1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <linux/mm_types.h> 57 58 #include <asm/arcregs.h> 59 #include <asm/setup.h> 60 #include <asm/mmu_context.h> 61 #include <asm/mmu.h> 62 63 /* Need for ARC MMU v2 64 * 65 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 66 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 67 * map into same set, there would be contention for the 2 ways causing severe 68 * Thrashing. 69 * 70 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 71 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 72 * Given this, the thrasing problem should never happen because once the 3 73 * J-TLB entries are created (even though 3rd will knock out one of the prev 74 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 75 * 76 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 77 * This is a simple design for keeping them in sync. So what do we do? 78 * The solution which James came up was pretty neat. It utilised the assoc 79 * of uTLBs by not invalidating always but only when absolutely necessary. 80 * 81 * - Existing TLB commands work as before 82 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 83 * - New command (TLBIVUTLB) to invalidate uTLBs. 84 * 85 * The uTLBs need only be invalidated when pages are being removed from the 86 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 87 * as a result of a miss, the removed entry is still allowed to exist in the 88 * uTLBs as it is still valid and present in the OS page table. This allows the 89 * full associativity of the uTLBs to hide the limited associativity of the main 90 * TLB. 91 * 92 * During a miss handler, the new "TLBWriteNI" command is used to load 93 * entries without clearing the uTLBs. 94 * 95 * When the OS page table is updated, TLB entries that may be associated with a 96 * removed page are removed (flushed) from the TLB using TLBWrite. In this 97 * circumstance, the uTLBs must also be cleared. This is done by using the 98 * existing TLBWrite command. An explicit IVUTLB is also required for those 99 * corner cases when TLBWrite was not executed at all because the corresp 100 * J-TLB entry got evicted/replaced. 101 */ 102 103 104 /* A copy of the ASID from the PID reg is kept in asid_cache */ 105 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 106 107 static int __read_mostly pae_exists; 108 109 /* 110 * Utility Routine to erase a J-TLB entry 111 * Caller needs to setup Index Reg (manually or via getIndex) 112 */ 113 static inline void __tlb_entry_erase(void) 114 { 115 write_aux_reg(ARC_REG_TLBPD1, 0); 116 117 if (is_pae40_enabled()) 118 write_aux_reg(ARC_REG_TLBPD1HI, 0); 119 120 write_aux_reg(ARC_REG_TLBPD0, 0); 121 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 122 } 123 124 #if (CONFIG_ARC_MMU_VER < 4) 125 126 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 127 { 128 unsigned int idx; 129 130 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 131 132 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 133 idx = read_aux_reg(ARC_REG_TLBINDEX); 134 135 return idx; 136 } 137 138 static void tlb_entry_erase(unsigned int vaddr_n_asid) 139 { 140 unsigned int idx; 141 142 /* Locate the TLB entry for this vaddr + ASID */ 143 idx = tlb_entry_lkup(vaddr_n_asid); 144 145 /* No error means entry found, zero it out */ 146 if (likely(!(idx & TLB_LKUP_ERR))) { 147 __tlb_entry_erase(); 148 } else { 149 /* Duplicate entry error */ 150 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 151 vaddr_n_asid); 152 } 153 } 154 155 /**************************************************************************** 156 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 157 * 158 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 159 * 160 * utlb_invalidate ( ) 161 * -For v2 MMU calls Flush uTLB Cmd 162 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 163 * This is because in v1 TLBWrite itself invalidate uTLBs 164 ***************************************************************************/ 165 166 static void utlb_invalidate(void) 167 { 168 #if (CONFIG_ARC_MMU_VER >= 2) 169 170 #if (CONFIG_ARC_MMU_VER == 2) 171 /* MMU v2 introduced the uTLB Flush command. 