xref: /openbmc/linux/arch/arc/mm/tlb.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * TLB Management (flush/create/diagnostics) for ARC700
3  *
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * vineetg: Aug 2011
11  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
12  *
13  * vineetg: May 2011
14  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
15  *   some of the LMBench tests improved amazingly
16  *      = page-fault thrice as fast (75 usec to 28 usec)
17  *      = mmap twice as fast (9.6 msec to 4.6 msec),
18  *      = fork (5.3 msec to 3.7 msec)
19  *
20  * vineetg: April 2011 :
21  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22  *      helps avoid a shift when preparing PD0 from PTE
23  *
24  * vineetg: April 2011 : Preparing for MMU V3
25  *  -MMU v2/v3 BCRs decoded differently
26  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27  *  -tlb_entry_erase( ) can be void
28  *  -local_flush_tlb_range( ):
29  *      = need not "ceil" @end
30  *      = walks MMU only if range spans < 32 entries, as opposed to 256
31  *
32  * Vineetg: Sept 10th 2008
33  *  -Changes related to MMU v2 (Rel 4.8)
34  *
35  * Vineetg: Aug 29th 2008
36  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38  *    it fails. Thus need to load it with ANY valid value before invoking
39  *    TLBIVUTLB cmd
40  *
41  * Vineetg: Aug 21th 2008:
42  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
43  *  -Multiple copies of TLB erase code seperated into a "single" function
44  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45  *       in interrupt-safe region.
46  *
47  * Vineetg: April 23rd Bug #93131
48  *    Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49  *              flush is more than the size of TLB itself.
50  *
51  * Rahul Trivedi : Codito Technologies 2004
52  */
53 
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <asm/arcregs.h>
57 #include <asm/setup.h>
58 #include <asm/mmu_context.h>
59 #include <asm/mmu.h>
60 
61 /*			Need for ARC MMU v2
62  *
63  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65  * map into same set, there would be contention for the 2 ways causing severe
66  * Thrashing.
67  *
68  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70  * Given this, the thrasing problem should never happen because once the 3
71  * J-TLB entries are created (even though 3rd will knock out one of the prev
72  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
73  *
74  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75  * This is a simple design for keeping them in sync. So what do we do?
76  * The solution which James came up was pretty neat. It utilised the assoc
77  * of uTLBs by not invalidating always but only when absolutely necessary.
78  *
79  * - Existing TLB commands work as before
80  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81  * - New command (TLBIVUTLB) to invalidate uTLBs.
82  *
83  * The uTLBs need only be invalidated when pages are being removed from the
84  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85  * as a result of a miss, the removed entry is still allowed to exist in the
86  * uTLBs as it is still valid and present in the OS page table. This allows the
87  * full associativity of the uTLBs to hide the limited associativity of the main
88  * TLB.
89  *
90  * During a miss handler, the new "TLBWriteNI" command is used to load
91  * entries without clearing the uTLBs.
92  *
93  * When the OS page table is updated, TLB entries that may be associated with a
94  * removed page are removed (flushed) from the TLB using TLBWrite. In this
95  * circumstance, the uTLBs must also be cleared. This is done by using the
96  * existing TLBWrite command. An explicit IVUTLB is also required for those
97  * corner cases when TLBWrite was not executed at all because the corresp
98  * J-TLB entry got evicted/replaced.
