xref: /openbmc/linux/arch/arc/mm/tlb.c (revision cd238eff)
1 /*
2  * TLB Management (flush/create/diagnostics) for ARC700
3  *
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * vineetg: Aug 2011
11  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
12  *
13  * vineetg: May 2011
14  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
15  *   some of the LMBench tests improved amazingly
16  *      = page-fault thrice as fast (75 usec to 28 usec)
17  *      = mmap twice as fast (9.6 msec to 4.6 msec),
18  *      = fork (5.3 msec to 3.7 msec)
19  *
20  * vineetg: April 2011 :
21  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22  *      helps avoid a shift when preparing PD0 from PTE
23  *
24  * vineetg: April 2011 : Preparing for MMU V3
25  *  -MMU v2/v3 BCRs decoded differently
26  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27  *  -tlb_entry_erase( ) can be void
28  *  -local_flush_tlb_range( ):
29  *      = need not "ceil" @end
30  *      = walks MMU only if range spans < 32 entries, as opposed to 256
31  *
32  * Vineetg: Sept 10th 2008
33  *  -Changes related to MMU v2 (Rel 4.8)
34  *
35  * Vineetg: Aug 29th 2008
36  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38  *    it fails. Thus need to load it with ANY valid value before invoking
39  *    TLBIVUTLB cmd
40  *
41  * Vineetg: Aug 21th 2008:
42  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
43  *  -Multiple copies of TLB erase code seperated into a "single" function
44  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45  *       in interrupt-safe region.
46  *
47  * Vineetg: April 23rd Bug #93131
48  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
49  *              flush is more than the size of TLB itself.
50  *
51  * Rahul Trivedi : Codito Technologies 2004
52  */
53 
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <linux/mm_types.h>
57 
58 #include <asm/arcregs.h>
59 #include <asm/setup.h>
60 #include <asm/mmu_context.h>
61 #include <asm/mmu.h>
62 
63 /*			Need for ARC MMU v2
64  *
65  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
66  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
67  * map into same set, there would be contention for the 2 ways causing severe
68  * Thrashing.
69  *
70  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
71  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
72  * Given this, the thrasing problem should never happen because once the 3
73  * J-TLB entries are created (even though 3rd will knock out one of the prev
74  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
75  *
76  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
77  * This is a simple design for keeping them in sync. So what do we do?
78  * The solution which James came up was pretty neat. It utilised the assoc
79  * of uTLBs by not invalidating always but only when absolutely necessary.
80  *
81  * - Existing TLB commands work as before
82  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
83  * - New command (TLBIVUTLB) to invalidate uTLBs.
84  *
85  * The uTLBs need only be invalidated when pages are being removed from the
86  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
87  * as a result of a miss, the removed entry is still allowed to exist in the
88  * uTLBs as it is still valid and present in the OS page table. This allows the
89  * full associativity of the uTLBs to hide the limited associativity of the main
90  * TLB.
91  *
92  * During a miss handler, the new "TLBWriteNI" command is used to load
93  * entries without clearing the uTLBs.
94  *
95  * When the OS page table is updated, TLB entries that may be associated with a
96  * removed page are removed (flushed) from the TLB using TLBWrite. In this
97  * circumstance, the uTLBs must also be cleared. This is done by using the
98  * existing TLBWrite command. An explicit IVUTLB is also required for those
99  * corner cases when TLBWrite was not executed at all because the corresp
100  * J-TLB entry got evicted/replaced.
