xref: /openbmc/linux/arch/arc/mm/tlb.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TLB Management (flush/create/diagnostics) for ARC700
4  *
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * vineetg: Aug 2011
8  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
9  *
10  * vineetg: May 2011
11  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
12  *   some of the LMBench tests improved amazingly
13  *      = page-fault thrice as fast (75 usec to 28 usec)
14  *      = mmap twice as fast (9.6 msec to 4.6 msec),
15  *      = fork (5.3 msec to 3.7 msec)
16  *
17  * vineetg: April 2011 :
18  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
19  *      helps avoid a shift when preparing PD0 from PTE
20  *
21  * vineetg: April 2011 : Preparing for MMU V3
22  *  -MMU v2/v3 BCRs decoded differently
23  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
24  *  -tlb_entry_erase( ) can be void
25  *  -local_flush_tlb_range( ):
26  *      = need not "ceil" @end
27  *      = walks MMU only if range spans < 32 entries, as opposed to 256
28  *
29  * Vineetg: Sept 10th 2008
30  *  -Changes related to MMU v2 (Rel 4.8)
31  *
32  * Vineetg: Aug 29th 2008
33  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
34  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
35  *    it fails. Thus need to load it with ANY valid value before invoking
36  *    TLBIVUTLB cmd
37  *
38  * Vineetg: Aug 21th 2008:
39  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
40  *  -Multiple copies of TLB erase code seperated into a "single" function
41  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
42  *       in interrupt-safe region.
43  *
44  * Vineetg: April 23rd Bug #93131
45  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
46  *              flush is more than the size of TLB itself.
47  *
48  * Rahul Trivedi : Codito Technologies 2004
49  */
50 
51 #include <linux/module.h>
52 #include <linux/bug.h>
53 #include <linux/mm_types.h>
54 
55 #include <asm/arcregs.h>
56 #include <asm/setup.h>
57 #include <asm/mmu_context.h>
58 #include <asm/mmu.h>
59 
60 /*			Need for ARC MMU v2
61  *
62  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64  * map into same set, there would be contention for the 2 ways causing severe
65  * Thrashing.
66  *
67  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69  * Given this, the thrasing problem should never happen because once the 3
70  * J-TLB entries are created (even though 3rd will knock out one of the prev
71  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72  *
73  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74  * This is a simple design for keeping them in sync. So what do we do?
75  * The solution which James came up was pretty neat. It utilised the assoc
76  * of uTLBs by not invalidating always but only when absolutely necessary.
77  *
78  * - Existing TLB commands work as before
79  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80  * - New command (TLBIVUTLB) to invalidate uTLBs.
81  *
82  * The uTLBs need only be invalidated when pages are being removed from the
83  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84  * as a result of a miss, the removed entry is still allowed to exist in the
85  * uTLBs as it is still valid and present in the OS page table. This allows the
86  * full associativity of the uTLBs to hide the limited associativity of the main
87  * TLB.
88  *
89  * During a miss handler, the new "TLBWriteNI" command is used to load
90  * entries without clearing the uTLBs.
91  *
92  * When the OS page table is updated, TLB entries that may be associated with a
93  * removed page are removed (flushed) from the TLB using TLBWrite. In this
94  * circumstance, the uTLBs must also be cleared. This is done by using the
95  * existing TLBWrite command. An explicit IVUTLB is also required for those
96  * corner cases when TLBWrite was not executed at all because the corresp
97  * J-TLB entry got evicted/replaced.