99  */
100 
101 
102 /* A copy of the ASID from the PID reg is kept in asid_cache */
103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104 
105 /*
106  * Utility Routine to erase a J-TLB entry
107  * Caller needs to setup Index Reg (manually or via getIndex)
108  */
109 static inline void __tlb_entry_erase(void)
110 {
111 	write_aux_reg(ARC_REG_TLBPD1, 0);
112 	write_aux_reg(ARC_REG_TLBPD0, 0);
113 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
114 }
115 
116 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
117 {
118 	unsigned int idx;
119 
120 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
121 
122 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
123 	idx = read_aux_reg(ARC_REG_TLBINDEX);
124 
125 	return idx;
126 }
127 
128 static void tlb_entry_erase(unsigned int vaddr_n_asid)
129 {
130 	unsigned int idx;
131 
132 	/* Locate the TLB entry for this vaddr + ASID */
133 	idx = tlb_entry_lkup(vaddr_n_asid);
134 
135 	/* No error means entry found, zero it out */
136 	if (likely(!(idx & TLB_LKUP_ERR))) {
137 		__tlb_entry_erase();
138 	} else {
139 		/* Duplicate entry error */
140 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
141 					   vaddr_n_asid);
142 	}
143 }
144 
145 /****************************************************************************
146  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
147  *
148  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
149  *
150  * utlb_invalidate ( )
151  *  -For v2 MMU calls Flush uTLB Cmd
152  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
153  *      This is because in v1 TLBWrite itself invalidate uTLBs
154  ***************************************************************************/
155 
156 static void utlb_invalidate(void)
157 {
158 #if (CONFIG_ARC_MMU_VER >= 2)
159 
160 #if (CONFIG_ARC_MMU_VER == 2)
161 	/* MMU v2 introduced the uTLB Flush command.
162 	 * There was however an obscure hardware bug, where uTLB flush would
163 	 * fail when a prior probe for J-TLB (both totally unrelated) would
164 	 * return lkup err - because the entry didnt exist in MMU.
165 	 * The Workround was to set Index reg with some valid value, prior to
166 	 * flush. This was fixed in MMU v3 hence not needed any more
167 	 */
168 	unsigned int idx;
169 
170 	/* make sure INDEX Reg is valid */
171 	idx = read_aux_reg(ARC_REG_TLBINDEX);
172 
173 	/* If not write some dummy val */
174 	if (unlikely(idx & TLB_LKUP_ERR))
175 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
176 #endif
177 
178 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
179 #endif
180 
181 }
182 
183 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1)
184 {
185 	unsigned int idx;
186 
187 	/*
188 	 * First verify if entry for this vaddr+ASID already exists
189 	 * This also sets up PD0 (vaddr, ASID..) for final commit
190 	 */
191 	idx = tlb_entry_lkup(pd0);
192 
193 	/*
194 	 * If Not already present get a free slot from MMU.
195 	 * Otherwise, Probe would have located the entry and set INDEX Reg
196 	 * with existing location. This will cause Write CMD to over-write
197 	 * existing entry with new PD0 and PD1
198 	 */
199 	if (likely(idx & TLB_LKUP_ERR))
200 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
201 
202 	/* setup the other half of TLB entry (pfn, rwx..) */
203 	write_aux_reg(ARC_REG_TLBPD1, pd1);
204 
205 	/*
206 	 * Commit the Entry to MMU
207 	 * It doesnt sound safe to use the TLBWriteNI cmd here
208 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
209 	 */
210 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
211 }
212 
213 /*
214  * Un-conditionally (without lookup) erase the entire MMU contents
215  */
216 
217 noinline void local_flush_tlb_all(void)
218 {
219 	unsigned long flags;
220 	unsigned int entry;
221 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
222 
223 	local_irq_save(flags);
224 
225 	/* Load PD0 and PD1 with template for a Blank Entry */
226 	write_aux_reg(ARC_REG_TLBPD1, 0);
227 	write_aux_reg(ARC_REG_TLBPD0, 0);
228 
229 	for (entry = 0; entry < mmu->num_tlb; entry++) {
230 		/* write this entry to the TLB */
231 		write_aux_reg(ARC_REG_TLBINDEX, entry);
232 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
233 	}
234 
235 	utlb_invalidate();
236 
237 	local_irq_restore(flags);
238 }
239 
240 /*
241  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
242  */
243 noinline void local_flush_tlb_mm(struct mm_struct *mm)
244 {
245 	/*
246 	 * Small optimisation courtesy IA64
247 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
248 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
249 	 * all other cases are NOPs, hence this check.
