 25 )	@ big-endian page tables
843		mrcne   p15, 0, r6, c2, c0, 2   @ read ttb control reg
844		orrne	r0, r0, #1		@ MMU enabled
845		movne	r1, #0xfffffffd		@ domain 0 = client
846		bic     r6, r6, #1 << 31        @ 32-bit translation system
847		bic     r6, r6, #(7 << 0) | (1 << 4)	@ use only ttbr0
848		mcrne	p15, 0, r3, c2, c0, 0	@ load page table pointer
849		mcrne	p15, 0, r1, c3, c0, 0	@ load domain access control
850		mcrne   p15, 0, r6, c2, c0, 2   @ load ttb control
851#endif
852		mcr	p15, 0, r0, c7, c5, 4	@ ISB
853		mcr	p15, 0, r0, c1, c0, 0	@ load control register
854		mrc	p15, 0, r0, c1, c0, 0	@ and read it back
855		mov	r0, #0
856		mcr	p15, 0, r0, c7, c5, 4	@ ISB
857		mov	pc, r12
858
859__fa526_cache_on:
860		mov	r12, lr
861		mov	r6, #CB_BITS | 0x12	@ U
862		bl	__setup_mmu
863		mov	r0, #0
864		mcr	p15, 0, r0, c7, c7, 0	@ Invalidate whole cache
865		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
866		mcr	p15, 0, r0, c8, c7, 0	@ flush UTLB
867		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
868		orr	r0, r0, #0x1000		@ I-cache enable
869		bl	__common_mmu_cache_on
870		mov	r0, #0
871		mcr	p15, 0, r0, c8, c7, 0	@ flush UTLB
872		mov	pc, r12
873
874__common_mmu_cache_on:
875#ifndef CONFIG_THUMB2_KERNEL
876#ifndef DEBUG
877		orr	r0, r0, #0x000d		@ Write buffer, mmu
878#endif
879		mov	r1, #-1
880		mcr	p15, 0, r3, c2, c0, 0	@ load page table pointer
881		mcr	p15, 0, r1, c3, c0, 0	@ load domain access control
882		b	1f
883		.align	5			@ cache line aligned
8841:		mcr	p15, 0, r0, c1, c0, 0	@ load control register
885		mrc	p15, 0, r0, c1, c0, 0	@ and read it back to
886		sub	pc, lr, r0, lsr #32	@ properly flush pipeline
887#endif
888
889#define PROC_ENTRY_SIZE (4*5)
890
891/*
892 * Here follow the relocatable cache support functions for the
893 * various processors.  This is a generic hook for locating an
894 * entry and jumping to an instruction at the specified offset
895 * from the start of the block.  Please note this is all position
896 * independent code.
897 *
898 *  r1  = corrupted
899 *  r2  = corrupted
900 *  r3  = block offset
901 *  r9  = corrupted
902 *  r12 = corrupted
903 */
904
905call_cache_fn:	adr	r12, proc_types
906#ifdef CONFIG_CPU_CP15
907		mrc	p15, 0, r9, c0, c0	@ get processor ID
908#elif defined(CONFIG_CPU_V7M)
909		/*
910		 * On v7-M the processor id is located in the V7M_SCB_CPUID
911		 * register, but as cache handling is IMPLEMENTATION DEFINED on
912		 * v7-M (if existant at all) we just return early here.
913		 * If V7M_SCB_CPUID were used the cpu ID functions (i.e.
914		 * __armv7_mmu_cache_{on,off,flush}) would be selected which
915		 * use cp15 registers that are not implemented on v7-M.