98  */
99 
100 
101 /* A copy of the ASID from the PID reg is kept in asid_cache */
102 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
103 
104 static int __read_mostly pae_exists;
105 
106 /*
107  * Utility Routine to erase a J-TLB entry
108  * Caller needs to setup Index Reg (manually or via getIndex)
109  */
110 static inline void __tlb_entry_erase(void)
111 {
112 	write_aux_reg(ARC_REG_TLBPD1, 0);
113 
114 	if (is_pae40_enabled())
115 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
116 
117 	write_aux_reg(ARC_REG_TLBPD0, 0);
118 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
119 }
120 
121 #if (CONFIG_ARC_MMU_VER < 4)
122 
123 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
124 {
125 	unsigned int idx;
126 
127 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
128 
129 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
130 	idx = read_aux_reg(ARC_REG_TLBINDEX);
131 
132 	return idx;
133 }
134 
135 static void tlb_entry_erase(unsigned int vaddr_n_asid)
136 {
137 	unsigned int idx;
138 
139 	/* Locate the TLB entry for this vaddr + ASID */
140 	idx = tlb_entry_lkup(vaddr_n_asid);
141 
142 	/* No error means entry found, zero it out */
143 	if (likely(!(idx & TLB_LKUP_ERR))) {
144 		__tlb_entry_erase();
145 	} else {
146 		/* Duplicate entry error */
147 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
148 					   vaddr_n_asid);
149 	}
150 }
151 
152 /****************************************************************************
153  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
154  *
155  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
156  *
157  * utlb_invalidate ( )
158  *  -For v2 MMU calls Flush uTLB Cmd
159  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
160  *      This is because in v1 TLBWrite itself invalidate uTLBs
161  ***************************************************************************/
162 
163 static void utlb_invalidate(void)
164 {
165 #if (CONFIG_ARC_MMU_VER >= 2)
166 
167 #if (CONFIG_ARC_MMU_VER == 2)
168 	/* MMU v2 introduced the uTLB Flush command.
169 	 * There was however an obscure hardware bug, where uTLB flush would
170 	 * fail when a prior probe for J-TLB (both totally unrelated) would
171 	 * return lkup err - because the entry didn't exist in MMU.
172 	 * The Workround was to set Index reg with some valid value, prior to
173 	 * flush. This was fixed in MMU v3 hence not needed any more
174 	 */
175 	unsigned int idx;
176 
177 	/* make sure INDEX Reg is valid */
178 	idx = read_aux_reg(ARC_REG_TLBINDEX);
179 
180 	/* If not write some dummy val */
181 	if (unlikely(idx & TLB_LKUP_ERR))
182 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
183 #endif
184 
185 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
186 #endif
187 
188 }
189 
190 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
191 {
192 	unsigned int idx;
193 
194 	/*
195 	 * First verify if entry for this vaddr+ASID already exists
196 	 * This also sets up PD0 (vaddr, ASID..) for final commit
197 	 */
198 	idx = tlb_entry_lkup(pd0);
199 
200 	/*
201 	 * If Not already present get a free slot from MMU.
202 	 * Otherwise, Probe would have located the entry and set INDEX Reg
203 	 * with existing location. This will cause Write CMD to over-write
204 	 * existing entry with new PD0 and PD1
205 	 */
206 	if (likely(idx & TLB_LKUP_ERR))
207 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
208 
209 	/* setup the other half of TLB entry (pfn, rwx..) */
210 	write_aux_reg(ARC_REG_TLBPD1, pd1);
211 
212 	/*
213 	 * Commit the Entry to MMU
214 	 * It doesn't sound safe to use the TLBWriteNI cmd here
215 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
216 	 */
217 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
218 }
219 
220 #else	/* CONFIG_ARC_MMU_VER >= 4) */
221 
222 static void utlb_invalidate(void)
223 {
224 	/* No need since uTLB is always in sync with JTLB */
225 }
226 
227 static void tlb_entry_erase(unsigned int vaddr_n_asid)
228 {
229 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
230 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
231 }
232 
233 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
234 {
235 	write_aux_reg(ARC_REG_TLBPD0, pd0);
236 	write_aux_reg(ARC_REG_TLBPD1, pd1);
237 
238 	if (is_pae40_enabled())
239 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
240 
241 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
242 }
243 
244 #endif
245 
246 /*
247  * Un-conditionally (without lookup) erase the entire MMU contents
248  */
249 
250 noinline void local_flush_tlb_all(void)
251 {
252 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
253 	unsigned long flags;
254 	unsigned int entry;
255 	int num_tlb = mmu->sets * mmu->ways;
256 
257 	local_irq_save(flags);
258 
259 	/* Load PD0 and PD1 with template for a Blank Entry */
260 	write_aux_reg(ARC_REG_TLBPD1, 0);
261 
262 	if (is_pae40_enabled())
263 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
264 
265 	write_aux_reg(ARC_REG_TLBPD0, 0);
266 
267 	for (entry = 0; entry < num_tlb; entry++) {
268 		/* write this entry to the TLB */
269 		write_aux_reg(ARC_REG_TLBINDEX, entry);
270 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
271 	}
272 
273 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
274 		const int stlb_idx = 0x800;
275 
276 		/* Blank sTLB entry */
277 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
278 
279 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
280 			write_aux_reg(ARC_REG_TLBINDEX, entry);
281 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
282 		}
283 	}
284 
285 	utlb_invalidate();
286 
287 	local_irq_restore(flags);
288 }
289 
290 /*
291  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
292  */
293 noinline void local_flush_tlb_mm(struct mm_struct *mm)
294 {
295 	/*
296 	 * Small optimisation courtesy IA64
297 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
298 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
299 	 * all other cases are NOPs, hence this check.
