1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <asm/arcregs.h> 57 #include <asm/setup.h> 58 #include <asm/mmu_context.h> 59 #include <asm/mmu.h> 60 61 /* Need for ARC MMU v2 62 * 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 65 * map into same set, there would be contention for the 2 ways causing severe 66 * Thrashing. 67 * 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 70 * Given this, the thrasing problem should never happen because once the 3 71 * J-TLB entries are created (even though 3rd will knock out one of the prev 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 73 * 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 75 * This is a simple design for keeping them in sync. So what do we do? 76 * The solution which James came up was pretty neat. It utilised the assoc 77 * of uTLBs by not invalidating always but only when absolutely necessary. 78 * 79 * - Existing TLB commands work as before 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 81 * - New command (TLBIVUTLB) to invalidate uTLBs. 82 * 83 * The uTLBs need only be invalidated when pages are being removed from the 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 85 * as a result of a miss, the removed entry is still allowed to exist in the 86 * uTLBs as it is still valid and present in the OS page table. This allows the 87 * full associativity of the uTLBs to hide the limited associativity of the main 88 * TLB. 89 * 90 * During a miss handler, the new "TLBWriteNI" command is used to load 91 * entries without clearing the uTLBs. 92 * 93 * When the OS page table is updated, TLB entries that may be associated with a 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this 95 * circumstance, the uTLBs must also be cleared. This is done by using the 96 * existing TLBWrite command. An explicit IVUTLB is also required for those 97 * corner cases when TLBWrite was not executed at all because the corresp 98 * J-TLB entry got evicted/replaced. 99 */ 100 101 102 /* A copy of the ASID from the PID reg is kept in asid_cache */ 103 unsigned int asid_cache = MM_CTXT_FIRST_CYCLE; 104 105 /* 106 * Utility Routine to erase a J-TLB entry 107 * Caller needs to setup Index Reg (manually or via getIndex) 108 */ 109 static inline void __tlb_entry_erase(void) 110 { 111 write_aux_reg(ARC_REG_TLBPD1, 0); 112 write_aux_reg(ARC_REG_TLBPD0, 0); 113 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 114 } 115 116 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 117 { 118 unsigned int idx; 119 120 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 121 122 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 123 idx = read_aux_reg(ARC_REG_TLBINDEX); 124 125 return idx; 126 } 127 128 static void tlb_entry_erase(unsigned int vaddr_n_asid) 129 { 130 unsigned int idx; 131 132 /* Locate the TLB entry for this vaddr + ASID */ 133 idx = tlb_entry_lkup(vaddr_n_asid); 134 135 /* No error means entry found, zero it out */ 136 if (likely(!(idx & TLB_LKUP_ERR))) { 137 __tlb_entry_erase(); 138 } else { 139 /* Duplicate entry error */ 140 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 141 vaddr_n_asid); 142 } 143 } 144 145 /**************************************************************************** 146 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 147 * 148 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 149 * 150 * utlb_invalidate ( ) 151 * -For v2 MMU calls Flush uTLB Cmd 152 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 153 * This is because in v1 TLBWrite itself invalidate uTLBs 154 ***************************************************************************/ 155 156 static void utlb_invalidate(void) 157 { 158 #if (CONFIG_ARC_MMU_VER >= 2) 159 160 #if (CONFIG_ARC_MMU_VER == 2) 161 /* MMU v2 introduced the uTLB Flush command. 