101  */
102 
103 
104 /* A copy of the ASID from the PID reg is kept in asid_cache */
105 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
106 
107 static int __read_mostly pae_exists;
108 
109 /*
110  * Utility Routine to erase a J-TLB entry
111  * Caller needs to setup Index Reg (manually or via getIndex)
112  */
113 static inline void __tlb_entry_erase(void)
114 {
115 	write_aux_reg(ARC_REG_TLBPD1, 0);
116 
117 	if (is_pae40_enabled())
118 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
119 
120 	write_aux_reg(ARC_REG_TLBPD0, 0);
121 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
122 }
123 
124 #if (CONFIG_ARC_MMU_VER < 4)
125 
126 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
127 {
128 	unsigned int idx;
129 
130 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
131 
132 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
133 	idx = read_aux_reg(ARC_REG_TLBINDEX);
134 
135 	return idx;
136 }
137 
138 static void tlb_entry_erase(unsigned int vaddr_n_asid)
139 {
140 	unsigned int idx;
141 
142 	/* Locate the TLB entry for this vaddr + ASID */
143 	idx = tlb_entry_lkup(vaddr_n_asid);
144 
145 	/* No error means entry found, zero it out */
146 	if (likely(!(idx & TLB_LKUP_ERR))) {
147 		__tlb_entry_erase();
148 	} else {
149 		/* Duplicate entry error */
150 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
151 					   vaddr_n_asid);
152 	}
153 }
154 
155 /****************************************************************************
156  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
157  *
158  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
159  *
160  * utlb_invalidate ( )
161  *  -For v2 MMU calls Flush uTLB Cmd
162  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
163  *      This is because in v1 TLBWrite itself invalidate uTLBs
164  ***************************************************************************/
165 
166 static void utlb_invalidate(void)
167 {
168 #if (CONFIG_ARC_MMU_VER >= 2)
169 
170 #if (CONFIG_ARC_MMU_VER == 2)
171 	/* MMU v2 introduced the uTLB Flush command.
172 	 * There was however an obscure hardware bug, where uTLB flush would
173 	 * fail when a prior probe for J-TLB (both totally unrelated) would
174 	 * return lkup err - because the entry didn't exist in MMU.
175 	 * The Workround was to set Index reg with some valid value, prior to
176 	 * flush. This was fixed in MMU v3 hence not needed any more
177 	 */
178 	unsigned int idx;
179 
180 	/* make sure INDEX Reg is valid */
181 	idx = read_aux_reg(ARC_REG_TLBINDEX);
182 
183 	/* If not write some dummy val */
184 	if (unlikely(idx & TLB_LKUP_ERR))
185 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
186 #endif
187 
188 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
189 #endif
190 
191 }
192 
193 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
194 {
195 	unsigned int idx;
196 
197 	/*
198 	 * First verify if entry for this vaddr+ASID already exists
199 	 * This also sets up PD0 (vaddr, ASID..) for final commit
200 	 */
201 	idx = tlb_entry_lkup(pd0);
202 
203 	/*
204 	 * If Not already present get a free slot from MMU.
205 	 * Otherwise, Probe would have located the entry and set INDEX Reg
206 	 * with existing location. This will cause Write CMD to over-write
207 	 * existing entry with new PD0 and PD1
208 	 */
209 	if (likely(idx & TLB_LKUP_ERR))
210 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
211 
212 	/* setup the other half of TLB entry (pfn, rwx..) */
213 	write_aux_reg(ARC_REG_TLBPD1, pd1);
214 
215 	/*
216 	 * Commit the Entry to MMU
217 	 * It doesn't sound safe to use the TLBWriteNI cmd here
218 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
219 	 */
220 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
221 }
222 
223 #else	/* CONFIG_ARC_MMU_VER >= 4) */
224 
225 static void utlb_invalidate(void)
226 {
227 	/* No need since uTLB is always in sync with JTLB */
228 }
229 
230 static void tlb_entry_erase(unsigned int vaddr_n_asid)
231 {
232 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
233 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
234 }
235 
236 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
237 {
238 	write_aux_reg(ARC_REG_TLBPD0, pd0);
239 	write_aux_reg(ARC_REG_TLBPD1, pd1);
240 
241 	if (is_pae40_enabled())
242 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
243 
244 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
245 }
246 
247 #endif
248 
249 /*
250  * Un-conditionally (without lookup) erase the entire MMU contents
251  */
252 
253 noinline void local_flush_tlb_all(void)
254 {
255 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
256 	unsigned long flags;
257 	unsigned int entry;
258 	int num_tlb = mmu->sets * mmu->ways;
259 
260 	local_irq_save(flags);
261 
262 	/* Load PD0 and PD1 with template for a Blank Entry */
263 	write_aux_reg(ARC_REG_TLBPD1, 0);
264 
265 	if (is_pae40_enabled())
266 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
267 
268 	write_aux_reg(ARC_REG_TLBPD0, 0);
269 
270 	for (entry = 0; entry < num_tlb; entry++) {
271 		/* write this entry to the TLB */
272 		write_aux_reg(ARC_REG_TLBINDEX, entry);
273 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
274 	}
275 
276 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
277 		const int stlb_idx = 0x800;
278 
279 		/* Blank sTLB entry */
280 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
281 
282 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
283 			write_aux_reg(ARC_REG_TLBINDEX, entry);
284 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
285 		}
286 	}
287 
288 	utlb_invalidate();
289 
290 	local_irq_restore(flags);
291 }
292 
293 /*
294  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
295  */
296 noinline void local_flush_tlb_mm(struct mm_struct *mm)
297 {
298 	/*
299 	 * Small optimisation courtesy IA64
300 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
301 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
302 	 * all other cases are NOPs, hence this check.