250 	 */
251 	if (atomic_read(&mm->mm_users) == 0)
252 		return;
253 
254 	/*
255 	 * - Move to a new ASID, but only if the mm is still wired in
256 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
257 	 *    causing h/w - s/w ASID to get out of sync)
258 	 * - Also get_new_mmu_context() new implementation allocates a new
259 	 *   ASID only if it is not allocated already - so unallocate first
260 	 */
261 	destroy_context(mm);
262 	if (current->mm == mm)
263 		get_new_mmu_context(mm);
264 }
265 
266 /*
267  * Flush a Range of TLB entries for userland.
268  * @start is inclusive, while @end is exclusive
269  * Difference between this and Kernel Range Flush is
270  *  -Here the fastest way (if range is too large) is to move to next ASID
271  *      without doing any explicit Shootdown
272  *  -In case of kernel Flush, entry has to be shot down explictly
273  */
274 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
275 			   unsigned long end)
276 {
277 	const unsigned int cpu = smp_processor_id();
278 	unsigned long flags;
279 
280 	/* If range @start to @end is more than 32 TLB entries deep,
281 	 * its better to move to a new ASID rather than searching for
282 	 * individual entries and then shooting them down
283 	 *
284 	 * The calc above is rough, doesn't account for unaligned parts,
285 	 * since this is heuristics based anyways
286 	 */
287 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
288 		local_flush_tlb_mm(vma->vm_mm);
289 		return;
290 	}
291 
292 	/*
293 	 * @start moved to page start: this alone suffices for checking
294 	 * loop end condition below, w/o need for aligning @end to end
295 	 * e.g. 2000 to 4001 will anyhow loop twice
296 	 */
297 	start &= PAGE_MASK;
298 
299 	local_irq_save(flags);
300 
301 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
302 		while (start < end) {
303 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
304 			start += PAGE_SIZE;
305 		}
306 	}
307 
308 	utlb_invalidate();
309 
310 	local_irq_restore(flags);
311 }
312 
313 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
314  *  @start, @end interpreted as kvaddr
315  * Interestingly, shared TLB entries can also be flushed using just
316  * @start,@end alone (interpreted as user vaddr), although technically SASID
317  * is also needed. However our smart TLbProbe lookup takes care of that.
318  */
319 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
320 {
321 	unsigned long flags;
322 
323 	/* exactly same as above, except for TLB entry not taking ASID */
324 
325 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
326 		local_flush_tlb_all();
327 		return;
328 	}
329 
330 	start &= PAGE_MASK;
331 
332 	local_irq_save(flags);
333 	while (start < end) {
334 		tlb_entry_erase(start);
335 		start += PAGE_SIZE;
336 	}
337 
338 	utlb_invalidate();
339 
340 	local_irq_restore(flags);
341 }
342 
343 /*
344  * Delete TLB entry in MMU for a given page (??? address)
345  * NOTE One TLB entry contains translation for single PAGE
346  */
347 
348 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
349 {
350 	const unsigned int cpu = smp_processor_id();
351 	unsigned long flags;
352 
353 	/* Note that it is critical that interrupts are DISABLED between
354 	 * checking the ASID and using it flush the TLB entry
355 	 */
356 	local_irq_save(flags);
357 
358 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
359 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
360 		utlb_invalidate();
361 	}
362 
363 	local_irq_restore(flags);
364 }
365 
366 #ifdef CONFIG_SMP
367 
368 struct tlb_args {
369 	struct vm_area_struct *ta_vma;
370 	unsigned long ta_start;
371 	unsigned long ta_end;
372 };
373 
374 static inline void ipi_flush_tlb_page(void *arg)
375 {
376 	struct tlb_args *ta = arg;
377 
378 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
379 }
380 
381 static inline void ipi_flush_tlb_range(void *arg)
382 {
383 	struct tlb_args *ta = arg;
384 
385 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
386 }
387 
388 static inline void ipi_flush_tlb_kernel_range(void *arg)
389 {
390 	struct tlb_args *ta = (struct tlb_args *)arg;
391 
392 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
393 }
394 
395 void flush_tlb_all(void)
396 {
397 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
398 }
399 
400 void flush_tlb_mm(struct mm_struct *mm)
401 {
402 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