172 * There was however an obscure hardware bug, where uTLB flush would 173 * fail when a prior probe for J-TLB (both totally unrelated) would 174 * return lkup err - because the entry didn't exist in MMU. 175 * The Workround was to set Index reg with some valid value, prior to 176 * flush. This was fixed in MMU v3 hence not needed any more 177 */ 178 unsigned int idx; 179 180 /* make sure INDEX Reg is valid */ 181 idx = read_aux_reg(ARC_REG_TLBINDEX); 182 183 /* If not write some dummy val */ 184 if (unlikely(idx & TLB_LKUP_ERR)) 185 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 186 #endif 187 188 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 189 #endif 190 191 } 192 193 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 194 { 195 unsigned int idx; 196 197 /* 198 * First verify if entry for this vaddr+ASID already exists 199 * This also sets up PD0 (vaddr, ASID..) for final commit 200 */ 201 idx = tlb_entry_lkup(pd0); 202 203 /* 204 * If Not already present get a free slot from MMU. 205 * Otherwise, Probe would have located the entry and set INDEX Reg 206 * with existing location. This will cause Write CMD to over-write 207 * existing entry with new PD0 and PD1 208 */ 209 if (likely(idx & TLB_LKUP_ERR)) 210 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 211 212 /* setup the other half of TLB entry (pfn, rwx..) */ 213 write_aux_reg(ARC_REG_TLBPD1, pd1); 214 215 /* 216 * Commit the Entry to MMU 217 * It doesn't sound safe to use the TLBWriteNI cmd here 218 * which doesn't flush uTLBs. I'd rather be safe than sorry. 219 */ 220 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 221 } 222 223 #else /* CONFIG_ARC_MMU_VER >= 4) */ 224 225 static void utlb_invalidate(void) 226 { 227 /* No need since uTLB is always in sync with JTLB */ 228 } 229 230 static void tlb_entry_erase(unsigned int vaddr_n_asid) 231 { 232 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 233 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 234 } 235 236 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 237 { 238 write_aux_reg(ARC_REG_TLBPD0, pd0); 239 write_aux_reg(ARC_REG_TLBPD1, pd1); 240 241 if (is_pae40_enabled()) 242 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 243 244 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 245 } 246 247 #endif 248 249 /* 250 * Un-conditionally (without lookup) erase the entire MMU contents 251 */ 252 253 noinline void local_flush_tlb_all(void) 254 { 255 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 256 unsigned long flags; 257 unsigned int entry; 258 int num_tlb = mmu->sets * mmu->ways; 259 260 local_irq_save(flags); 261 262 /* Load PD0 and PD1 with template for a Blank Entry */ 263 write_aux_reg(ARC_REG_TLBPD1, 0); 264 265 if (is_pae40_enabled()) 266 write_aux_reg(ARC_REG_TLBPD1HI, 0); 267 268 write_aux_reg(ARC_REG_TLBPD0, 0); 269 270 for (entry = 0; entry < num_tlb; entry++) { 271 /* write this entry to the TLB */ 272 write_aux_reg(ARC_REG_TLBINDEX, entry); 273 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 274 } 275 276 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 277 const int stlb_idx = 0x800; 278 279 /* Blank sTLB entry */ 280 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 281 282 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 283 write_aux_reg(ARC_REG_TLBINDEX, entry); 284 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 285 } 286 } 287 288 utlb_invalidate(); 289 290 local_irq_restore(flags); 291 } 292 293 /* 294 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 295 */ 296 noinline void local_flush_tlb_mm(struct mm_struct *mm) 297 { 298 /* 299 * Small optimisation courtesy IA64 300 * flush_mm called during fork,exit,munmap etc, multiple times as well. 301 * Only for fork( ) do we need to move parent to a new MMU ctxt, 302 * all other cases are NOPs, hence this check. 303 */ 304 if (atomic_read(&mm->mm_users) == 0) 305 return; 306 307 /* 308 * - Move to a new ASID, but only if the mm is still wired in 309 * (Android Binder ended up calling this for vma->mm != tsk->mm, 310 * causing h/w - s/w ASID to get out of sync) 311 * - Also get_new_mmu_context() new implementation allocates a new 312 * ASID only if it is not allocated already - so unallocate first 313 */ 314 destroy_context(mm); 315 if (current->mm == mm) 316 get_new_mmu_context(mm); 317 } 318 319 /* 320 * Flush a Range of TLB entries for userland. 321 * @start is inclusive, while @end is exclusive 322 * Difference between this and Kernel Range Flush is 323 * -Here the fastest way (if range is too large) is to move to next ASID 324 * without doing any explicit Shootdown 325 * -In case of kernel Flush, entry has to be shot down explictly 326 */ 327 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 328 unsigned long end) 329 { 330 const unsigned int cpu = smp_processor_id(); 331 unsigned long flags; 332 333 /* If range @start to @end is more than 32 TLB entries deep, 334 * its better to move to a new ASID rather than searching for 335 * individual entries and then shooting them down 336 * 337 * The calc above is rough, doesn't account for unaligned parts, 338 * since this is heuristics based anyways 339 */ 340 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 341 local_flush_tlb_mm(vma->vm_mm); 342 return; 343 } 344 345 /* 346 * @start moved to page start: this alone suffices for checking 347 * loop end condition below, w/o need for aligning @end to end 348 * e.g. 2000 to 4001 will anyhow loop twice 