300 	 */
301 	if (atomic_read(&mm->mm_users) == 0)
302 		return;
303 
304 	/*
305 	 * - Move to a new ASID, but only if the mm is still wired in
306 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
307 	 *    causing h/w - s/w ASID to get out of sync)
308 	 * - Also get_new_mmu_context() new implementation allocates a new
309 	 *   ASID only if it is not allocated already - so unallocate first
310 	 */
311 	destroy_context(mm);
312 	if (current->mm == mm)
313 		get_new_mmu_context(mm);
314 }
315 
316 /*
317  * Flush a Range of TLB entries for userland.
318  * @start is inclusive, while @end is exclusive
319  * Difference between this and Kernel Range Flush is
320  *  -Here the fastest way (if range is too large) is to move to next ASID
321  *      without doing any explicit Shootdown
322  *  -In case of kernel Flush, entry has to be shot down explictly
323  */
324 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
325 			   unsigned long end)
326 {
327 	const unsigned int cpu = smp_processor_id();
328 	unsigned long flags;
329 
330 	/* If range @start to @end is more than 32 TLB entries deep,
331 	 * its better to move to a new ASID rather than searching for
332 	 * individual entries and then shooting them down
333 	 *
334 	 * The calc above is rough, doesn't account for unaligned parts,
335 	 * since this is heuristics based anyways
336 	 */
337 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
338 		local_flush_tlb_mm(vma->vm_mm);
339 		return;
340 	}
341 
342 	/*
343 	 * @start moved to page start: this alone suffices for checking
344 	 * loop end condition below, w/o need for aligning @end to end
345 	 * e.g. 2000 to 4001 will anyhow loop twice
346 	 */
347 	start &= PAGE_MASK;
348 
349 	local_irq_save(flags);
350 
351 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
352 		while (start < end) {
353 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
354 			start += PAGE_SIZE;
355 		}
356 	}
357 
358 	utlb_invalidate();
359 
360 	local_irq_restore(flags);
361 }
362 
363 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
364  *  @start, @end interpreted as kvaddr
365  * Interestingly, shared TLB entries can also be flushed using just
366  * @start,@end alone (interpreted as user vaddr), although technically SASID
367  * is also needed. However our smart TLbProbe lookup takes care of that.