162 * There was however an obscure hardware bug, where uTLB flush would 163 * fail when a prior probe for J-TLB (both totally unrelated) would 164 * return lkup err - because the entry didnt exist in MMU. 165 * The Workround was to set Index reg with some valid value, prior to 166 * flush. This was fixed in MMU v3 hence not needed any more 167 */ 168 unsigned int idx; 169 170 /* make sure INDEX Reg is valid */ 171 idx = read_aux_reg(ARC_REG_TLBINDEX); 172 173 /* If not write some dummy val */ 174 if (unlikely(idx & TLB_LKUP_ERR)) 175 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 176 #endif 177 178 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 179 #endif 180 181 } 182 183 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1) 184 { 185 unsigned int idx; 186 187 /* 188 * First verify if entry for this vaddr+ASID already exists 189 * This also sets up PD0 (vaddr, ASID..) for final commit 190 */ 191 idx = tlb_entry_lkup(pd0); 192 193 /* 194 * If Not already present get a free slot from MMU. 195 * Otherwise, Probe would have located the entry and set INDEX Reg 196 * with existing location. This will cause Write CMD to over-write 197 * existing entry with new PD0 and PD1 198 */ 199 if (likely(idx & TLB_LKUP_ERR)) 200 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 201 202 /* setup the other half of TLB entry (pfn, rwx..) */ 203 write_aux_reg(ARC_REG_TLBPD1, pd1); 204 205 /* 206 * Commit the Entry to MMU 207 * It doesnt sound safe to use the TLBWriteNI cmd here 208 * which doesn't flush uTLBs. I'd rather be safe than sorry. 209 */ 210 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 211 } 212 213 /* 214 * Un-conditionally (without lookup) erase the entire MMU contents 215 */ 216 217 noinline void local_flush_tlb_all(void) 218 { 219 unsigned long flags; 220 unsigned int entry; 221 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 222 223 local_irq_save(flags); 224 225 /* Load PD0 and PD1 with template for a Blank Entry */ 226 write_aux_reg(ARC_REG_TLBPD1, 0); 227 write_aux_reg(ARC_REG_TLBPD0, 0); 228 229 for (entry = 0; entry < mmu->num_tlb; entry++) { 230 /* write this entry to the TLB */ 231 write_aux_reg(ARC_REG_TLBINDEX, entry); 232 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 233 } 234 235 utlb_invalidate(); 236 237 local_irq_restore(flags); 238 } 239 240 /* 241 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 242 */ 243 noinline void local_flush_tlb_mm(struct mm_struct *mm) 244 { 245 /* 246 * Small optimisation courtesy IA64 247 * flush_mm called during fork,exit,munmap etc, multiple times as well. 248 * Only for fork( ) do we need to move parent to a new MMU ctxt, 249 * all other cases are NOPs, hence this check. 250 */ 251 if (atomic_read(&mm->mm_users) == 0) 252 return; 253 254 /* 255 * - Move to a new ASID, but only if the mm is still wired in 256 * (Android Binder ended up calling this for vma->mm != tsk->mm, 257 * causing h/w - s/w ASID to get out of sync) 258 * - Also get_new_mmu_context() new implementation allocates a new 259 * ASID only if it is not allocated already - so unallocate first 260 */ 261 destroy_context(mm); 262 if (current->mm == mm) 263 get_new_mmu_context(mm); 264 } 265 266 /* 267 * Flush a Range of TLB entries for userland. 268 * @start is inclusive, while @end is exclusive 269 * Difference between this and Kernel Range Flush is 270 * -Here the fastest way (if range is too large) is to move to next ASID 271 * without doing any explicit Shootdown 272 * -In case of kernel Flush, entry has to be shot down explictly 273 */ 274 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 275 unsigned long end) 276 { 277 unsigned long flags; 278 279 /* If range @start to @end is more than 32 TLB entries deep, 280 * its better to move to a new ASID rather than searching for 281 * individual entries and then shooting them down 282 * 283 * The calc above is rough, doesn't account for unaligned parts, 284 * since this is heuristics based anyways 285 */ 286 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 287 local_flush_tlb_mm(vma->vm_mm); 288 return; 289 } 290 291 /* 292 * @start moved to page start: this alone suffices for checking 293 * loop end condition below, w/o need for aligning @end to end 294 * e.g. 2000 to 4001 will anyhow loop twice 295 */ 296 start &= PAGE_MASK; 297 298 local_irq_save(flags); 299 300 if (vma->vm_mm->context.asid != MM_CTXT_NO_ASID) { 301 while (start < end) { 302 tlb_entry_erase(start | hw_pid(vma->vm_mm)); 303 start += PAGE_SIZE; 304 } 305 } 306 307 utlb_invalidate(); 308 309 local_irq_restore(flags); 