xref: /openbmc/linux/arch/arc/mm/tlb.c (revision c0e297dc)
1 /*
2  * TLB Management (flush/create/diagnostics) for ARC700
3  *
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * vineetg: Aug 2011
11  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
12  *
13  * vineetg: May 2011
14  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
15  *   some of the LMBench tests improved amazingly
16  *      = page-fault thrice as fast (75 usec to 28 usec)
17  *      = mmap twice as fast (9.6 msec to 4.6 msec),
18  *      = fork (5.3 msec to 3.7 msec)
19  *
20  * vineetg: April 2011 :
21  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22  *      helps avoid a shift when preparing PD0 from PTE
23  *
24  * vineetg: April 2011 : Preparing for MMU V3
25  *  -MMU v2/v3 BCRs decoded differently
26  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27  *  -tlb_entry_erase( ) can be void
28  *  -local_flush_tlb_range( ):
29  *      = need not "ceil" @end
30  *      = walks MMU only if range spans < 32 entries, as opposed to 256
31  *
32  * Vineetg: Sept 10th 2008
33  *  -Changes related to MMU v2 (Rel 4.8)
34  *
35  * Vineetg: Aug 29th 2008
36  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38  *    it fails. Thus need to load it with ANY valid value before invoking
39  *    TLBIVUTLB cmd
40  *
41  * Vineetg: Aug 21th 2008:
42  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
43  *  -Multiple copies of TLB erase code seperated into a "single" function
44  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45  *       in interrupt-safe region.
46  *
47  * Vineetg: April 23rd Bug #93131
48  *    Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49  *              flush is more than the size of TLB itself.
50  *
51  * Rahul Trivedi : Codito Technologies 2004
52  */
53 
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <asm/arcregs.h>
57 #include <asm/setup.h>
58 #include <asm/mmu_context.h>
59 #include <asm/mmu.h>
60 
61 /*			Need for ARC MMU v2
62  *
63  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65  * map into same set, there would be contention for the 2 ways causing severe
66  * Thrashing.
67  *
68  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70  * Given this, the thrasing problem should never happen because once the 3
71  * J-TLB entries are created (even though 3rd will knock out one of the prev
72  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
73  *
74  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75  * This is a simple design for keeping them in sync. So what do we do?
76  * The solution which James came up was pretty neat. It utilised the assoc
77  * of uTLBs by not invalidating always but only when absolutely necessary.
78  *
79  * - Existing TLB commands work as before
80  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81  * - New command (TLBIVUTLB) to invalidate uTLBs.
82  *
83  * The uTLBs need only be invalidated when pages are being removed from the
84  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85  * as a result of a miss, the removed entry is still allowed to exist in the
86  * uTLBs as it is still valid and present in the OS page table. This allows the
87  * full associativity of the uTLBs to hide the limited associativity of the main
88  * TLB.
89  *
90  * During a miss handler, the new "TLBWriteNI" command is used to load
91  * entries without clearing the uTLBs.
92  *
93  * When the OS page table is updated, TLB entries that may be associated with a
94  * removed page are removed (flushed) from the TLB using TLBWrite. In this
95  * circumstance, the uTLBs must also be cleared. This is done by using the
96  * existing TLBWrite command. An explicit IVUTLB is also required for those
97  * corner cases when TLBWrite was not executed at all because the corresp
98  * J-TLB entry got evicted/replaced.