349 */ 350 start &= PAGE_MASK; 351 352 local_irq_save(flags); 353 354 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 355 while (start < end) { 356 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 357 start += PAGE_SIZE; 358 } 359 } 360 361 utlb_invalidate(); 362 363 local_irq_restore(flags); 364 } 365 366 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 367 * @start, @end interpreted as kvaddr 368 * Interestingly, shared TLB entries can also be flushed using just 369 * @start,@end alone (interpreted as user vaddr), although technically SASID 370 * is also needed. However our smart TLbProbe lookup takes care of that. 371 */ 372 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 373 { 374 unsigned long flags; 375 376 /* exactly same as above, except for TLB entry not taking ASID */ 377 378 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 379 local_flush_tlb_all(); 380 return; 381 } 382 383 start &= PAGE_MASK; 384 385 local_irq_save(flags); 386 while (start < end) { 387 tlb_entry_erase(start); 388 start += PAGE_SIZE; 389 } 390 391 utlb_invalidate(); 392 393 local_irq_restore(flags); 394 } 395 396 /* 397 * Delete TLB entry in MMU for a given page (??? address) 398 * NOTE One TLB entry contains translation for single PAGE 399 */ 400 401 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 402 { 403 const unsigned int cpu = smp_processor_id(); 404 unsigned long flags; 405 406 /* Note that it is critical that interrupts are DISABLED between 407 * checking the ASID and using it flush the TLB entry 408 */ 409 local_irq_save(flags); 410 411 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 412 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 413 utlb_invalidate(); 414 } 415 416 local_irq_restore(flags); 417 } 418 419 #ifdef CONFIG_SMP 420 421 struct tlb_args { 422 struct vm_area_struct *ta_vma; 423 unsigned long ta_start; 424 unsigned long ta_end; 425 }; 426 427 static inline void ipi_flush_tlb_page(void *arg) 428 { 429 struct tlb_args *ta = arg; 430 431 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 432 } 433 434 static inline void ipi_flush_tlb_range(void *arg) 435 { 436 struct tlb_args *ta = arg; 437 438 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 439 } 440 441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 442 static inline void ipi_flush_pmd_tlb_range(void *arg) 443 { 444 struct tlb_args *ta = arg; 445 446 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 447 } 448 #endif 449 450 static inline void ipi_flush_tlb_kernel_range(void *arg) 451 { 452 struct tlb_args *ta = (struct tlb_args *)arg; 453 454 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 455 } 456 457 void flush_tlb_all(void) 458 { 459 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 460 } 461 462 void flush_tlb_mm(struct mm_struct *mm) 463 { 464 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 465 mm, 1); 466 } 467 468 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 469 { 470 struct tlb_args ta = { 471 .ta_vma = vma, 472 .ta_start = uaddr 473 }; 474 475 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 476 } 477 478 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 479 unsigned long end) 480 { 481 struct tlb_args ta = { 482 .ta_vma = vma, 483 .ta_start = start, 484 .ta_end = end 485 }; 486 487 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 488 } 489 490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 491 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 492 unsigned long end) 493 { 494 struct tlb_args ta = { 495 .ta_vma = vma, 496 .ta_start = start, 497 .ta_end = end 498 }; 499 500 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 501 } 502 #endif 503 504 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 505 { 506 struct tlb_args ta = { 507 .ta_start = start, 508 .ta_end = end 509 }; 510 511 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 512 } 513 #endif 514 515 /* 516 * Routine to create a TLB entry 517 */ 518 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 519 { 520 unsigned long flags; 521 unsigned int asid_or_sasid, rwx; 522 unsigned long pd0; 523 pte_t pd1; 524 525 /* 526 * create_tlb() assumes that current->mm == vma->mm, since 527 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 528 * -completes the lazy write to SASID reg (again valid for curr tsk) 529 * 530 * Removing the assumption involves 531 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 532 * -Fix the TLB paranoid debug code to not trigger false negatives. 533 * -More importantly it makes this handler inconsistent with fast-path 534 * TLB Refill handler which always deals with "current" 535 * 536 * Lets see the use cases when current->mm != vma->mm and we land here 537 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 538 * Here VM wants to pre-install a TLB entry for user stack while 539 * current->mm still points to pre-execve mm (hence the condition). 