916		 */
917		bx	lr
918#else
919		ldr	r9, =CONFIG_PROCESSOR_ID
920#endif
9211:		ldr	r1, [r12, #0]		@ get value
922		ldr	r2, [r12, #4]		@ get mask
923		eor	r1, r1, r9		@ (real ^ match)
924		tst	r1, r2			@       & mask
925 ARM(		addeq	pc, r12, r3		) @ call cache function
926 THUMB(		addeq	r12, r3			)
927 THUMB(		moveq	pc, r12			) @ call cache function
928		add	r12, r12, #PROC_ENTRY_SIZE
929		b	1b
930
931/*
932 * Table for cache operations.  This is basically:
933 *   - CPU ID match
934 *   - CPU ID mask
935 *   - 'cache on' method instruction
936 *   - 'cache off' method instruction
937 *   - 'cache flush' method instruction
938 *
939 * We match an entry using: ((real_id ^ match) & mask) == 0
940 *
941 * Writethrough caches generally only need 'on' and 'off'
942 * methods.  Writeback caches _must_ have the flush method
943 * defined.
944 */
945		.align	2
946		.type	proc_types,#object
947proc_types:
948		.word	0x41000000		@ old ARM ID
949		.word	0xff00f000
950		mov	pc, lr
951 THUMB(		nop				)
952		mov	pc, lr
953 THUMB(		nop				)
954		mov	pc, lr
955 THUMB(		nop				)
956
957		.word	0x41007000		@ ARM7/710
958		.word	0xfff8fe00
959		mov	pc, lr
960 THUMB(		nop				)
961		mov	pc, lr
962 THUMB(		nop				)
963		mov	pc, lr
964 THUMB(		nop				)
965
966		.word	0x41807200		@ ARM720T (writethrough)
967		.word	0xffffff00
968		W(b)	__armv4_mmu_cache_on
969		W(b)	__armv4_mmu_cache_off
970		mov	pc, lr
971 THUMB(		nop				)
972
973		.word	0x41007400		@ ARM74x
974		.word	0xff00ff00
975		W(b)	__armv3_mpu_cache_on
976		W(b)	__armv3_mpu_cache_off
977		W(b)	__armv3_mpu_cache_flush
978
979		.word	0x41009400		@ ARM94x
980		.word	0xff00ff00
981		W(b)	__armv4_mpu_cache_on
982		W(b)	__armv4_mpu_cache_off
983		W(b)	__armv4_mpu_cache_flush
984
985		.word	0x41069260		@ ARM926EJ-S (v5TEJ)
986		.word	0xff0ffff0
987		W(b)	__arm926ejs_mmu_cache_on
988		W(b)	__armv4_mmu_cache_off
989		W(b)	__armv5tej_mmu_cache_flush
990
991		.word	0x00007000		@ ARM7 IDs
992		.word	0x0000f000
993		mov	pc, lr
994 THUMB(		nop				)
995		mov	pc, lr
996 THUMB(		nop				)
997		mov	pc, lr
998 THUMB(		nop				)
999
1000		@ Everything from here on will be the new ID system.
1001
1002		.word	0x4401a100		@ sa110 / sa1100
1003		.word	0xffffffe0
1004		W(b)	__armv4_mmu_cache_on
1005		W(b)	__armv4_mmu_cache_off
1006		W(b)	__armv4_mmu_cache_flush
1007
1008		.word	0x6901b110		@ sa1110
1009		.word	0xfffffff0
1010		W(b)	__armv4_mmu_cache_on
1011		W(b)	__armv4_mmu_cache_off
1012		W(b)	__armv4_mmu_cache_flush
1013
1014		.word	0x56056900
1015		.word	0xffffff00		@ PXA9xx
1016		W(b)	__armv4_mmu_cache_on
1017		W(b)	__armv4_mmu_cache_off
1018		W(b)	__armv4_mmu_cache_flush
1019
1020		.word	0x56158000		@ PXA168
1021		.word	0xfffff000
1022		W(b)	__armv4_mmu_cache_on
1023		W(b)	__armv4_mmu_cache_off