99  */
100 
101 
102 /* A copy of the ASID from the PID reg is kept in asid_cache */
103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104 
105 /*
106  * Utility Routine to erase a J-TLB entry
107  * Caller needs to setup Index Reg (manually or via getIndex)
108  */
109 static inline void __tlb_entry_erase(void)
110 {
111 	write_aux_reg(ARC_REG_TLBPD1, 0);
112 	write_aux_reg(ARC_REG_TLBPD0, 0);
113 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
114 }
115 
116 #if (CONFIG_ARC_MMU_VER < 4)
117 
118 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
119 {
120 	unsigned int idx;
121 
122 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
123 
124 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
125 	idx = read_aux_reg(ARC_REG_TLBINDEX);
126 
127 	return idx;
128 }
129 
130 static void tlb_entry_erase(unsigned int vaddr_n_asid)
131 {
132 	unsigned int idx;
133 
134 	/* Locate the TLB entry for this vaddr + ASID */
135 	idx = tlb_entry_lkup(vaddr_n_asid);
136 
137 	/* No error means entry found, zero it out */
138 	if (likely(!(idx & TLB_LKUP_ERR))) {
139 		__tlb_entry_erase();
140 	} else {
141 		/* Duplicate entry error */
142 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
143 					   vaddr_n_asid);
144 	}
145 }
146 
147 /****************************************************************************
148  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
149  *
150  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
151  *
152  * utlb_invalidate ( )
153  *  -For v2 MMU calls Flush uTLB Cmd
154  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
155  *      This is because in v1 TLBWrite itself invalidate uTLBs
156  ***************************************************************************/
157 
158 static void utlb_invalidate(void)
159 {
160 #if (CONFIG_ARC_MMU_VER >= 2)
161 
162 #if (CONFIG_ARC_MMU_VER == 2)
163 	/* MMU v2 introduced the uTLB Flush command.
164 	 * There was however an obscure hardware bug, where uTLB flush would
165 	 * fail when a prior probe for J-TLB (both totally unrelated) would
166 	 * return lkup err - because the entry didnt exist in MMU.
167 	 * The Workround was to set Index reg with some valid value, prior to
168 	 * flush. This was fixed in MMU v3 hence not needed any more
169 	 */
170 	unsigned int idx;
171 
172 	/* make sure INDEX Reg is valid */
173 	idx = read_aux_reg(ARC_REG_TLBINDEX);
174 
175 	/* If not write some dummy val */
176 	if (unlikely(idx & TLB_LKUP_ERR))
177 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
178 #endif
179 
180 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
181 #endif
182 
183 }
184 
185 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1)
186 {
187 	unsigned int idx;
188 
189 	/*
190 	 * First verify if entry for this vaddr+ASID already exists
191 	 * This also sets up PD0 (vaddr, ASID..) for final commit
192 	 */
193 	idx = tlb_entry_lkup(pd0);
194 
195 	/*
196 	 * If Not already present get a free slot from MMU.
197 	 * Otherwise, Probe would have located the entry and set INDEX Reg
198 	 * with existing location. This will cause Write CMD to over-write
199 	 * existing entry with new PD0 and PD1
200 	 */
201 	if (likely(idx & TLB_LKUP_ERR))
202 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
203 
204 	/* setup the other half of TLB entry (pfn, rwx..) */
205 	write_aux_reg(ARC_REG_TLBPD1, pd1);
206 
207 	/*
208 	 * Commit the Entry to MMU
209 	 * It doesnt sound safe to use the TLBWriteNI cmd here
210 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
211 	 */
212 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
213 }
214 
215 #else	/* CONFIG_ARC_MMU_VER >= 4) */
216 
217 static void utlb_invalidate(void)
218 {
219 	/* No need since uTLB is always in sync with JTLB */
220 }
221 
222 static void tlb_entry_erase(unsigned int vaddr_n_asid)
223 {
224 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
225 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
226 }
227 
228 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1)
229 {
230 	write_aux_reg(ARC_REG_TLBPD0, pd0);
231 	write_aux_reg(ARC_REG_TLBPD1, pd1);
232 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
233 }
234 
235 #endif
236 
237 /*
238  * Un-conditionally (without lookup) erase the entire MMU contents
239  */
240 
241 noinline void local_flush_tlb_all(void)
242 {
243 	unsigned long flags;
244 	unsigned int entry;
245 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
246 
247 	local_irq_save(flags);
248 
249 	/* Load PD0 and PD1 with template for a Blank Entry */
250 	write_aux_reg(ARC_REG_TLBPD1, 0);
251 	write_aux_reg(ARC_REG_TLBPD0, 0);
252 
253 	for (entry = 0; entry < mmu->num_tlb; entry++) {
254 		/* write this entry to the TLB */
255 		write_aux_reg(ARC_REG_TLBINDEX, entry);
256 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
257 	}
258 
259 	utlb_invalidate();
260 
261 	local_irq_restore(flags);
262 }
263 
264 /*
265  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
266  */
267 noinline void local_flush_tlb_mm(struct mm_struct *mm)
268 {
269 	/*
270 	 * Small optimisation courtesy IA64
271 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
272 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
273 	 * all other cases are NOPs, hence this check.