540 * However the stack vaddr is soon relocated (randomization) and 541 * move_page_tables() tries to undo that TLB entry. 542 * Thus not creating TLB entry is not any worse. 543 * 544 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 545 * breakpoint in debugged task. Not creating a TLB now is not 546 * performance critical. 547 * 548 * Both the cases above are not good enough for code churn. 549 */ 550 if (current->active_mm != vma->vm_mm) 551 return; 552 553 local_irq_save(flags); 554 555 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); 556 557 vaddr &= PAGE_MASK; 558 559 /* update this PTE credentials */ 560 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 561 562 /* Create HW TLB(PD0,PD1) from PTE */ 563 564 /* ASID for this task */ 565 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 566 567 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 568 569 /* 570 * ARC MMU provides fully orthogonal access bits for K/U mode, 571 * however Linux only saves 1 set to save PTE real-estate 572 * Here we convert 3 PTE bits into 6 MMU bits: 573 * -Kernel only entries have Kr Kw Kx 0 0 0 574 * -User entries have mirrored K and U bits 575 */ 576 rwx = pte_val(*ptep) & PTE_BITS_RWX; 577 578 if (pte_val(*ptep) & _PAGE_GLOBAL) 579 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 580 else 581 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 582 583 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 584 585 tlb_entry_insert(pd0, pd1); 586 587 local_irq_restore(flags); 588 } 589 590 /* 591 * Called at the end of pagefault, for a userspace mapped page 592 * -pre-install the corresponding TLB entry into MMU 593 * -Finalize the delayed D-cache flush of kernel mapping of page due to 594 * flush_dcache_page(), copy_user_page() 595 * 596 * Note that flush (when done) involves both WBACK - so physical page is 597 * in sync as well as INV - so any non-congruent aliases don't remain 598 */ 599 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 600 pte_t *ptep) 601 { 602 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 603 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK; 604 struct page *page = pfn_to_page(pte_pfn(*ptep)); 605 606 create_tlb(vma, vaddr, ptep); 607 608 if (page == ZERO_PAGE(0)) { 609 return; 610 } 611 612 /* 613 * Exec page : Independent of aliasing/page-color considerations, 614 * since icache doesn't snoop dcache on ARC, any dirty 615 * K-mapping of a code page needs to be wback+inv so that 616 * icache fetch by userspace sees code correctly. 617 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 618 * so userspace sees the right data. 619 * (Avoids the flush for Non-exec + congruent mapping case) 620 */ 621 if ((vma->vm_flags & VM_EXEC) || 622 addr_not_cache_congruent(paddr, vaddr)) { 623 624 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 625 if (dirty) { 626 /* wback + inv dcache lines (K-mapping) */ 627 __flush_dcache_page(paddr, paddr); 628 629 /* invalidate any existing icache lines (U-mapping) */ 630 if (vma->vm_flags & VM_EXEC) 631 __inv_icache_page(paddr, vaddr); 632 } 633 } 634 } 635 636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 637 638 /* 639 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 640 * support. 641 * 642 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 643 * new bit "SZ" in TLB page descriptor to distinguish between them. 644 * Super Page size is configurable in hardware (4K to 16M), but fixed once 645 * RTL builds. 646 * 647 * The exact THP size a Linx configuration will support is a function of: 648 * - MMU page size (typical 8K, RTL fixed) 649 * - software page walker address split between PGD:PTE:PFN (typical 650 * 11:8:13, but can be changed with 1 line) 651 * So for above default, THP size supported is 8K * (2^8) = 2M 652 * 653 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 654 * reduces to 1 level (as PTE is folded into PGD and canonically referred 655 * to as PMD). 656 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 657 */ 658 659 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 660 pmd_t *pmd) 661 { 662 pte_t pte = __pte(pmd_val(*pmd)); 663 update_mmu_cache(vma, addr, &pte); 664 } 665 666 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 667 pgtable_t pgtable) 668 { 669 struct list_head *lh = (struct list_head *) pgtable; 670 671 assert_spin_locked(&mm->page_table_lock); 672 673 /* FIFO */ 674 if (!pmd_huge_pte(mm, pmdp)) 675 INIT_LIST_HEAD(lh); 676 else 677 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 678 pmd_huge_pte(mm, pmdp) = pgtable; 679 } 680 681 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 682 { 683 struct list_head *lh; 684 pgtable_t pgtable; 685 686 assert_spin_locked(&mm->page_table_lock); 