1024		W(b)	__armv5tej_mmu_cache_flush
1025
1026		.word	0x56050000		@ Feroceon
1027		.word	0xff0f0000
1028		W(b)	__armv4_mmu_cache_on
1029		W(b)	__armv4_mmu_cache_off
1030		W(b)	__armv5tej_mmu_cache_flush
1031
1032#ifdef CONFIG_CPU_FEROCEON_OLD_ID
1033		/* this conflicts with the standard ARMv5TE entry */
1034		.long	0x41009260		@ Old Feroceon
1035		.long	0xff00fff0
1036		b	__armv4_mmu_cache_on
1037		b	__armv4_mmu_cache_off
1038		b	__armv5tej_mmu_cache_flush
1039#endif
1040
1041		.word	0x66015261		@ FA526
1042		.word	0xff01fff1
1043		W(b)	__fa526_cache_on
1044		W(b)	__armv4_mmu_cache_off
1045		W(b)	__fa526_cache_flush
1046
1047		@ These match on the architecture ID
1048
1049		.word	0x00020000		@ ARMv4T
1050		.word	0x000f0000
1051		W(b)	__armv4_mmu_cache_on
1052		W(b)	__armv4_mmu_cache_off
1053		W(b)	__armv4_mmu_cache_flush
1054
1055		.word	0x00050000		@ ARMv5TE
1056		.word	0x000f0000
1057		W(b)	__armv4_mmu_cache_on
1058		W(b)	__armv4_mmu_cache_off
1059		W(b)	__armv4_mmu_cache_flush
1060
1061		.word	0x00060000		@ ARMv5TEJ
1062		.word	0x000f0000
1063		W(b)	__armv4_mmu_cache_on
1064		W(b)	__armv4_mmu_cache_off
1065		W(b)	__armv5tej_mmu_cache_flush
1066
1067		.word	0x0007b000		@ ARMv6
1068		.word	0x000ff000
1069		W(b)	__armv6_mmu_cache_on
1070		W(b)	__armv4_mmu_cache_off
1071		W(b)	__armv6_mmu_cache_flush
1072
1073		.word	0x000f0000		@ new CPU Id
1074		.word	0x000f0000
1075		W(b)	__armv7_mmu_cache_on
1076		W(b)	__armv7_mmu_cache_off
1077		W(b)	__armv7_mmu_cache_flush
1078
1079		.word	0			@ unrecognised type
1080		.word	0
1081		mov	pc, lr
1082 THUMB(		nop				)
1083		mov	pc, lr
1084 THUMB(		nop				)
1085		mov	pc, lr
1086 THUMB(		nop				)
1087
1088		.size	proc_types, . - proc_types
1089
1090		/*
1091		 * If you get a "non-constant expression in ".if" statement"
1092		 * error from the assembler on this line, check that you have
1093		 * not accidentally written a "b" instruction where you should
1094		 * have written W(b).
1095		 */
1096		.if (. - proc_types) % PROC_ENTRY_SIZE != 0
1097		.error "The size of one or more proc_types entries is wrong."
1098		.endif
1099
1100/*
1101 * Turn off the Cache and MMU.  ARMv3 does not support
1102 * reading the control register, but ARMv4 does.
1103 *
1104 * On exit,
1105 *  r0, r1, r2, r3, r9, r12 corrupted
1106 * This routine must preserve:
1107 *  r4, r7, r8
1108 */
1109		.align	5
1110cache_off:	mov	r3, #12			@ cache_off function
1111		b	call_cache_fn
1112
1113__armv4_mpu_cache_off:
1114		mrc	p15, 0, r0, c1, c0
1115		bic	r0, r0, #0x000d
1116		mcr	p15, 0, r0, c1, c0	@ turn MPU and cache off
1117		mov	r0, #0
1118		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
1119		mcr	p15, 0, r0, c7, c6, 0	@ flush D-Cache
1120		mcr	p15, 0, r0, c7, c5, 0	@ flush I-Cache
1121		mov	pc, lr
1122
1123__armv3_mpu_cache_off:
1124		mrc	p15, 0, r0, c1, c0
1125		bic	r0, r0, #0x000d
1126		mcr	p15, 0, r0, c1, c0, 0	@ turn MPU and cache off
1127		mov	r0, #0
1128		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
1129		mov	pc, lr
1130
1131__armv4_mmu_cache_off:
1132#ifdef CONFIG_MMU
1133		mrc	p15, 0, r0, c1, c0
1134		bic	r0, r0, #0x000d
1135		mcr	p15, 0, r0, c1, c0	@ turn MMU and cache off
1136		mov	r0, #0
1137		mcr	p15, 0, r0, c7, c7	@ invalidate whole cache v4
1138		mcr	p15, 0, r0, c8, c7	@ invalidate whole TLB v4
1139#endif
1140		mov	pc, lr
1141
1142__armv7_mmu_cache_off:
1143		mrc	p15, 0, r0, c1, c0
1144#ifdef CONFIG_MMU
1145		bic	r0, r0, #0x000d
1146#else
1147		bic	r0, r0, #0x000c
1148#endif
1149		mcr	p15, 0, r0, c1, c0	@ turn MMU and cache off
1150		mov	r12, lr
1151		bl	__armv7_mmu_cache_flush
1152		mov	r0, #0
1153#ifdef CONFIG_MMU
1154		mcr	p15, 0, r0, c8, c7, 0	@ invalidate whole TLB
1155#endif
1156		mcr	p15, 0, r0, c7, c5, 6	@ invalidate BTC
1157		mcr	p15, 0, r0, c7, c10, 4	@ DSB
1158		mcr	p15, 0, r0, c7, c5, 4	@ ISB
1159		mov	pc, r12
1160
1161/*
1162 * Clean and flush the cache to maintain consistency.
1163 *
1164 * On exit,
1165 *  r1, r2, r3, r9, r10, r11, r12 corrupted
1166 * This routine must preserve:
1167 *  r4, r6, r7, r8
1168 */
1169		.align	5
1170cache_clean_flush:
1171		mov	r3, #16
1172		b	call_cache_fn
1173
1174__armv4_mpu_cache_flush:
1175		tst	r4, #1
1176		movne	pc, lr
1177		mov	r2, #1
1178		mov	r3, #0
1179		mcr	p15, 0, ip, c7, c6, 0	@ invalidate D cache
1180		mov	r1, #7 << 5		@ 8 segments
11811:		orr	r3, r1, #63 << 26	@ 64 entries
11822:		mcr	p15, 0, r3, c7, c14, 2	@ clean & invalidate D index
1183		subs	r3, r3, #1 << 26
1184		bcs	2b			@ entries 63 to 0
1185		subs 	r1, r1, #1 << 5
1186		bcs	1b			@ segments 7 to 0
1187
1188		teq	r2, #0
1189		mcrne	p15, 0, ip, c7, c5, 0	@ invalidate I cache
1190		mcr	p15, 0, ip, c7, c10, 4	@ drain WB
1191		mov	pc, lr
1192
1193__fa526_cache_flush:
1194		tst	r4, #1
1195		movne	pc, lr
1196		mov	r1, #0
1197		mcr	p15, 0, r1, c7, c14, 0	@ clean and invalidate D cache
1198		mcr	p15, 0, r1, c7, c5, 0	@ flush I cache
1199		mcr	p15, 0, r1, c7, c10, 4	@ drain WB
1200		mov	pc, lr
1201
1202__armv6_mmu_cache_flush:
1203		mov	r1, #0
1204		tst	r4, #1
1205		mcreq	p15, 0, r1, c7, c14, 0	@ clean+invalidate D
1206		mcr	p15, 0, r1, c7, c5, 0	@ invalidate I+BTB
1207		mcreq	p15, 0, r1, c7, c15, 0	@ clean+invalidate unified
1208		mcr	p15, 0, r1, c7, c10, 4	@ drain WB
1209		mov	pc, lr
1210
1211__armv7_mmu_cache_flush:
1212		tst	r4, #1
1213		bne	iflush
1214		mrc	p15, 0, r10, c0, c1, 5	@ read ID_MMFR1
1215		tst	r10, #0xf << 16		@ hierarchical cache (ARMv7)
1216		mov	r10, #0
1217		beq	hierarchical
1218		mcr	p15, 0, r10, c7, c14, 0	@ clean+invalidate D
1219		b	iflush
1220hierarchical:
1221		mcr	p15, 0, r10, c7, c10, 5	@ DMB