274 	 */
275 	if (atomic_read(&mm->mm_users) == 0)
276 		return;
277 
278 	/*
279 	 * - Move to a new ASID, but only if the mm is still wired in
280 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
281 	 *    causing h/w - s/w ASID to get out of sync)
282 	 * - Also get_new_mmu_context() new implementation allocates a new
283 	 *   ASID only if it is not allocated already - so unallocate first
284 	 */
285 	destroy_context(mm);
286 	if (current->mm == mm)
287 		get_new_mmu_context(mm);
288 }
289 
290 /*
291  * Flush a Range of TLB entries for userland.
292  * @start is inclusive, while @end is exclusive
293  * Difference between this and Kernel Range Flush is
294  *  -Here the fastest way (if range is too large) is to move to next ASID
295  *      without doing any explicit Shootdown
296  *  -In case of kernel Flush, entry has to be shot down explictly
297  */
298 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
299 			   unsigned long end)
300 {
301 	const unsigned int cpu = smp_processor_id();
302 	unsigned long flags;
303 
304 	/* If range @start to @end is more than 32 TLB entries deep,
305 	 * its better to move to a new ASID rather than searching for
306 	 * individual entries and then shooting them down
307 	 *
308 	 * The calc above is rough, doesn't account for unaligned parts,
309 	 * since this is heuristics based anyways
310 	 */
311 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
312 		local_flush_tlb_mm(vma->vm_mm);
313 		return;
314 	}
315 
316 	/*
317 	 * @start moved to page start: this alone suffices for checking
318 	 * loop end condition below, w/o need for aligning @end to end
319 	 * e.g. 2000 to 4001 will anyhow loop twice
320 	 */
321 	start &= PAGE_MASK;
322 
323 	local_irq_save(flags);
324 
325 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
326 		while (start < end) {
327 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
328 			start += PAGE_SIZE;
329 		}
330 	}
331 
332 	utlb_invalidate();
333 
334 	local_irq_restore(flags);
335 }
336 
337 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
338  *  @start, @end interpreted as kvaddr
339  * Interestingly, shared TLB entries can also be flushed using just
340  * @start,@end alone (interpreted as user vaddr), although technically SASID
341  * is also needed. However our smart TLbProbe lookup takes care of that.
342  */
343 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
344 {
345 	unsigned long flags;
346 
347 	/* exactly same as above, except for TLB entry not taking ASID */
348 
349 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
350 		local_flush_tlb_all();
351 		return;
352 	}
353 
354 	start &= PAGE_MASK;
355 
356 	local_irq_save(flags);
357 	while (start < end) {
358 		tlb_entry_erase(start);
359 		start += PAGE_SIZE;
360 	}
361 
362 	utlb_invalidate();
363 
364 	local_irq_restore(flags);
365 }
366 
367 /*
368  * Delete TLB entry in MMU for a given page (??? address)
369  * NOTE One TLB entry contains translation for single PAGE
370  */
371 
372 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
373 {
374 	const unsigned int cpu = smp_processor_id();
375 	unsigned long flags;
376 
377 	/* Note that it is critical that interrupts are DISABLED between
378 	 * checking the ASID and using it flush the TLB entry
379 	 */
380 	local_irq_save(flags);
381 
382 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
383 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
384 		utlb_invalidate();
385 	}
386 
387 	local_irq_restore(flags);
388 }
389 
390 #ifdef CONFIG_SMP
391 
392 struct tlb_args {
393 	struct vm_area_struct *ta_vma;
394 	unsigned long ta_start;
395 	unsigned long ta_end;
396 };
397 
398 static inline void ipi_flush_tlb_page(void *arg)
399 {
400 	struct tlb_args *ta = arg;
401 
402 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
403 }
404 
405 static inline void ipi_flush_tlb_range(void *arg)
406 {
407 	struct tlb_args *ta = arg;
408 
409 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
410 }
411 
412 static inline void ipi_flush_tlb_kernel_range(void *arg)
413 {
414 	struct tlb_args *ta = (struct tlb_args *)arg;
415 
416 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
417 }
418 
419 void flush_tlb_all(void)
420 {
421 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
422 }
423 
424 void flush_tlb_mm(struct mm_struct *mm)
425 {
426 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
427 			 mm, 1);
428 }
429 