403 			 mm, 1);
404 }
405 
406 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
407 {
408 	struct tlb_args ta = {
409 		.ta_vma = vma,
410 		.ta_start = uaddr
411 	};
412 
413 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
414 }
415 
416 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
417 		     unsigned long end)
418 {
419 	struct tlb_args ta = {
420 		.ta_vma = vma,
421 		.ta_start = start,
422 		.ta_end = end
423 	};
424 
425 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
426 }
427 
428 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
429 {
430 	struct tlb_args ta = {
431 		.ta_start = start,
432 		.ta_end = end
433 	};
434 
435 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
436 }
437 #endif
438 
439 /*
440  * Routine to create a TLB entry
441  */
442 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
443 {
444 	unsigned long flags;
445 	unsigned int asid_or_sasid, rwx;
446 	unsigned long pd0, pd1;
447 
448 	/*
449 	 * create_tlb() assumes that current->mm == vma->mm, since
450 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
451 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
452 	 *
453 	 * Removing the assumption involves
454 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
455 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
456 	 * -More importantly it makes this handler inconsistent with fast-path
457 	 *  TLB Refill handler which always deals with "current"
458 	 *
459 	 * Lets see the use cases when current->mm != vma->mm and we land here
460 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
461 	 *     Here VM wants to pre-install a TLB entry for user stack while
462 	 *     current->mm still points to pre-execve mm (hence the condition).
463 	 *     However the stack vaddr is soon relocated (randomization) and
464 	 *     move_page_tables() tries to undo that TLB entry.
465 	 *     Thus not creating TLB entry is not any worse.
466 	 *
467 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
468 	 *     breakpoint in debugged task. Not creating a TLB now is not
469 	 *     performance critical.
470 	 *
471 	 * Both the cases above are not good enough for code churn.
472 	 */
473 	if (current->active_mm != vma->vm_mm)
474 		return;
475 
476 	local_irq_save(flags);
477 
478 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address);
479 
480 	address &= PAGE_MASK;
481 
482 	/* update this PTE credentials */
483 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
484 
485 	/* Create HW TLB(PD0,PD1) from PTE  */
486 
487 	/* ASID for this task */
488 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
489 
490 	pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
491 
492 	/*
493 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
494 	 * however Linux only saves 1 set to save PTE real-estate
495 	 * Here we convert 3 PTE bits into 6 MMU bits:
496 	 * -Kernel only entries have Kr Kw Kx 0 0 0
497 	 * -User entries have mirrored K and U bits
498 	 */
499 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
500 
501 	if (pte_val(*ptep) & _PAGE_GLOBAL)
502 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
503 	else
504 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
505 
506 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
507 
508 	tlb_entry_insert(pd0, pd1);
509 
510 	local_irq_restore(flags);
511 }
512 
513 /*
514  * Called at the end of pagefault, for a userspace mapped page
515  *  -pre-install the corresponding TLB entry into MMU
516  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
517  *  	flush_dcache_page(), copy_user_page()
518  *
519  * Note that flush (when done) involves both WBACK - so physical page is
520  * in sync as well as INV - so any non-congruent aliases don't remain
521  */
522 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
523 		      pte_t *ptep)
524 {
525 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
526 	unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
527 	struct page *page = pfn_to_page(pte_pfn(*ptep));
528 
529 	create_tlb(vma, vaddr, ptep);
530 
531 	if (page == ZERO_PAGE(0)) {
532 		return;
533 	}
534 
535 	/*
536 	 * Exec page : Independent of aliasing/page-color considerations,
537 	 *	       since icache doesn't snoop dcache on ARC, any dirty
538 	 *	       K-mapping of a code page needs to be wback+inv so that
539 	 *	       icache fetch by userspace sees code correctly.