1222		stmfd	sp!, {r0-r7, r9-r11}
1223		mrc	p15, 1, r0, c0, c0, 1	@ read clidr
1224		ands	r3, r0, #0x7000000	@ extract loc from clidr
1225		mov	r3, r3, lsr #23		@ left align loc bit field
1226		beq	finished		@ if loc is 0, then no need to clean
1227		mov	r10, #0			@ start clean at cache level 0
1228loop1:
1229		add	r2, r10, r10, lsr #1	@ work out 3x current cache level
1230		mov	r1, r0, lsr r2		@ extract cache type bits from clidr
1231		and	r1, r1, #7		@ mask of the bits for current cache only
1232		cmp	r1, #2			@ see what cache we have at this level
1233		blt	skip			@ skip if no cache, or just i-cache
1234		mcr	p15, 2, r10, c0, c0, 0	@ select current cache level in cssr
1235		mcr	p15, 0, r10, c7, c5, 4	@ isb to sych the new cssr&csidr
1236		mrc	p15, 1, r1, c0, c0, 0	@ read the new csidr
1237		and	r2, r1, #7		@ extract the length of the cache lines
1238		add	r2, r2, #4		@ add 4 (line length offset)
1239		ldr	r4, =0x3ff
1240		ands	r4, r4, r1, lsr #3	@ find maximum number on the way size
1241		clz	r5, r4			@ find bit position of way size increment
1242		ldr	r7, =0x7fff
1243		ands	r7, r7, r1, lsr #13	@ extract max number of the index size
1244loop2:
1245		mov	r9, r4			@ create working copy of max way size
1246loop3:
1247 ARM(		orr	r11, r10, r9, lsl r5	) @ factor way and cache number into r11
1248 ARM(		orr	r11, r11, r7, lsl r2	) @ factor index number into r11
1249 THUMB(		lsl	r6, r9, r5		)
1250 THUMB(		orr	r11, r10, r6		) @ factor way and cache number into r11
1251 THUMB(		lsl	r6, r7, r2		)
1252 THUMB(		orr	r11, r11, r6		) @ factor index number into r11
1253		mcr	p15, 0, r11, c7, c14, 2	@ clean & invalidate by set/way
1254		subs	r9, r9, #1		@ decrement the way
1255		bge	loop3
1256		subs	r7, r7, #1		@ decrement the index
1257		bge	loop2
1258skip:
1259		add	r10, r10, #2		@ increment cache number
1260		cmp	r3, r10
1261		bgt	loop1
1262finished:
1263		ldmfd	sp!, {r0-r7, r9-r11}
1264		mov	r10, #0			@ switch back to cache level 0
1265		mcr	p15, 2, r10, c0, c0, 0	@ select current cache level in cssr
1266iflush:
1267		mcr	p15, 0, r10, c7, c10, 4	@ DSB
1268		mcr	p15, 0, r10, c7, c5, 0	@ invalidate I+BTB
1269		mcr	p15, 0, r10, c7, c10, 4	@ DSB
1270		mcr	p15, 0, r10, c7, c5, 4	@ ISB
1271		mov	pc, lr
1272
1273__armv5tej_mmu_cache_flush:
1274		tst	r4, #1
1275		movne	pc, lr
12761:		mrc	p15, 0, r15, c7, c14, 3	@ test,clean,invalidate D cache
1277		bne	1b
1278		mcr	p15, 0, r0, c7, c5, 0	@ flush I cache
1279		mcr	p15, 0, r0, c7, c10, 4	@ drain WB
1280		mov	pc, lr
1281
1282__armv4_mmu_cache_flush:
1283		tst	r4, #1
1284		movne	pc, lr
1285		mov	r2, #64*1024		@ default: 32K dcache size (*2)
1286		mov	r11, #32		@ default: 32 byte line size
1287		mrc	p15, 0, r3, c0, c0, 1	@ read cache type
1288		teq	r3, r9			@ cache ID register present?