430 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
431 {
432 	struct tlb_args ta = {
433 		.ta_vma = vma,
434 		.ta_start = uaddr
435 	};
436 
437 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
438 }
439 
440 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
441 		     unsigned long end)
442 {
443 	struct tlb_args ta = {
444 		.ta_vma = vma,
445 		.ta_start = start,
446 		.ta_end = end
447 	};
448 
449 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
450 }
451 
452 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
453 {
454 	struct tlb_args ta = {
455 		.ta_start = start,
456 		.ta_end = end
457 	};
458 
459 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
460 }
461 #endif
462 
463 /*
464  * Routine to create a TLB entry
465  */
466 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
467 {
468 	unsigned long flags;
469 	unsigned int asid_or_sasid, rwx;
470 	unsigned long pd0, pd1;
471 
472 	/*
473 	 * create_tlb() assumes that current->mm == vma->mm, since
474 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
475 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
476 	 *
477 	 * Removing the assumption involves
478 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
479 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
480 	 * -More importantly it makes this handler inconsistent with fast-path
481 	 *  TLB Refill handler which always deals with "current"
482 	 *
483 	 * Lets see the use cases when current->mm != vma->mm and we land here
484 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
485 	 *     Here VM wants to pre-install a TLB entry for user stack while
486 	 *     current->mm still points to pre-execve mm (hence the condition).
487 	 *     However the stack vaddr is soon relocated (randomization) and
488 	 *     move_page_tables() tries to undo that TLB entry.
489 	 *     Thus not creating TLB entry is not any worse.
490 	 *
491 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
492 	 *     breakpoint in debugged task. Not creating a TLB now is not
493 	 *     performance critical.
494 	 *
495 	 * Both the cases above are not good enough for code churn.
496 	 */
497 	if (current->active_mm != vma->vm_mm)
498 		return;
499 
500 	local_irq_save(flags);
501 
502 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address);
503 
504 	address &= PAGE_MASK;
505 
506 	/* update this PTE credentials */
507 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
508 
509 	/* Create HW TLB(PD0,PD1) from PTE  */
510 
511 	/* ASID for this task */
512 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
513 
514 	pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
515 
516 	/*
517 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
518 	 * however Linux only saves 1 set to save PTE real-estate
519 	 * Here we convert 3 PTE bits into 6 MMU bits:
520 	 * -Kernel only entries have Kr Kw Kx 0 0 0
521 	 * -User entries have mirrored K and U bits
522 	 */
523 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
524 
525 	if (pte_val(*ptep) & _PAGE_GLOBAL)
526 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
527 	else
528 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
529 
530 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
531 
532 	tlb_entry_insert(pd0, pd1);
533 
534 	local_irq_restore(flags);
535 }
536 
537 /*
538  * Called at the end of pagefault, for a userspace mapped page
539  *  -pre-install the corresponding TLB entry into MMU
540  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
541  *  	flush_dcache_page(), copy_user_page()
542  *
543  * Note that flush (when done) involves both WBACK - so physical page is
544  * in sync as well as INV - so any non-congruent aliases don't remain
545  */
546 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
547 		      pte_t *ptep)
548 {
549 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
550 	unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
551 	struct page *page = pfn_to_page(pte_pfn(*ptep));
552 
553 	create_tlb(vma, vaddr, ptep);
554 
555 	if (page == ZERO_PAGE(0)) {
556 		return;
557 	}
558 
559 	/*
560 	 * Exec page : Independent of aliasing/page-color considerations,
561 	 *	       since icache doesn't snoop dcache on ARC, any dirty
562 	 *	       K-mapping of a code page needs to be wback+inv so that
563 	 *	       icache fetch by userspace sees code correctly.
564 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
565 	 *	       so userspace sees the right data.