303 	 */
304 	if (atomic_read(&mm->mm_users) == 0)
305 		return;
306 
307 	/*
308 	 * - Move to a new ASID, but only if the mm is still wired in
309 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
310 	 *    causing h/w - s/w ASID to get out of sync)
311 	 * - Also get_new_mmu_context() new implementation allocates a new
312 	 *   ASID only if it is not allocated already - so unallocate first
313 	 */
314 	destroy_context(mm);
315 	if (current->mm == mm)
316 		get_new_mmu_context(mm);
317 }
318 
319 /*
320  * Flush a Range of TLB entries for userland.
321  * @start is inclusive, while @end is exclusive
322  * Difference between this and Kernel Range Flush is
323  *  -Here the fastest way (if range is too large) is to move to next ASID
324  *      without doing any explicit Shootdown
325  *  -In case of kernel Flush, entry has to be shot down explictly
326  */
327 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
328 			   unsigned long end)
329 {
330 	const unsigned int cpu = smp_processor_id();
331 	unsigned long flags;
332 
333 	/* If range @start to @end is more than 32 TLB entries deep,
334 	 * its better to move to a new ASID rather than searching for
335 	 * individual entries and then shooting them down
336 	 *
337 	 * The calc above is rough, doesn't account for unaligned parts,
338 	 * since this is heuristics based anyways
339 	 */
340 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
341 		local_flush_tlb_mm(vma->vm_mm);
342 		return;
343 	}
344 
345 	/*
346 	 * @start moved to page start: this alone suffices for checking
347 	 * loop end condition below, w/o need for aligning @end to end
348 	 * e.g. 2000 to 4001 will anyhow loop twice
349 	 */
350 	start &= PAGE_MASK;
351 
352 	local_irq_save(flags);
353 
354 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
355 		while (start < end) {
356 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
357 			start += PAGE_SIZE;
358 		}
359 	}
360 
361 	utlb_invalidate();
362 
363 	local_irq_restore(flags);
364 }
365 
366 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
367  *  @start, @end interpreted as kvaddr
368  * Interestingly, shared TLB entries can also be flushed using just
369  * @start,@end alone (interpreted as user vaddr), although technically SASID
370  * is also needed. However our smart TLbProbe lookup takes care of that.