1289		beq	no_cache_id
1290		mov	r1, r3, lsr #18
1291		and	r1, r1, #7
1292		mov	r2, #1024
1293		mov	r2, r2, lsl r1		@ base dcache size *2
1294		tst	r3, #1 << 14		@ test M bit
1295		addne	r2, r2, r2, lsr #1	@ +1/2 size if M == 1
1296		mov	r3, r3, lsr #12
1297		and	r3, r3, #3
1298		mov	r11, #8
1299		mov	r11, r11, lsl r3	@ cache line size in bytes
1300no_cache_id:
1301		mov	r1, pc
1302		bic	r1, r1, #63		@ align to longest cache line
1303		add	r2, r1, r2
13041:
1305 ARM(		ldr	r3, [r1], r11		) @ s/w flush D cache
1306 THUMB(		ldr     r3, [r1]		) @ s/w flush D cache
1307 THUMB(		add     r1, r1, r11		)
1308		teq	r1, r2
1309		bne	1b
1310
1311		mcr	p15, 0, r1, c7, c5, 0	@ flush I cache
1312		mcr	p15, 0, r1, c7, c6, 0	@ flush D cache
1313		mcr	p15, 0, r1, c7, c10, 4	@ drain WB
1314		mov	pc, lr
1315
1316__armv3_mmu_cache_flush:
1317__armv3_mpu_cache_flush:
1318		tst	r4, #1
1319		movne	pc, lr
1320		mov	r1, #0
1321		mcr	p15, 0, r1, c7, c0, 0	@ invalidate whole cache v3
1322		mov	pc, lr
1323
1324/*
1325 * Various debugging routines for printing hex characters and
1326 * memory, which again must be relocatable.
1327 */
1328#ifdef DEBUG
1329		.align	2
1330		.type	phexbuf,#object
1331phexbuf:	.space	12
1332		.size	phexbuf, . - phexbuf
1333
1334@ phex corrupts {r0, r1, r2, r3}
1335phex:		adr	r3, phexbuf
1336		mov	r2, #0
1337		strb	r2, [r3, r1]
13381:		subs	r1, r1, #1
1339		movmi	r0, r3
1340		bmi	puts
1341		and	r2, r0, #15
1342		mov	r0, r0, lsr #4
1343		cmp	r2, #10
1344		addge	r2, r2, #7
1345		add	r2, r2, #'0'
1346		strb	r2, [r3, r1]
1347		b	1b
1348
1349@ puts corrupts {r0, r1, r2, r3}
1350puts:		loadsp	r3, r2, r1
13511:		ldrb	r2, [r0], #1
1352		teq	r2, #0
1353		moveq	pc, lr
13542:		writeb	r2, r3
1355		mov	r1, #0x00020000
13563:		subs	r1, r1, #1
1357		bne	3b
1358		teq	r2, #'\n'
1359		moveq	r2, #'\r'
1360		beq	2b
1361		teq	r0, #0
1362		bne	1b
1363		mov	pc, lr
1364@ putc corrupts {r0, r1, r2, r3}
1365putc:
1366		mov	r2, r0
1367		loadsp	r3, r1, r0
1368		mov	r0, #0
1369		b	2b
1370
1371@ memdump corrupts {r0, r1, r2, r3, r10, r11, r12, lr}
1372memdump:	mov	r12, r0
1373		mov	r10, lr
1374		mov	r11, #0
13752:		mov	r0, r11, lsl #2
1376		add	r0, r0, r12
1377		mov	r1, #8
1378		bl	phex
1379		mov	r0, #':'
1380		bl	putc
13811:		mov	r0, #' '
1382		bl	putc
1383		ldr	r0, [r12, r11, lsl #2]
1384		mov	r1, #8
1385		bl	phex
1386		and	r0, r11, #7
1387		teq	r0, #3
1388		moveq	r0, #' '
1389		bleq	putc
1390		and	r0, r11, #7
1391		add	r11, r11, #1
1392		teq	r0, #7
1393		bne	1b
1394		mov	r0, #'\n'
1395		bl	putc
1396		cmp	r11, #64
1397		blt	2b
1398		mov	pc, r10
1399#endif
1400
1401		.ltorg
1402
1403#ifdef CONFIG_ARM_VIRT_EXT
1404.align 5
1405__hyp_reentry_vectors:
1406		W(b)	.			@ reset