566 	 *  (Avoids the flush for Non-exec + congruent mapping case)
567 	 */
568 	if ((vma->vm_flags & VM_EXEC) ||
569 	     addr_not_cache_congruent(paddr, vaddr)) {
570 
571 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
572 		if (dirty) {
573 			/* wback + inv dcache lines */
574 			__flush_dcache_page(paddr, paddr);
575 
576 			/* invalidate any existing icache lines */
577 			if (vma->vm_flags & VM_EXEC)
578 				__inv_icache_page(paddr, vaddr);
579 		}
580 	}
581 }
582 
583 /* Read the Cache Build Confuration Registers, Decode them and save into
584  * the cpuinfo structure for later use.
585  * No Validation is done here, simply read/convert the BCRs
586  */
587 void read_decode_mmu_bcr(void)
588 {
589 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
590 	unsigned int tmp;
591 	struct bcr_mmu_1_2 {
592 #ifdef CONFIG_CPU_BIG_ENDIAN
593 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
594 #else
595 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
596 #endif
597 	} *mmu2;
598 
599 	struct bcr_mmu_3 {
600 #ifdef CONFIG_CPU_BIG_ENDIAN
601 	unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
602 		     u_itlb:4, u_dtlb:4;
603 #else
604 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
605 		     ways:4, ver:8;
606 #endif
607 	} *mmu3;
608 
609 	struct bcr_mmu_4 {
610 #ifdef CONFIG_CPU_BIG_ENDIAN
611 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
612 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
613 #else
614 	/*           DTLB      ITLB      JES        JE         JA      */
615 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
616 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
617 #endif
618 	} *mmu4;
619 
620 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
621 	mmu->ver = (tmp >> 24);
622 
623 	if (mmu->ver <= 2) {
624 		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
625 		mmu->pg_sz_k = TO_KB(PAGE_SIZE);
626 		mmu->sets = 1 << mmu2->sets;
627 		mmu->ways = 1 << mmu2->ways;
628 		mmu->u_dtlb = mmu2->u_dtlb;
629 		mmu->u_itlb = mmu2->u_itlb;
630 	} else if (mmu->ver == 3) {
631 		mmu3 = (struct bcr_mmu_3 *)&tmp;
632 		mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
633 		mmu->sets = 1 << mmu3->sets;
634 		mmu->ways = 1 << mmu3->ways;
635 		mmu->u_dtlb = mmu3->u_dtlb;
636 		mmu->u_itlb = mmu3->u_itlb;
637 	} else {
638 		mmu4 = (struct bcr_mmu_4 *)&tmp;
639 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
640 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
641 		mmu->sets = 64 << mmu4->n_entry;
642 		mmu->ways = mmu4->n_ways * 2;
643 		mmu->u_dtlb = mmu4->u_dtlb * 4;
644 		mmu->u_itlb = mmu4->u_itlb * 4;
645 	}
646 
647 	mmu->num_tlb = mmu->sets * mmu->ways;
648 }
649 
650 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
651 {
652 	int n = 0;
653 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
654 	char super_pg[64] = "";
655 
656 	if (p_mmu->s_pg_sz_m)
657 		scnprintf(super_pg, 64, "%dM Super Page%s, ",
658 			  p_mmu->s_pg_sz_m, " (not used)");
659 
660 	n += scnprintf(buf + n, len - n,
661 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n",
662 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
663 		       p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
664 		       p_mmu->u_dtlb, p_mmu->u_itlb,
665 		       IS_ENABLED(CONFIG_ARC_MMU_SASID) ? ",SASID" : "");
666 
667 	return buf;
668 }
669 
670 void arc_mmu_init(void)
671 {
672 	char str[256];
673 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
674 
675 	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
676 
677 	/* For efficiency sake, kernel is compile time built for a MMU ver
678 	 * This must match the hardware it is running on.
679 	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
680 	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
681 	 * On the other hand, Linux built for V1 if run on MMU V2 will do
682 	 *   un-needed workarounds to prevent memcpy thrashing.