368  */
369 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
370 {
371 	unsigned long flags;
372 
373 	/* exactly same as above, except for TLB entry not taking ASID */
374 
375 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
376 		local_flush_tlb_all();
377 		return;
378 	}
379 
380 	start &= PAGE_MASK;
381 
382 	local_irq_save(flags);
383 	while (start < end) {
384 		tlb_entry_erase(start);
385 		start += PAGE_SIZE;
386 	}
387 
388 	utlb_invalidate();
389 
390 	local_irq_restore(flags);
391 }
392 
393 /*
394  * Delete TLB entry in MMU for a given page (??? address)
395  * NOTE One TLB entry contains translation for single PAGE
396  */
397 
398 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
399 {
400 	const unsigned int cpu = smp_processor_id();
401 	unsigned long flags;
402 
403 	/* Note that it is critical that interrupts are DISABLED between
404 	 * checking the ASID and using it flush the TLB entry
405 	 */
406 	local_irq_save(flags);
407 
408 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
409 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
410 		utlb_invalidate();
411 	}
412 
413 	local_irq_restore(flags);
414 }
415 
416 #ifdef CONFIG_SMP
417 
418 struct tlb_args {
419 	struct vm_area_struct *ta_vma;
420 	unsigned long ta_start;
421 	unsigned long ta_end;
422 };
423 
424 static inline void ipi_flush_tlb_page(void *arg)
425 {
426 	struct tlb_args *ta = arg;
427 
428 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
429 }
430 
431 static inline void ipi_flush_tlb_range(void *arg)
432 {
433 	struct tlb_args *ta = arg;
434 
435 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
436 }
437 
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 static inline void ipi_flush_pmd_tlb_range(void *arg)
440 {
441 	struct tlb_args *ta = arg;
442 
443 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
444 }
445 #endif
446 
447 static inline void ipi_flush_tlb_kernel_range(void *arg)
448 {
449 	struct tlb_args *ta = (struct tlb_args *)arg;
450 
451 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
452 }
453 
454 void flush_tlb_all(void)
455 {
456 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
457 }
458 
459 void flush_tlb_mm(struct mm_struct *mm)
460 {
461 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
462 			 mm, 1);
463 }
464 
465 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
466 {
467 	struct tlb_args ta = {
468 		.ta_vma = vma,
469 		.ta_start = uaddr
470 	};
471 
472 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
473 }
474 
475 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
476 		     unsigned long end)
477 {
478 	struct tlb_args ta = {
479 		.ta_vma = vma,
480 		.ta_start = start,
481 		.ta_end = end
482 	};
483 
484 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
485 }
486 
487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
488 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
489 			 unsigned long end)
490 {
491 	struct tlb_args ta = {
492 		.ta_vma = vma,
493 		.ta_start = start,
494 		.ta_end = end
495 	};
496 
497 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
498 }
499 #endif
500 
501 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
502 {
503 	struct tlb_args ta = {
504 		.ta_start = start,
505 		.ta_end = end
506 	};
507 
508 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
509 }
510 #endif
511 
512 /*
513  * Routine to create a TLB entry
514  */
515 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
516 {
517 	unsigned long flags;
518 	unsigned int asid_or_sasid, rwx;
519 	unsigned long pd0;
520 	pte_t pd1;
521 
522 	/*
523 	 * create_tlb() assumes that current->mm == vma->mm, since
524 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
525 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
526 	 *
527 	 * Removing the assumption involves
528 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
529 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
530 	 * -More importantly it makes this handler inconsistent with fast-path
531 	 *  TLB Refill handler which always deals with "current"
532 	 *
533 	 * Lets see the use cases when current->mm != vma->mm and we land here
534 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
535 	 *     Here VM wants to pre-install a TLB entry for user stack while
536 	 *     current->mm still points to pre-execve mm (hence the condition).
537 	 *     However the stack vaddr is soon relocated (randomization) and
538 	 *     move_page_tables() tries to undo that TLB entry.
539 	 *     Thus not creating TLB entry is not any worse.
540 	 *
541 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
542 	 *     breakpoint in debugged task. Not creating a TLB now is not
543 	 *     performance critical.
544 	 *
545 	 * Both the cases above are not good enough for code churn.