540 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
541 	 *	       so userspace sees the right data.
542 	 *  (Avoids the flush for Non-exec + congruent mapping case)
543 	 */
544 	if ((vma->vm_flags & VM_EXEC) ||
545 	     addr_not_cache_congruent(paddr, vaddr)) {
546 
547 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
548 		if (dirty) {
549 			/* wback + inv dcache lines */
550 			__flush_dcache_page(paddr, paddr);
551 
552 			/* invalidate any existing icache lines */
553 			if (vma->vm_flags & VM_EXEC)
554 				__inv_icache_page(paddr, vaddr);
555 		}
556 	}
557 }
558 
559 /* Read the Cache Build Confuration Registers, Decode them and save into
560  * the cpuinfo structure for later use.
561  * No Validation is done here, simply read/convert the BCRs
562  */
563 void read_decode_mmu_bcr(void)
564 {
565 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
566 	unsigned int tmp;
567 	struct bcr_mmu_1_2 {
568 #ifdef CONFIG_CPU_BIG_ENDIAN
569 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
570 #else
571 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
572 #endif
573 	} *mmu2;
574 
575 	struct bcr_mmu_3 {
576 #ifdef CONFIG_CPU_BIG_ENDIAN
577 	unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
578 		     u_itlb:4, u_dtlb:4;
579 #else
580 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
581 		     ways:4, ver:8;
582 #endif
583 	} *mmu3;
584 
585 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
586 	mmu->ver = (tmp >> 24);
587 
588 	if (mmu->ver <= 2) {
589 		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
590 		mmu->pg_sz = PAGE_SIZE;
591 		mmu->sets = 1 << mmu2->sets;
592 		mmu->ways = 1 << mmu2->ways;
593 		mmu->u_dtlb = mmu2->u_dtlb;
594 		mmu->u_itlb = mmu2->u_itlb;
595 	} else {
596 		mmu3 = (struct bcr_mmu_3 *)&tmp;
597 		mmu->pg_sz = 512 << mmu3->pg_sz;
598 		mmu->sets = 1 << mmu3->sets;
599 		mmu->ways = 1 << mmu3->ways;
600 		mmu->u_dtlb = mmu3->u_dtlb;
601 		mmu->u_itlb = mmu3->u_itlb;
602 	}
603 
604 	mmu->num_tlb = mmu->sets * mmu->ways;
605 }
606 
607 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
608 {
609 	int n = 0;
610 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
611 
612 	n += scnprintf(buf + n, len - n,
613 		      "MMU [v%x]\t: %dk PAGE, JTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n",
614 		       p_mmu->ver, TO_KB(p_mmu->pg_sz),
615 		       p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
616 		       p_mmu->u_dtlb, p_mmu->u_itlb,
617 		       IS_ENABLED(CONFIG_ARC_MMU_SASID) ? ",SASID" : "");
618 
619 	return buf;
620 }
621 
622 void arc_mmu_init(void)
623 {
624 	char str[256];
625 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
626 
627 	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
628 
629 	/* For efficiency sake, kernel is compile time built for a MMU ver
630 	 * This must match the hardware it is running on.
631 	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
632 	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
633 	 * On the other hand, Linux built for V1 if run on MMU V2 will do
634 	 *   un-needed workarounds to prevent memcpy thrashing.
635 	 * Similarly MMU V3 has new features which won't work on older MMU
636 	 */
637 	if (mmu->ver != CONFIG_ARC_MMU_VER) {
638 		panic("MMU ver %d doesn't match kernel built for %d...\n",
639 		      mmu->ver, CONFIG_ARC_MMU_VER);
640 	}
641 
642 	if (mmu->pg_sz != PAGE_SIZE)
643 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
644 
645 	/* Enable the MMU */
646 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
647 
648 	/* In smp we use this reg for interrupt 1 scratch */
649 #ifndef CONFIG_SMP
650 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
651 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
652 #endif
653 }
654 
655 /*
656  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
657  * The mapping is Column-first.