371  */
372 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
373 {
374 	unsigned long flags;
375 
376 	/* exactly same as above, except for TLB entry not taking ASID */
377 
378 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
379 		local_flush_tlb_all();
380 		return;
381 	}
382 
383 	start &= PAGE_MASK;
384 
385 	local_irq_save(flags);
386 	while (start < end) {
387 		tlb_entry_erase(start);
388 		start += PAGE_SIZE;
389 	}
390 
391 	utlb_invalidate();
392 
393 	local_irq_restore(flags);
394 }
395 
396 /*
397  * Delete TLB entry in MMU for a given page (??? address)
398  * NOTE One TLB entry contains translation for single PAGE
399  */
400 
401 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
402 {
403 	const unsigned int cpu = smp_processor_id();
404 	unsigned long flags;
405 
406 	/* Note that it is critical that interrupts are DISABLED between
407 	 * checking the ASID and using it flush the TLB entry
408 	 */
409 	local_irq_save(flags);
410 
411 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
412 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
413 		utlb_invalidate();
414 	}
415 
416 	local_irq_restore(flags);
417 }
418 
419 #ifdef CONFIG_SMP
420 
421 struct tlb_args {
422 	struct vm_area_struct *ta_vma;
423 	unsigned long ta_start;
424 	unsigned long ta_end;
425 };
426 
427 static inline void ipi_flush_tlb_page(void *arg)
428 {
429 	struct tlb_args *ta = arg;
430 
431 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
432 }
433 
434 static inline void ipi_flush_tlb_range(void *arg)
435 {
436 	struct tlb_args *ta = arg;
437 
438 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
439 }
440 
441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
442 static inline void ipi_flush_pmd_tlb_range(void *arg)
443 {
444 	struct tlb_args *ta = arg;
445 
446 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
447 }
448 #endif
449 
450 static inline void ipi_flush_tlb_kernel_range(void *arg)
451 {
452 	struct tlb_args *ta = (struct tlb_args *)arg;
453 
454 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
455 }
456 
457 void flush_tlb_all(void)
458 {
459 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
460 }
461 
462 void flush_tlb_mm(struct mm_struct *mm)
463 {
464 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
465 			 mm, 1);
466 }
467 
468 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
469 {
470 	struct tlb_args ta = {
471 		.ta_vma = vma,
472 		.ta_start = uaddr
473 	};
474 
475 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
476 }
477 
478 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
479 		     unsigned long end)
480 {
481 	struct tlb_args ta = {
482 		.ta_vma = vma,
483 		.ta_start = start,
484 		.ta_end = end
485 	};
486 
487 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
488 }
489 
490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
491 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
492 			 unsigned long end)
493 {
494 	struct tlb_args ta = {
495 		.ta_vma = vma,
496 		.ta_start = start,
497 		.ta_end = end
498 	};
499 
500 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
501 }
502 #endif
503 
504 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
505 {
506 	struct tlb_args ta = {
507 		.ta_start = start,
508 		.ta_end = end
509 	};
510 
511 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
512 }
513 #endif
514 
515 /*
516  * Routine to create a TLB entry
517  */
518 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
519 {
520 	unsigned long flags;
521 	unsigned int asid_or_sasid, rwx;
522 	unsigned long pd0;
523 	pte_t pd1;
524 
525 	/*
526 	 * create_tlb() assumes that current->mm == vma->mm, since
527 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
528 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
529 	 *
530 	 * Removing the assumption involves
531 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
532 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
533 	 * -More importantly it makes this handler inconsistent with fast-path
534 	 *  TLB Refill handler which always deals with "current"
535 	 *
536 	 * Lets see the use cases when current->mm != vma->mm and we land here
537 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
538 	 *     Here VM wants to pre-install a TLB entry for user stack while
539 	 *     current->mm still points to pre-execve mm (hence the condition).
540 	 *     However the stack vaddr is soon relocated (randomization) and
541 	 *     move_page_tables() tries to undo that TLB entry.
542 	 *     Thus not creating TLB entry is not any worse.
543 	 *
544 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
545 	 *     breakpoint in debugged task. Not creating a TLB now is not
546 	 *     performance critical.
547 	 *
548 	 * Both the cases above are not good enough for code churn.