1407		W(b)	.			@ undef
1408		W(b)	.			@ svc
1409		W(b)	.			@ pabort
1410		W(b)	.			@ dabort
1411		W(b)	__enter_kernel		@ hyp
1412		W(b)	.			@ irq
1413		W(b)	.			@ fiq
1414#endif /* CONFIG_ARM_VIRT_EXT */
1415
1416__enter_kernel:
1417		mov	r0, #0			@ must be 0
1418		mov	r1, r7			@ restore architecture number
1419		mov	r2, r8			@ restore atags pointer
1420 ARM(		mov	pc, r4		)	@ call kernel
1421 M_CLASS(	add	r4, r4, #1	)	@ enter in Thumb mode for M class
1422 THUMB(		bx	r4		)	@ entry point is always ARM for A/R classes
1423
1424reloc_code_end:
1425
1426#ifdef CONFIG_EFI_STUB
1427		.align	2
1428_start:		.long	start - .
1429
1430ENTRY(efi_stub_entry)
1431		@ allocate space on stack for passing current zImage address
1432		@ and for the EFI stub to return of new entry point of
1433		@ zImage, as EFI stub may copy the kernel. Pointer address
1434		@ is passed in r2. r0 and r1 are passed through from the
1435		@ EFI firmware to efi_entry
1436		adr	ip, _start
1437		ldr	r3, [ip]
1438		add	r3, r3, ip
1439		stmfd	sp!, {r3, lr}
1440		mov	r2, sp			@ pass zImage address in r2
1441		bl	efi_entry
1442
1443		@ Check for error return from EFI stub. r0 has FDT address
1444		@ or error code.
1445		cmn	r0, #1
1446		beq	efi_load_fail
1447
1448		@ Preserve return value of efi_entry() in r4
1449		mov	r4, r0
1450
1451		@ our cache maintenance code relies on CP15 barrier instructions
1452		@ but since we arrived here with the MMU and caches configured
1453		@ by UEFI, we must check that the CP15BEN bit is set in SCTLR.
1454		@ Note that this bit is RAO/WI on v6 and earlier, so the ISB in
1455		@ the enable path will be executed on v7+ only.
1456		mrc	p15, 0, r1, c1, c0, 0	@ read SCTLR
1457		tst	r1, #(1 << 5)		@ CP15BEN bit set?
1458		bne	0f
1459		orr	r1, r1, #(1 << 5)	@ CP15 barrier instructions
1460		mcr	p15, 0, r1, c1, c0, 0	@ write SCTLR
1461 ARM(		.inst	0xf57ff06f		@ v7+ isb	)
1462 THUMB(		isb						)
1463
14640:		bl	cache_clean_flush
1465		bl	cache_off
1466
1467		@ Set parameters for booting zImage according to boot protocol
1468		@ put FDT address in r2, it was returned by efi_entry()
1469		@ r1 is the machine type, and r0 needs to be 0
1470		mov	r0, #0
1471		mov	r1, #0xFFFFFFFF
1472		mov	r2, r4
1473
1474		@ Branch to (possibly) relocated zImage that is in [sp]
1475		ldr	lr, [sp]
1476		ldr	ip, =start_offset
1477		add	lr, lr, ip
1478		mov	pc, lr				@ no mode switch
1479
1480efi_load_fail:
1481		@ Return EFI_LOAD_ERROR to EFI firmware on error.
1482		ldr	r0, =0x80000001
1483		ldmfd	sp!, {ip, pc}
1484ENDPROC(efi_stub_entry)
1485#endif
1486
1487		.align
1488		.section ".stack", "aw", %nobits
1489.L_user_stack:	.space	4096
1490.L_user_stack_end:
1491