310 } 311 312 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 313 * @start, @end interpreted as kvaddr 314 * Interestingly, shared TLB entries can also be flushed using just 315 * @start,@end alone (interpreted as user vaddr), although technically SASID 316 * is also needed. However our smart TLbProbe lookup takes care of that. 317 */ 318 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 319 { 320 unsigned long flags; 321 322 /* exactly same as above, except for TLB entry not taking ASID */ 323 324 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 325 local_flush_tlb_all(); 326 return; 327 } 328 329 start &= PAGE_MASK; 330 331 local_irq_save(flags); 332 while (start < end) { 333 tlb_entry_erase(start); 334 start += PAGE_SIZE; 335 } 336 337 utlb_invalidate(); 338 339 local_irq_restore(flags); 340 } 341 342 /* 343 * Delete TLB entry in MMU for a given page (??? address) 344 * NOTE One TLB entry contains translation for single PAGE 345 */ 346 347 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 348 { 349 unsigned long flags; 350 351 /* Note that it is critical that interrupts are DISABLED between 352 * checking the ASID and using it flush the TLB entry 353 */ 354 local_irq_save(flags); 355 356 if (vma->vm_mm->context.asid != MM_CTXT_NO_ASID) { 357 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm)); 358 utlb_invalidate(); 359 } 360 361 local_irq_restore(flags); 362 } 363 364 /* 365 * Routine to create a TLB entry 366 */ 367 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 368 { 369 unsigned long flags; 370 unsigned int asid_or_sasid, rwx; 371 unsigned long pd0, pd1; 372 373 /* 374 * create_tlb() assumes that current->mm == vma->mm, since 375 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 376 * -completes the lazy write to SASID reg (again valid for curr tsk) 377 * 378 * Removing the assumption involves 379 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 380 * -Fix the TLB paranoid debug code to not trigger false negatives. 381 * -More importantly it makes this handler inconsistent with fast-path 382 * TLB Refill handler which always deals with "current" 383 * 384 * Lets see the use cases when current->mm != vma->mm and we land here 385 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 386 * Here VM wants to pre-install a TLB entry for user stack while 387 * current->mm still points to pre-execve mm (hence the condition). 388 * However the stack vaddr is soon relocated (randomization) and 389 * move_page_tables() tries to undo that TLB entry. 390 * Thus not creating TLB entry is not any worse. 391 * 392 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 393 * breakpoint in debugged task. Not creating a TLB now is not 394 * performance critical. 395 * 396 * Both the cases above are not good enough for code churn. 397 */ 398 if (current->active_mm != vma->vm_mm) 399 return; 400 401 local_irq_save(flags); 402 403 tlb_paranoid_check(vma->vm_mm->context.asid, address); 404 405 address &= PAGE_MASK; 406 407 /* update this PTE credentials */ 408 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 409 410 /* Create HW TLB(PD0,PD1) from PTE */ 411 412 /* ASID for this task */ 413 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 414 415 pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 416 417 /* 418 * ARC MMU provides fully orthogonal access bits for K/U mode, 419 * however Linux only saves 1 set to save PTE real-estate 420 * Here we convert 3 PTE bits into 6 MMU bits: 421 * -Kernel only entries have Kr Kw Kx 0 0 0 422 * -User entries have mirrored K and U bits 423 */ 424 rwx = pte_val(*ptep) & PTE_BITS_RWX; 425 426 if (pte_val(*ptep) & _PAGE_GLOBAL) 427 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 428 else 429 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 430 431 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 432 433 tlb_entry_insert(pd0, pd1); 434 435 local_irq_restore(flags); 436 } 437 438 /* 439 * Called at the end of pagefault, for a userspace mapped page 440 * -pre-install the corresponding TLB entry into MMU 441 * -Finalize the delayed D-cache flush of kernel mapping of page due to 442 * flush_dcache_page(), copy_user_page() 