549 	 */
550 	if (current->active_mm != vma->vm_mm)
551 		return;
552 
553 	local_irq_save(flags);
554 
555 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
556 
557 	vaddr &= PAGE_MASK;
558 
559 	/* update this PTE credentials */
560 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
561 
562 	/* Create HW TLB(PD0,PD1) from PTE  */
563 
564 	/* ASID for this task */
565 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
566 
567 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
568 
569 	/*
570 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
571 	 * however Linux only saves 1 set to save PTE real-estate
572 	 * Here we convert 3 PTE bits into 6 MMU bits:
573 	 * -Kernel only entries have Kr Kw Kx 0 0 0
574 	 * -User entries have mirrored K and U bits
575 	 */
576 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
577 
578 	if (pte_val(*ptep) & _PAGE_GLOBAL)
579 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
580 	else
581 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
582 
583 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
584 
585 	tlb_entry_insert(pd0, pd1);
586 
587 	local_irq_restore(flags);
588 }
589 
590 /*
591  * Called at the end of pagefault, for a userspace mapped page
592  *  -pre-install the corresponding TLB entry into MMU
593  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
594  *  	flush_dcache_page(), copy_user_page()
595  *
596  * Note that flush (when done) involves both WBACK - so physical page is
597  * in sync as well as INV - so any non-congruent aliases don't remain
598  */
599 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
600 		      pte_t *ptep)
601 {
602 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
603 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
604 	struct page *page = pfn_to_page(pte_pfn(*ptep));
605 
606 	create_tlb(vma, vaddr, ptep);
607 
608 	if (page == ZERO_PAGE(0)) {
609 		return;
610 	}
611 
612 	/*
613 	 * Exec page : Independent of aliasing/page-color considerations,
614 	 *	       since icache doesn't snoop dcache on ARC, any dirty
615 	 *	       K-mapping of a code page needs to be wback+inv so that
616 	 *	       icache fetch by userspace sees code correctly.
617 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
618 	 *	       so userspace sees the right data.
619 	 *  (Avoids the flush for Non-exec + congruent mapping case)
620 	 */
621 	if ((vma->vm_flags & VM_EXEC) ||
622 	     addr_not_cache_congruent(paddr, vaddr)) {
623 
624 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
625 		if (dirty) {
626 			/* wback + inv dcache lines (K-mapping) */
627 			__flush_dcache_page(paddr, paddr);
628 
629 			/* invalidate any existing icache lines (U-mapping) */
630 			if (vma->vm_flags & VM_EXEC)
631 				__inv_icache_page(paddr, vaddr);
632 		}
633 	}
634 }
635 
636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
637 
638 /*
639  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
640  * support.
641  *
642  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
643  * new bit "SZ" in TLB page descriptor to distinguish between them.
644  * Super Page size is configurable in hardware (4K to 16M), but fixed once
645  * RTL builds.
646  *
647  * The exact THP size a Linx configuration will support is a function of:
648  *  - MMU page size (typical 8K, RTL fixed)
649  *  - software page walker address split between PGD:PTE:PFN (typical
650  *    11:8:13, but can be changed with 1 line)
651  * So for above default, THP size supported is 8K * (2^8) = 2M
652  *
653  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
654  * reduces to 1 level (as PTE is folded into PGD and canonically referred
655  * to as PMD).
656  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
657  */
658 
659 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
660 				 pmd_t *pmd)
661 {
662 	pte_t pte = __pte(pmd_val(*pmd));
663 	update_mmu_cache(vma, addr, &pte);
664 }
665 
666 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
667 				pgtable_t pgtable)
668 {
669 	struct list_head *lh = (struct list_head *) pgtable;
670 
671 	assert_spin_locked(&mm->page_table_lock);
672 
673 	/* FIFO */
674 	if (!pmd_huge_pte(mm, pmdp))
675 		INIT_LIST_HEAD(lh);
676 	else
677 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
678 	pmd_huge_pte(mm, pmdp) = pgtable;
679 }
680 
681 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
682 {
683 	struct list_head *lh;
684 	pgtable_t pgtable;
685 
686 	assert_spin_locked(&mm->page_table_lock);
687 
688 	pgtable = pmd_huge_pte(mm, pmdp);
689 	lh = (struct list_head *) pgtable;
690 	if (list_empty(lh))
691 		pmd_huge_pte(mm, pmdp) = NULL;
692 	else {
693 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
694 		list_del(lh);
695 	}
696 
697 	pte_val(pgtable[0]) = 0;
698 	pte_val(pgtable[1]) = 0;
699 
700 	return pgtable;
701 }
702 
703 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
704 			       unsigned long end)
705 {
706 	unsigned int cpu;
707 	unsigned long flags;
708 
709 	local_irq_save(flags);
710 
711 	cpu = smp_processor_id();
712 
713 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
714 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
715 
716 		/* No need to loop here: this will always be for 1 Huge Page */
717 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
718 	}
719 
720 	local_irq_restore(flags);
721 }
722 
723 #endif
724 
725 /* Read the Cache Build Confuration Registers, Decode them and save into
726  * the cpuinfo structure for later use.