687 688 pgtable = pmd_huge_pte(mm, pmdp); 689 lh = (struct list_head *) pgtable; 690 if (list_empty(lh)) 691 pmd_huge_pte(mm, pmdp) = NULL; 692 else { 693 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 694 list_del(lh); 695 } 696 697 pte_val(pgtable[0]) = 0; 698 pte_val(pgtable[1]) = 0; 699 700 return pgtable; 701 } 702 703 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 704 unsigned long end) 705 { 706 unsigned int cpu; 707 unsigned long flags; 708 709 local_irq_save(flags); 710 711 cpu = smp_processor_id(); 712 713 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 714 unsigned int asid = hw_pid(vma->vm_mm, cpu); 715 716 /* No need to loop here: this will always be for 1 Huge Page */ 717 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 718 } 719 720 local_irq_restore(flags); 721 } 722 723 #endif 724 725 /* Read the Cache Build Confuration Registers, Decode them and save into 726 * the cpuinfo structure for later use. 727 * No Validation is done here, simply read/convert the BCRs 728 */ 729 void read_decode_mmu_bcr(void) 730 { 731 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 732 unsigned int tmp; 733 struct bcr_mmu_1_2 { 734 #ifdef CONFIG_CPU_BIG_ENDIAN 735 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 736 #else 737 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 738 #endif 739 } *mmu2; 740 741 struct bcr_mmu_3 { 742 #ifdef CONFIG_CPU_BIG_ENDIAN 743 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, 744 u_itlb:4, u_dtlb:4; 745 #else 746 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, 747 ways:4, ver:8; 748 #endif 749 } *mmu3; 750 751 struct bcr_mmu_4 { 752 #ifdef CONFIG_CPU_BIG_ENDIAN 753 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 754 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 755 #else 756 /* DTLB ITLB JES JE JA */ 757 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 758 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 759 #endif 760 } *mmu4; 761 762 tmp = read_aux_reg(ARC_REG_MMU_BCR); 763 mmu->ver = (tmp >> 24); 764 765 if (is_isa_arcompact()) { 766 if (mmu->ver <= 2) { 767 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 768 mmu->pg_sz_k = TO_KB(0x2000); 769 mmu->sets = 1 << mmu2->sets; 770 mmu->ways = 1 << mmu2->ways; 771 mmu->u_dtlb = mmu2->u_dtlb; 772 mmu->u_itlb = mmu2->u_itlb; 773 } else { 774 mmu3 = (struct bcr_mmu_3 *)&tmp; 775 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 776 mmu->sets = 1 << mmu3->sets; 777 mmu->ways = 1 << mmu3->ways; 778 mmu->u_dtlb = mmu3->u_dtlb; 779 mmu->u_itlb = mmu3->u_itlb; 780 mmu->sasid = mmu3->sasid; 781 } 782 } else { 783 mmu4 = (struct bcr_mmu_4 *)&tmp; 784 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 785 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 786 mmu->sets = 64 << mmu4->n_entry; 787 mmu->ways = mmu4->n_ways * 2; 788 mmu->u_dtlb = mmu4->u_dtlb * 4; 789 mmu->u_itlb = mmu4->u_itlb * 4; 790 mmu->sasid = mmu4->sasid; 791 pae_exists = mmu->pae = mmu4->pae; 792 } 793 } 794 795 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 796 { 797 int n = 0; 798 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 799 char super_pg[64] = ""; 800 801 if (p_mmu->s_pg_sz_m) 802 scnprintf(super_pg, 64, "%dM Super Page %s", 803 p_mmu->s_pg_sz_m, 804 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); 805 806 n += scnprintf(buf + n, len - n, 807 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", 808 p_mmu->ver, p_mmu->pg_sz_k, super_pg, 809 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, 810 p_mmu->u_dtlb, p_mmu->u_itlb, 811 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); 812 813 return buf; 814 } 815 816 int pae40_exist_but_not_enab(void) 817 { 818 return pae_exists && !is_pae40_enabled(); 819 } 820 821 void arc_mmu_init(void) 822 { 823 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 824 char str[256]; 825 int compat = 0; 826 827 pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); 828 829 /* 830 * Can't be done in processor.h due to header include depenedencies 831 */ 832 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); 833 834 /* 835 * stack top size sanity check, 836 * Can't be done in processor.h due to header include depenedencies 837 */ 838 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); 839 840 /* 841 * Ensure that MMU features assumed by kernel exist in hardware. 842 * For older ARC700 cpus, it has to be exact match, since the MMU 843 * revisions were not backwards compatible (MMUv3 TLB layout changed 844 * so even if kernel for v2 didn't use any new cmds of v3, it would 845 * still not work. 846 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible 847 * (will run older software). 