443 * 444 * Note that flush (when done) involves both WBACK - so physical page is 445 * in sync as well as INV - so any non-congruent aliases don't remain 446 */ 447 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 448 pte_t *ptep) 449 { 450 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 451 unsigned long paddr = pte_val(*ptep) & PAGE_MASK; 452 struct page *page = pfn_to_page(pte_pfn(*ptep)); 453 454 create_tlb(vma, vaddr, ptep); 455 456 if (page == ZERO_PAGE(0)) { 457 return; 458 } 459 460 /* 461 * Exec page : Independent of aliasing/page-color considerations, 462 * since icache doesn't snoop dcache on ARC, any dirty 463 * K-mapping of a code page needs to be wback+inv so that 464 * icache fetch by userspace sees code correctly. 465 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 466 * so userspace sees the right data. 467 * (Avoids the flush for Non-exec + congruent mapping case) 468 */ 469 if ((vma->vm_flags & VM_EXEC) || 470 addr_not_cache_congruent(paddr, vaddr)) { 471 472 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 473 if (dirty) { 474 /* wback + inv dcache lines */ 475 __flush_dcache_page(paddr, paddr); 476 477 /* invalidate any existing icache lines */ 478 if (vma->vm_flags & VM_EXEC) 479 __inv_icache_page(paddr, vaddr); 480 } 481 } 482 } 483 484 /* Read the Cache Build Confuration Registers, Decode them and save into 485 * the cpuinfo structure for later use. 486 * No Validation is done here, simply read/convert the BCRs 487 */ 488 void read_decode_mmu_bcr(void) 489 { 490 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 491 unsigned int tmp; 492 struct bcr_mmu_1_2 { 493 #ifdef CONFIG_CPU_BIG_ENDIAN 494 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 495 #else 496 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 497 #endif 498 } *mmu2; 499 500 struct bcr_mmu_3 { 501 #ifdef CONFIG_CPU_BIG_ENDIAN 502 unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4, 503 u_itlb:4, u_dtlb:4; 504 #else 505 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4, 506 ways:4, ver:8; 507 #endif 508 } *mmu3; 509 510 tmp = read_aux_reg(ARC_REG_MMU_BCR); 511 mmu->ver = (tmp >> 24); 512 513 if (mmu->ver <= 2) { 514 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 515 mmu->pg_sz = PAGE_SIZE; 516 mmu->sets = 1 << mmu2->sets; 517 mmu->ways = 1 << mmu2->ways; 518 mmu->u_dtlb = mmu2->u_dtlb; 519 mmu->u_itlb = mmu2->u_itlb; 520 } else { 521 mmu3 = (struct bcr_mmu_3 *)&tmp; 522 mmu->pg_sz = 512 << mmu3->pg_sz; 523 mmu->sets = 1 << mmu3->sets; 524 mmu->ways = 1 << mmu3->ways; 525 mmu->u_dtlb = mmu3->u_dtlb; 526 mmu->u_itlb = mmu3->u_itlb; 527 } 528 529 mmu->num_tlb = mmu->sets * mmu->ways; 530 } 531 532 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 533 { 534 int n = 0; 535 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 536 537 n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ", 538 p_mmu->ver, TO_KB(p_mmu->pg_sz)); 539 540 n += scnprintf(buf + n, len - n, 541 "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n", 542 p_mmu->num_tlb, p_mmu->sets, p_mmu->ways, 543 p_mmu->u_dtlb, p_mmu->u_itlb, 544 IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : ""); 545 546 return buf; 547 } 548 549 void arc_mmu_init(void) 550 { 551 char str[256]; 552 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 553 554 printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); 555 556 /* For efficiency sake, kernel is compile time built for a MMU ver 557 * This must match the hardware it is running on. 558 * Linux built for MMU V2, if run on MMU V1 will break down because V1 559 * hardware doesn't understand cmds such as WriteNI, or IVUTLB 560 * On the other hand, Linux built for V1 if run on MMU V2 will do 561 * un-needed workarounds to prevent memcpy thrashing. 562 * Similarly MMU V3 has new features which won't work on older MMU 563 */ 564 if (mmu->ver != CONFIG_ARC_MMU_VER) { 565 panic("MMU ver %d doesn't match kernel built for %d...