727  * No Validation is done here, simply read/convert the BCRs
728  */
729 void read_decode_mmu_bcr(void)
730 {
731 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
732 	unsigned int tmp;
733 	struct bcr_mmu_1_2 {
734 #ifdef CONFIG_CPU_BIG_ENDIAN
735 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
736 #else
737 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
738 #endif
739 	} *mmu2;
740 
741 	struct bcr_mmu_3 {
742 #ifdef CONFIG_CPU_BIG_ENDIAN
743 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
744 		     u_itlb:4, u_dtlb:4;
745 #else
746 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
747 		     ways:4, ver:8;
748 #endif
749 	} *mmu3;
750 
751 	struct bcr_mmu_4 {
752 #ifdef CONFIG_CPU_BIG_ENDIAN
753 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
754 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
755 #else
756 	/*           DTLB      ITLB      JES        JE         JA      */
757 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
758 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
759 #endif
760 	} *mmu4;
761 
762 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
763 	mmu->ver = (tmp >> 24);
764 
765 	if (is_isa_arcompact()) {
766 		if (mmu->ver <= 2) {
767 			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
768 			mmu->pg_sz_k = TO_KB(0x2000);
769 			mmu->sets = 1 << mmu2->sets;
770 			mmu->ways = 1 << mmu2->ways;
771 			mmu->u_dtlb = mmu2->u_dtlb;
772 			mmu->u_itlb = mmu2->u_itlb;
773 		} else {
774 			mmu3 = (struct bcr_mmu_3 *)&tmp;
775 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
776 			mmu->sets = 1 << mmu3->sets;
777 			mmu->ways = 1 << mmu3->ways;
778 			mmu->u_dtlb = mmu3->u_dtlb;
779 			mmu->u_itlb = mmu3->u_itlb;
780 			mmu->sasid = mmu3->sasid;
781 		}
782 	} else {
783 		mmu4 = (struct bcr_mmu_4 *)&tmp;
784 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
785 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
786 		mmu->sets = 64 << mmu4->n_entry;
787 		mmu->ways = mmu4->n_ways * 2;
788 		mmu->u_dtlb = mmu4->u_dtlb * 4;
789 		mmu->u_itlb = mmu4->u_itlb * 4;
790 		mmu->sasid = mmu4->sasid;
791 		pae_exists = mmu->pae = mmu4->pae;
792 	}
793 }
794 
795 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
796 {
797 	int n = 0;
798 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
799 	char super_pg[64] = "";
800 
801 	if (p_mmu->s_pg_sz_m)
802 		scnprintf(super_pg, 64, "%dM Super Page %s",
803 			  p_mmu->s_pg_sz_m,
804 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
805 
806 	n += scnprintf(buf + n, len - n,
807 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
808 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
809 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
810 		       p_mmu->u_dtlb, p_mmu->u_itlb,
811 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
812 
813 	return buf;
814 }
815 
816 int pae40_exist_but_not_enab(void)
817 {
818 	return pae_exists && !is_pae40_enabled();
819 }
820 
821 void arc_mmu_init(void)
822 {
823 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
824 	char str[256];
825 	int compat = 0;
826 
827 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
828 
829 	/*
830 	 * Can't be done in processor.h due to header include depenedencies
831 	 */
832 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
833 
834 	/*
835 	 * stack top size sanity check,
836 	 * Can't be done in processor.h due to header include depenedencies
837 	 */
838 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
839 
840 	/*
841 	 * Ensure that MMU features assumed by kernel exist in hardware.
842 	 * For older ARC700 cpus, it has to be exact match, since the MMU
843 	 * revisions were not backwards compatible (MMUv3 TLB layout changed
844 	 * so even if kernel for v2 didn't use any new cmds of v3, it would
845 	 * still not work.
846 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
847 	 * (will run older software).