683 	 * Similarly MMU V3 has new features which won't work on older MMU
684 	 */
685 	if (mmu->ver != CONFIG_ARC_MMU_VER) {
686 		panic("MMU ver %d doesn't match kernel built for %d...\n",
687 		      mmu->ver, CONFIG_ARC_MMU_VER);
688 	}
689 
690 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
691 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
692 
693 	/* Enable the MMU */
694 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
695 
696 	/* In smp we use this reg for interrupt 1 scratch */
697 #ifndef CONFIG_SMP
698 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
699 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
700 #endif
701 }
702 
703 /*
704  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
705  * The mapping is Column-first.
706  *		---------------------	-----------
707  *		|way0|way1|way2|way3|	|way0|way1|
708  *		---------------------	-----------
709  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
710  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
711  *		~		    ~	~	  ~
712  * [set127]	| 508| 509| 510| 511|	| 254| 255|
713  *		---------------------	-----------
714  * For normal operations we don't(must not) care how above works since
715  * MMU cmd getIndex(vaddr) abstracts that out.
716  * However for walking WAYS of a SET, we need to know this
717  */
718 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
719 
720 /* Handling of Duplicate PD (TLB entry) in MMU.
721  * -Could be due to buggy customer tapeouts or obscure kernel bugs
722  * -MMU complaints not at the time of duplicate PD installation, but at the
723  *      time of lookup matching multiple ways.
724  * -Ideally these should never happen - but if they do - workaround by deleting
725  *      the duplicate one.
726  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
727  */
728 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
729 
730 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
731 			  struct pt_regs *regs)
732 {
733 	int set, way, n;
734 	unsigned long flags, is_valid;
735 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
736 	unsigned int pd0[mmu->ways], pd1[mmu->ways];
737 
738 	local_irq_save(flags);
739 
740 	/* re-enable the MMU */
741 	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
742 
743 	/* loop thru all sets of TLB */
744 	for (set = 0; set < mmu->sets; set++) {
745 
746 		/* read out all the ways of current set */
747 		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
748 			write_aux_reg(ARC_REG_TLBINDEX,
749 					  SET_WAY_TO_IDX(mmu, set, way));
750 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
751 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
752 			pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
753 			is_valid |= pd0[way] & _PAGE_PRESENT;
754 		}
755 
756 		/* If all the WAYS in SET are empty, skip to next SET */
757 		if (!is_valid)
758 			continue;
759 
760 		/* Scan the set for duplicate ways: needs a nested loop */
761 		for (way = 0; way < mmu->ways - 1; way++) {
762 			if (!pd0[way])
763 				continue;
764 
765 			for (n = way + 1; n < mmu->ways; n++) {
766 				if ((pd0[way] & PAGE_MASK) ==
767 				    (pd0[n] & PAGE_MASK)) {
768 
769 					if (dup_pd_verbose) {
770 						pr_info("Duplicate PD's @"
771 							"[%d:%d]/[%d:%d]\n",
772 						     set, way, set, n);
773 						pr_info("TLBPD0[%u]: %08x\n",
774 						     way, pd0[way]);
775 					}
776 
777 					/*
778 					 * clear entry @way and not @n. This is
779 					 * critical to our optimised loop
780 					 */
781 					pd0[way] = pd1[way] = 0;
782 					write_aux_reg(ARC_REG_TLBINDEX,
783 						SET_WAY_TO_IDX(mmu, set, way));
784 					__tlb_entry_erase();
785 				}
786 			}
787 		}
788 	}
789 
790 	local_irq_restore(flags);
791 }
792 
793 /***********************************************************************
794  * Diagnostic Routines
795  *  -Called from Low Level TLB Hanlders if things don;t look good
796  **********************************************************************/
797 
798 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
799 
800 /*
801  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
802  * don't match
803  */
804 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
805 {
806 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
807 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
808 
809 	__asm__ __volatile__("flag 1");
810 }
811 
812 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
813 {
814 	unsigned int mmu_asid;
815 
816 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
817 
818 	/*
819 	 * At the time of a TLB miss/installation
820 	 *   - HW version needs to match SW version
821 	 *   - SW needs to have a valid ASID
822 	 */
823 	if (addr < 0x70000000 &&
824 	    ((mm_asid == MM_CTXT_NO_ASID) ||
825 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
826 		print_asid_mismatch(mm_asid, mmu_asid, 0);
827 }
828 #endif
829