546 	 */
547 	if (current->active_mm != vma->vm_mm)
548 		return;
549 
550 	local_irq_save(flags);
551 
552 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
553 
554 	vaddr &= PAGE_MASK;
555 
556 	/* update this PTE credentials */
557 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
558 
559 	/* Create HW TLB(PD0,PD1) from PTE  */
560 
561 	/* ASID for this task */
562 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
563 
564 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
565 
566 	/*
567 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
568 	 * however Linux only saves 1 set to save PTE real-estate
569 	 * Here we convert 3 PTE bits into 6 MMU bits:
570 	 * -Kernel only entries have Kr Kw Kx 0 0 0
571 	 * -User entries have mirrored K and U bits
572 	 */
573 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
574 
575 	if (pte_val(*ptep) & _PAGE_GLOBAL)
576 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
577 	else
578 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
579 
580 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
581 
582 	tlb_entry_insert(pd0, pd1);
583 
584 	local_irq_restore(flags);
585 }
586 
587 /*
588  * Called at the end of pagefault, for a userspace mapped page
589  *  -pre-install the corresponding TLB entry into MMU
590  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
591  *  	flush_dcache_page(), copy_user_page()
592  *
593  * Note that flush (when done) involves both WBACK - so physical page is
594  * in sync as well as INV - so any non-congruent aliases don't remain
595  */
596 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
597 		      pte_t *ptep)
598 {
599 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
600 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
601 	struct page *page = pfn_to_page(pte_pfn(*ptep));
602 
603 	create_tlb(vma, vaddr, ptep);
604 
605 	if (page == ZERO_PAGE(0)) {
606 		return;
607 	}
608 
609 	/*
610 	 * Exec page : Independent of aliasing/page-color considerations,
611 	 *	       since icache doesn't snoop dcache on ARC, any dirty
612 	 *	       K-mapping of a code page needs to be wback+inv so that
613 	 *	       icache fetch by userspace sees code correctly.
614 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
615 	 *	       so userspace sees the right data.
616 	 *  (Avoids the flush for Non-exec + congruent mapping case)
617 	 */
618 	if ((vma->vm_flags & VM_EXEC) ||
619 	     addr_not_cache_congruent(paddr, vaddr)) {
620 
621 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
622 		if (dirty) {
623 			/* wback + inv dcache lines (K-mapping) */
624 			__flush_dcache_page(paddr, paddr);
625 
626 			/* invalidate any existing icache lines (U-mapping) */
627 			if (vma->vm_flags & VM_EXEC)
628 				__inv_icache_page(paddr, vaddr);
629 		}
630 	}
631 }
632 
633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
634 
635 /*
636  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
637  * support.
638  *
639  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
640  * new bit "SZ" in TLB page descriptor to distinguish between them.
641  * Super Page size is configurable in hardware (4K to 16M), but fixed once
642  * RTL builds.
643  *
644  * The exact THP size a Linx configuration will support is a function of:
645  *  - MMU page size (typical 8K, RTL fixed)
646  *  - software page walker address split between PGD:PTE:PFN (typical
647  *    11:8:13, but can be changed with 1 line)
648  * So for above default, THP size supported is 8K * (2^8) = 2M
649  *
650  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
651  * reduces to 1 level (as PTE is folded into PGD and canonically referred
652  * to as PMD).
653  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
654  */
655 
656 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				 pmd_t *pmd)
658 {
659 	pte_t pte = __pte(pmd_val(*pmd));
660 	update_mmu_cache(vma, addr, &pte);
661 }
662 
663 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
664 				pgtable_t pgtable)
665 {
666 	struct list_head *lh = (struct list_head *) pgtable;
667 
668 	assert_spin_locked(&mm->page_table_lock);
669 
670 	/* FIFO */
671 	if (!pmd_huge_pte(mm, pmdp))
672 		INIT_LIST_HEAD(lh);
673 	else
674 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
675 	pmd_huge_pte(mm, pmdp) = pgtable;
676 }
677 
678 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
679 {
680 	struct list_head *lh;
681 	pgtable_t pgtable;
682 
683 	assert_spin_locked(&mm->page_table_lock);
684 
685 	pgtable = pmd_huge_pte(mm, pmdp);
686 	lh = (struct list_head *) pgtable;
687 	if (list_empty(lh))
688 		pmd_huge_pte(mm, pmdp) = NULL;
689 	else {
690 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
691 		list_del(lh);
692 	}
693 
694 	pte_val(pgtable[0]) = 0;
695 	pte_val(pgtable[1]) = 0;
696 
697 	return pgtable;
698 }
699 
700 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
701 			       unsigned long end)
702 {
703 	unsigned int cpu;
704 	unsigned long flags;
705 
706 	local_irq_save(flags);
707 
708 	cpu = smp_processor_id();
709 
710 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
711 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
712 
713 		/* No need to loop here: this will always be for 1 Huge Page */
714 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
715 	}
716 
717 	local_irq_restore(flags);
718 }
719 
720 #endif
721 
722 /* Read the Cache Build Confuration Registers, Decode them and save into
723  * the cpuinfo structure for later use.