\n", 566 mmu->ver, CONFIG_ARC_MMU_VER); 567 } 568 569 if (mmu->pg_sz != PAGE_SIZE) 570 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 571 572 /* Enable the MMU */ 573 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 574 575 /* In smp we use this reg for interrupt 1 scratch */ 576 #ifndef CONFIG_SMP 577 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 578 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 579 #endif 580 } 581 582 /* 583 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 584 * The mapping is Column-first. 585 * --------------------- ----------- 586 * |way0|way1|way2|way3| |way0|way1| 587 * --------------------- ----------- 588 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 589 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 590 * ~ ~ ~ ~ 591 * [set127] | 508| 509| 510| 511| | 254| 255| 592 * --------------------- ----------- 593 * For normal operations we don't(must not) care how above works since 594 * MMU cmd getIndex(vaddr) abstracts that out. 595 * However for walking WAYS of a SET, we need to know this 596 */ 597 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 598 599 /* Handling of Duplicate PD (TLB entry) in MMU. 600 * -Could be due to buggy customer tapeouts or obscure kernel bugs 601 * -MMU complaints not at the time of duplicate PD installation, but at the 602 * time of lookup matching multiple ways. 603 * -Ideally these should never happen - but if they do - workaround by deleting 604 * the duplicate one. 605 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 606 */ 607 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */ 608 609 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 610 struct pt_regs *regs) 611 { 612 int set, way, n; 613 unsigned int pd0[4], pd1[4]; /* assume max 4 ways */ 614 unsigned long flags, is_valid; 615 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 616 617 local_irq_save(flags); 618 619 /* re-enable the MMU */ 620 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 621 622 /* loop thru all sets of TLB */ 623 for (set = 0; set < mmu->sets; set++) { 624 625 /* read out all the ways of current set */ 626 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 627 write_aux_reg(ARC_REG_TLBINDEX, 628 SET_WAY_TO_IDX(mmu, set, way)); 629 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 630 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 631 pd1[way] = read_aux_reg(ARC_REG_TLBPD1); 632 is_valid |= pd0[way] & _PAGE_PRESENT; 633 } 634 635 /* If all the WAYS in SET are empty, skip to next SET */ 636 if (!is_valid) 637 continue; 638 639 /* Scan the set for duplicate ways: needs a nested loop */ 640 for (way = 0; way < mmu->ways; way++) { 641 if (!pd0[way]) 642 continue; 643 644 for (n = way + 1; n < mmu->ways; n++) { 645 if ((pd0[way] & PAGE_MASK) == 646 (pd0[n] & PAGE_MASK)) { 647 648 if (dup_pd_verbose) { 649 pr_info("Duplicate PD's @" 650 "[%d:%d]/[%d:%d]\n", 651 set, way, set, n); 652 pr_info("TLBPD0[%u]: %08x\n", 653 way, pd0[way]); 654 } 655 656 /* 657 * clear entry @way and not @n. This is 658 * critical to our optimised loop 659 */ 660 pd0[way] = pd1[way] = 0; 661 write_aux_reg(ARC_REG_TLBINDEX, 662 SET_WAY_TO_IDX(mmu, set, way)); 663 __tlb_entry_erase(); 664 } 665 } 666 } 667 } 668 669 local_irq_restore(flags); 670 } 671 672 /*********************************************************************** 673 * Diagnostic Routines 674 * -Called from Low Level TLB Hanlders if things don;t look good 675 **********************************************************************/ 676 677 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 678 679 /* 680 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 681 * don't match 682 */ 683 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 684 { 685 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 686 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 687 688 __asm__ __volatile__("flag 1"); 689 } 690 691 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 692 { 693 unsigned int mmu_asid; 694 695 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 696 697 /* 698 * At the time of a TLB miss/installation 699 * - HW version needs to match SW version 700 * - SW needs to have a valid ASID 701 */ 702 if (addr < 0x70000000 && 703 ((mm_asid == MM_CTXT_NO_ASID) || 704 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 705 print_asid_mismatch(mm_asid, mmu_asid, 0); 706 } 707 #endif 708