848 	 */
849 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
850 		compat = 1;
851 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
852 		compat = 1;
853 
854 	if (!compat) {
855 		panic("MMU ver %d doesn't match kernel built for %d...\n",
856 		      mmu->ver, CONFIG_ARC_MMU_VER);
857 	}
858 
859 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
860 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
861 
862 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
863 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
864 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
865 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
866 
867 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
868 		panic("Hardware doesn't support PAE40\n");
869 
870 	/* Enable the MMU */
871 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
872 
873 	/* In smp we use this reg for interrupt 1 scratch */
874 #ifndef CONFIG_SMP
875 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
876 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
877 #endif
878 
879 	if (pae40_exist_but_not_enab())
880 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
881 }
882 
883 /*
884  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
885  * The mapping is Column-first.
886  *		---------------------	-----------
887  *		|way0|way1|way2|way3|	|way0|way1|
888  *		---------------------	-----------
889  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
890  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
891  *		~		    ~	~	  ~
892  * [set127]	| 508| 509| 510| 511|	| 254| 255|
893  *		---------------------	-----------
894  * For normal operations we don't(must not) care how above works since
895  * MMU cmd getIndex(vaddr) abstracts that out.
896  * However for walking WAYS of a SET, we need to know this
897  */
898 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
899 
900 /* Handling of Duplicate PD (TLB entry) in MMU.
901  * -Could be due to buggy customer tapeouts or obscure kernel bugs
902  * -MMU complaints not at the time of duplicate PD installation, but at the
903  *      time of lookup matching multiple ways.
904  * -Ideally these should never happen - but if they do - workaround by deleting
905  *      the duplicate one.
906  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
907  */
908 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
909 
910 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
911 			  struct pt_regs *regs)
912 {
913 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
914 	unsigned long flags;
915 	int set, n_ways = mmu->ways;
916 
917 	n_ways = min(n_ways, 4);
918 	BUG_ON(mmu->ways > 4);
919 
920 	local_irq_save(flags);
921 
922 	/* loop thru all sets of TLB */
923 	for (set = 0; set < mmu->sets; set++) {
924 
925 		int is_valid, way;
926 		unsigned int pd0[4];
927 
928 		/* read out all the ways of current set */
929 		for (way = 0, is_valid = 0; way < n_ways; way++) {
930 			write_aux_reg(ARC_REG_TLBINDEX,
931 					  SET_WAY_TO_IDX(mmu, set, way));
932 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
933 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
934 			is_valid |= pd0[way] & _PAGE_PRESENT;
935 			pd0[way] &= PAGE_MASK;
936 		}
937 
938 		/* If all the WAYS in SET are empty, skip to next SET */
939 		if (!is_valid)
940 			continue;
941 
942 		/* Scan the set for duplicate ways: needs a nested loop */
943 		for (way = 0; way < n_ways - 1; way++) {
944 
945 			int n;
946 
947 			if (!pd0[way])
948 				continue;
949 
950 			for (n = way + 1; n < n_ways; n++) {
951 				if (pd0[way] != pd0[n])
952 					continue;
953 
954 				if (!dup_pd_silent)
955 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
956 						pd0[way], set, way, n);
957 
958 				/*
959 				 * clear entry @way and not @n.
960 				 * This is critical to our optimised loop
961 				 */
962 				pd0[way] = 0;
963 				write_aux_reg(ARC_REG_TLBINDEX,
964 						SET_WAY_TO_IDX(mmu, set, way));
965 				__tlb_entry_erase();
966 			}
967 		}
968 	}
969 
970 	local_irq_restore(flags);
971 }
972 
973 /***********************************************************************
974  * Diagnostic Routines
975  *  -Called from Low Level TLB Hanlders if things don;t look good
976  **********************************************************************/
977 
978 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
979 
980 /*
981  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
982  * don't match
983  */
984 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
985 {
986 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
987 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
988 
989 	__asm__ __volatile__("flag 1");
990 }
991 
992 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
993 {
994 	unsigned int mmu_asid;
995 
996 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
997 
998 	/*
999 	 * At the time of a TLB miss/installation
1000 	 *   - HW version needs to match SW version
1001 	 *   - SW needs to have a valid ASID
1002 	 */
1003 	if (addr < 0x70000000 &&
1004 	    ((mm_asid == MM_CTXT_NO_ASID) ||
1005 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1006 		print_asid_mismatch(mm_asid, mmu_asid, 0);
1007 }
1008 #endif
1009