724  * No Validation is done here, simply read/convert the BCRs
725  */
726 void read_decode_mmu_bcr(void)
727 {
728 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
729 	unsigned int tmp;
730 	struct bcr_mmu_1_2 {
731 #ifdef CONFIG_CPU_BIG_ENDIAN
732 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
733 #else
734 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
735 #endif
736 	} *mmu2;
737 
738 	struct bcr_mmu_3 {
739 #ifdef CONFIG_CPU_BIG_ENDIAN
740 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
741 		     u_itlb:4, u_dtlb:4;
742 #else
743 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
744 		     ways:4, ver:8;
745 #endif
746 	} *mmu3;
747 
748 	struct bcr_mmu_4 {
749 #ifdef CONFIG_CPU_BIG_ENDIAN
750 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
751 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
752 #else
753 	/*           DTLB      ITLB      JES        JE         JA      */
754 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
755 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
756 #endif
757 	} *mmu4;
758 
759 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
760 	mmu->ver = (tmp >> 24);
761 
762 	if (is_isa_arcompact()) {
763 		if (mmu->ver <= 2) {
764 			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
765 			mmu->pg_sz_k = TO_KB(0x2000);
766 			mmu->sets = 1 << mmu2->sets;
767 			mmu->ways = 1 << mmu2->ways;
768 			mmu->u_dtlb = mmu2->u_dtlb;
769 			mmu->u_itlb = mmu2->u_itlb;
770 		} else {
771 			mmu3 = (struct bcr_mmu_3 *)&tmp;
772 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
773 			mmu->sets = 1 << mmu3->sets;
774 			mmu->ways = 1 << mmu3->ways;
775 			mmu->u_dtlb = mmu3->u_dtlb;
776 			mmu->u_itlb = mmu3->u_itlb;
777 			mmu->sasid = mmu3->sasid;
778 		}
779 	} else {
780 		mmu4 = (struct bcr_mmu_4 *)&tmp;
781 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
782 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
783 		mmu->sets = 64 << mmu4->n_entry;
784 		mmu->ways = mmu4->n_ways * 2;
785 		mmu->u_dtlb = mmu4->u_dtlb * 4;
786 		mmu->u_itlb = mmu4->u_itlb * 4;
787 		mmu->sasid = mmu4->sasid;
788 		pae_exists = mmu->pae = mmu4->pae;
789 	}
790 }
791 
792 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
793 {
794 	int n = 0;
795 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
796 	char super_pg[64] = "";
797 
798 	if (p_mmu->s_pg_sz_m)
799 		scnprintf(super_pg, 64, "%dM Super Page %s",
800 			  p_mmu->s_pg_sz_m,
801 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
802 
803 	n += scnprintf(buf + n, len - n,
804 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
805 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
806 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
807 		       p_mmu->u_dtlb, p_mmu->u_itlb,
808 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
809 
810 	return buf;
811 }
812 
813 int pae40_exist_but_not_enab(void)
814 {
815 	return pae_exists && !is_pae40_enabled();
816 }
817 
818 void arc_mmu_init(void)
819 {
820 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
821 	char str[256];
822 	int compat = 0;
823 
824 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
825 
826 	/*
827 	 * Can't be done in processor.h due to header include depenedencies
828 	 */
829 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
830 
831 	/*
832 	 * stack top size sanity check,
833 	 * Can't be done in processor.h due to header include depenedencies
834 	 */
835 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
836 
837 	/*
838 	 * Ensure that MMU features assumed by kernel exist in hardware.
839 	 * For older ARC700 cpus, it has to be exact match, since the MMU
840 	 * revisions were not backwards compatible (MMUv3 TLB layout changed
841 	 * so even if kernel for v2 didn't use any new cmds of v3, it would
842 	 * still not work.
843 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
844 	 * (will run older software).