848 */ 849 if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER) 850 compat = 1; 851 else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER) 852 compat = 1; 853 854 if (!compat) { 855 panic("MMU ver %d doesn't match kernel built for %d...\n", 856 mmu->ver, CONFIG_ARC_MMU_VER); 857 } 858 859 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 860 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 861 862 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 863 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 864 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 865 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 866 867 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 868 panic("Hardware doesn't support PAE40\n"); 869 870 /* Enable the MMU */ 871 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 872 873 /* In smp we use this reg for interrupt 1 scratch */ 874 #ifndef CONFIG_SMP 875 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 876 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 877 #endif 878 879 if (pae40_exist_but_not_enab()) 880 write_aux_reg(ARC_REG_TLBPD1HI, 0); 881 } 882 883 /* 884 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 885 * The mapping is Column-first. 886 * --------------------- ----------- 887 * |way0|way1|way2|way3| |way0|way1| 888 * --------------------- ----------- 889 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 890 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 891 * ~ ~ ~ ~ 892 * [set127] | 508| 509| 510| 511| | 254| 255| 893 * --------------------- ----------- 894 * For normal operations we don't(must not) care how above works since 895 * MMU cmd getIndex(vaddr) abstracts that out. 896 * However for walking WAYS of a SET, we need to know this 897 */ 898 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 899 900 /* Handling of Duplicate PD (TLB entry) in MMU. 901 * -Could be due to buggy customer tapeouts or obscure kernel bugs 902 * -MMU complaints not at the time of duplicate PD installation, but at the 903 * time of lookup matching multiple ways. 904 * -Ideally these should never happen - but if they do - workaround by deleting 905 * the duplicate one. 906 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 907 */ 908 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ 909 910 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 911 struct pt_regs *regs) 912 { 913 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 914 unsigned int pd0[mmu->ways]; 915 unsigned long flags; 916 int set; 917 918 local_irq_save(flags); 919 920 /* loop thru all sets of TLB */ 921 for (set = 0; set < mmu->sets; set++) { 922 923 int is_valid, way; 924 925 /* read out all the ways of current set */ 926 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 927 write_aux_reg(ARC_REG_TLBINDEX, 928 SET_WAY_TO_IDX(mmu, set, way)); 929 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 930 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 931 is_valid |= pd0[way] & _PAGE_PRESENT; 932 pd0[way] &= PAGE_MASK; 933 } 934 935 /* If all the WAYS in SET are empty, skip to next SET */ 936 if (!is_valid) 937 continue; 938 939 /* Scan the set for duplicate ways: needs a nested loop */ 940 for (way = 0; way < mmu->ways - 1; way++) { 941 942 int n; 943 944 if (!pd0[way]) 945 continue; 946 947 for (n = way + 1; n < mmu->ways; n++) { 948 if (pd0[way] != pd0[n]) 949 continue; 950 951 if (!dup_pd_silent) 952 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 953 pd0[way], set, way, n); 954 955 /* 956 * clear entry @way and not @n. 957 * This is critical to our optimised loop 958 */ 959 pd0[way] = 0; 960 write_aux_reg(ARC_REG_TLBINDEX, 961 SET_WAY_TO_IDX(mmu, set, way)); 962 __tlb_entry_erase(); 963 } 964 } 965 } 966 967 local_irq_restore(flags); 968 } 969 970 /*********************************************************************** 971 * Diagnostic Routines 972 * -Called from Low Level TLB Hanlders if things don;t look good 973 **********************************************************************/ 974 975 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 976 977 /* 978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 979 * don't match 980 */ 981 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 982 { 983 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 984 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 985 986 __asm__ __volatile__("flag 1"); 987 } 988 989 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 990 { 991 unsigned int mmu_asid; 992 993 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 994 995 /* 996 * At the time of a TLB miss/installation 997 * - HW version needs to match SW version 998 * - SW needs to have a valid ASID 999 */ 1000 if (addr < 0x70000000 && 1001 ((mm_asid == MM_CTXT_NO_ASID) || 1002 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 1003 print_asid_mismatch(mm_asid, mmu_asid, 0); 1004 } 1005 #endif 1006