658  *		---------------------	-----------
659  *		|way0|way1|way2|way3|	|way0|way1|
660  *		---------------------	-----------
661  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
662  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
663  *		~		    ~	~	  ~
664  * [set127]	| 508| 509| 510| 511|	| 254| 255|
665  *		---------------------	-----------
666  * For normal operations we don't(must not) care how above works since
667  * MMU cmd getIndex(vaddr) abstracts that out.
668  * However for walking WAYS of a SET, we need to know this
669  */
670 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
671 
672 /* Handling of Duplicate PD (TLB entry) in MMU.
673  * -Could be due to buggy customer tapeouts or obscure kernel bugs
674  * -MMU complaints not at the time of duplicate PD installation, but at the
675  *      time of lookup matching multiple ways.
676  * -Ideally these should never happen - but if they do - workaround by deleting
677  *      the duplicate one.
678  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
679  */
680 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
681 
682 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
683 			  struct pt_regs *regs)
684 {
685 	int set, way, n;
686 	unsigned long flags, is_valid;
687 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
688 	unsigned int pd0[mmu->ways], pd1[mmu->ways];
689 
690 	local_irq_save(flags);
691 
692 	/* re-enable the MMU */
693 	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
694 
695 	/* loop thru all sets of TLB */
696 	for (set = 0; set < mmu->sets; set++) {
697 
698 		/* read out all the ways of current set */
699 		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
700 			write_aux_reg(ARC_REG_TLBINDEX,
701 					  SET_WAY_TO_IDX(mmu, set, way));
702 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
703 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
704 			pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
705 			is_valid |= pd0[way] & _PAGE_PRESENT;
706 		}
707 
708 		/* If all the WAYS in SET are empty, skip to next SET */
709 		if (!is_valid)
710 			continue;
711 
712 		/* Scan the set for duplicate ways: needs a nested loop */
713 		for (way = 0; way < mmu->ways - 1; way++) {
714 			if (!pd0[way])
715 				continue;
716 
717 			for (n = way + 1; n < mmu->ways; n++) {
718 				if ((pd0[way] & PAGE_MASK) ==
719 				    (pd0[n] & PAGE_MASK)) {
720 
721 					if (dup_pd_verbose) {
722 						pr_info("Duplicate PD's @"
723 							"[%d:%d]/[%d:%d]\n",
724 						     set, way, set, n);
725 						pr_info("TLBPD0[%u]: %08x\n",
726 						     way, pd0[way]);
727 					}
728 
729 					/*
730 					 * clear entry @way and not @n. This is
731 					 * critical to our optimised loop
732 					 */
733 					pd0[way] = pd1[way] = 0;
734 					write_aux_reg(ARC_REG_TLBINDEX,
735 						SET_WAY_TO_IDX(mmu, set, way));
736 					__tlb_entry_erase();
737 				}
738 			}
739 		}
740 	}
741 
742 	local_irq_restore(flags);
743 }
744 
745 /***********************************************************************
746  * Diagnostic Routines
747  *  -Called from Low Level TLB Hanlders if things don;t look good
748  **********************************************************************/
749 
750 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
751 
752 /*
753  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
754  * don't match
755  */
756 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
757 {
758 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
759 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
760 
761 	__asm__ __volatile__("flag 1");
762 }
763 
764 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
765 {
766 	unsigned int mmu_asid;
767 
768 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
769 
770 	/*
771 	 * At the time of a TLB miss/installation
772 	 *   - HW version needs to match SW version
773 	 *   - SW needs to have a valid ASID
774 	 */
775 	if (addr < 0x70000000 &&
776 	    ((mm_asid == MM_CTXT_NO_ASID) ||
777 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
778 		print_asid_mismatch(mm_asid, mmu_asid, 0);
779 }
780 #endif
781