845 	 */
846 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
847 		compat = 1;
848 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
849 		compat = 1;
850 
851 	if (!compat) {
852 		panic("MMU ver %d doesn't match kernel built for %d...\n",
853 		      mmu->ver, CONFIG_ARC_MMU_VER);
854 	}
855 
856 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
857 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
858 
859 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
860 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
861 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
862 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
863 
864 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
865 		panic("Hardware doesn't support PAE40\n");
866 
867 	/* Enable the MMU */
868 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
869 
870 	/* In smp we use this reg for interrupt 1 scratch */
871 #ifndef CONFIG_SMP
872 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
873 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
874 #endif
875 
876 	if (pae40_exist_but_not_enab())
877 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
878 }
879 
880 /*
881  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
882  * The mapping is Column-first.
883  *		---------------------	-----------
884  *		|way0|way1|way2|way3|	|way0|way1|
885  *		---------------------	-----------
886  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
887  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
888  *		~		    ~	~	  ~
889  * [set127]	| 508| 509| 510| 511|	| 254| 255|
890  *		---------------------	-----------
891  * For normal operations we don't(must not) care how above works since
892  * MMU cmd getIndex(vaddr) abstracts that out.
893  * However for walking WAYS of a SET, we need to know this
894  */
895 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
896 
897 /* Handling of Duplicate PD (TLB entry) in MMU.
898  * -Could be due to buggy customer tapeouts or obscure kernel bugs
899  * -MMU complaints not at the time of duplicate PD installation, but at the
900  *      time of lookup matching multiple ways.
901  * -Ideally these should never happen - but if they do - workaround by deleting
902  *      the duplicate one.
903  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
904  */
905 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
906 
907 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
908 			  struct pt_regs *regs)
909 {
910 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
911 	unsigned long flags;
912 	int set, n_ways = mmu->ways;
913 
914 	n_ways = min(n_ways, 4);
915 	BUG_ON(mmu->ways > 4);
916 
917 	local_irq_save(flags);
918 
919 	/* loop thru all sets of TLB */
920 	for (set = 0; set < mmu->sets; set++) {
921 
922 		int is_valid, way;
923 		unsigned int pd0[4];
924 
925 		/* read out all the ways of current set */
926 		for (way = 0, is_valid = 0; way < n_ways; way++) {
927 			write_aux_reg(ARC_REG_TLBINDEX,
928 					  SET_WAY_TO_IDX(mmu, set, way));
929 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
930 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
931 			is_valid |= pd0[way] & _PAGE_PRESENT;
932 			pd0[way] &= PAGE_MASK;
933 		}
934 
935 		/* If all the WAYS in SET are empty, skip to next SET */
936 		if (!is_valid)
937 			continue;
938 
939 		/* Scan the set for duplicate ways: needs a nested loop */
940 		for (way = 0; way < n_ways - 1; way++) {
941 
942 			int n;
943 
944 			if (!pd0[way])
945 				continue;
946 
947 			for (n = way + 1; n < n_ways; n++) {
948 				if (pd0[way] != pd0[n])
949 					continue;
950 
951 				if (!dup_pd_silent)
952 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
953 						pd0[way], set, way, n);
954 
955 				/*
956 				 * clear entry @way and not @n.
957 				 * This is critical to our optimised loop
958 				 */
959 				pd0[way] = 0;
960 				write_aux_reg(ARC_REG_TLBINDEX,
961 						SET_WAY_TO_IDX(mmu, set, way));
962 				__tlb_entry_erase();
963 			}
964 		}
965 	}
966 
967 	local_irq_restore(flags);
968 }
969 
970 /***********************************************************************
971  * Diagnostic Routines
972  *  -Called from Low Level TLB Hanlders if things don;t look good
973  **********************************************************************/
974 
975 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
976 
977 /*
978  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
979  * don't match
980  */
981 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
982 {
983 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
984 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
985 
986 	__asm__ __volatile__("flag 1");
987 }
988 
989 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
990 {
991 	unsigned int mmu_asid;
992 
993 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
994 
995 	/*
996 	 * At the time of a TLB miss/installation
997 	 *   - HW version needs to match SW version
998 	 *   - SW needs to have a valid ASID
999 	 */
1000 	if (addr < 0x70000000 &&
1001 	    ((mm_asid == MM_CTXT_NO_ASID) ||
1002 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003 		print_asid_mismatch(mm_asid, mmu_asid, 0);
1004 }
1005 #endif
1006