1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TLB Management (flush/create/diagnostics) for ARC700 4 * 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 * vineetg: Aug 2011 8 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 9 * 10 * vineetg: May 2011 11 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 12 * some of the LMBench tests improved amazingly 13 * = page-fault thrice as fast (75 usec to 28 usec) 14 * = mmap twice as fast (9.6 msec to 4.6 msec), 15 * = fork (5.3 msec to 3.7 msec) 16 * 17 * vineetg: April 2011 : 18 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 19 * helps avoid a shift when preparing PD0 from PTE 20 * 21 * vineetg: April 2011 : Preparing for MMU V3 22 * -MMU v2/v3 BCRs decoded differently 23 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 24 * -tlb_entry_erase( ) can be void 25 * -local_flush_tlb_range( ): 26 * = need not "ceil" @end 27 * = walks MMU only if range spans < 32 entries, as opposed to 256 28 * 29 * Vineetg: Sept 10th 2008 30 * -Changes related to MMU v2 (Rel 4.8) 31 * 32 * Vineetg: Aug 29th 2008 33 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 34 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 35 * it fails. Thus need to load it with ANY valid value before invoking 36 * TLBIVUTLB cmd 37 * 38 * Vineetg: Aug 21th 2008: 39 * -Reduced the duration of IRQ lockouts in TLB Flush routines 40 * -Multiple copies of TLB erase code seperated into a "single" function 41 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 42 * in interrupt-safe region. 43 * 44 * Vineetg: April 23rd Bug #93131 45 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to 46 * flush is more than the size of TLB itself. 47 * 48 * Rahul Trivedi : Codito Technologies 2004 49 */ 50 51 #include <linux/module.h> 52 #include <linux/bug.h> 53 #include <linux/mm_types.h> 54 55 #include <asm/arcregs.h> 56 #include <asm/setup.h> 57 #include <asm/mmu_context.h> 58 #include <asm/mmu.h> 59 60 /* Need for ARC MMU v2 61 * 62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 64 * map into same set, there would be contention for the 2 ways causing severe 65 * Thrashing. 66 * 67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 69 * Given this, the thrasing problem should never happen because once the 3 70 * J-TLB entries are created (even though 3rd will knock out one of the prev 71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 72 * 73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 74 * This is a simple design for keeping them in sync. So what do we do? 75 * The solution which James came up was pretty neat. It utilised the assoc 76 * of uTLBs by not invalidating always but only when absolutely necessary. 77 * 78 * - Existing TLB commands work as before 79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 80 * - New command (TLBIVUTLB) to invalidate uTLBs. 81 * 82 * The uTLBs need only be invalidated when pages are being removed from the 83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 84 * as a result of a miss, the removed entry is still allowed to exist in the 85 * uTLBs as it is still valid and present in the OS page table. This allows the 86 * full associativity of the uTLBs to hide the limited associativity of the main 87 * TLB. 88 * 89 * During a miss handler, the new "TLBWriteNI" command is used to load 90 * entries without clearing the uTLBs. 91 * 92 * When the OS page table is updated, TLB entries that may be associated with a 93 * removed page are removed (flushed) from the TLB using TLBWrite. In this 94 * circumstance, the uTLBs must also be cleared. This is done by using the 95 * existing TLBWrite command. An explicit IVUTLB is also required for those 96 * corner cases when TLBWrite was not executed at all because the corresp 97 * J-TLB entry got evicted/replaced. 98 */ 99 100 101 /* A copy of the ASID from the PID reg is kept in asid_cache */ 102 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 103 104 static int __read_mostly pae_exists; 105 106 /* 107 * Utility Routine to erase a J-TLB entry 108 * Caller needs to setup Index Reg (manually or via getIndex) 109 */ 110 static inline void __tlb_entry_erase(void) 111 { 112 write_aux_reg(ARC_REG_TLBPD1, 0); 113 114 if (is_pae40_enabled()) 115 write_aux_reg(ARC_REG_TLBPD1HI, 0); 116 117 write_aux_reg(ARC_REG_TLBPD0, 0); 118 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 119 } 120 121 #if (CONFIG_ARC_MMU_VER < 4) 122 123 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 124 { 125 unsigned int idx; 126 127 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 128 129 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 130 idx = read_aux_reg(ARC_REG_TLBINDEX); 131 132 return idx; 133 } 134 135 static void tlb_entry_erase(unsigned int vaddr_n_asid) 136 { 137 unsigned int idx; 138 139 /* Locate the TLB entry for this vaddr + ASID */ 140 idx = tlb_entry_lkup(vaddr_n_asid); 141 142 /* No error means entry found, zero it out */ 143 if (likely(!(idx & TLB_LKUP_ERR))) { 144 __tlb_entry_erase(); 145 } else { 146 /* Duplicate entry error */ 147 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 148 vaddr_n_asid); 149 } 150 } 151 152 /**************************************************************************** 153 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 154 * 155 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 156 * 157 * utlb_invalidate ( ) 158 * -For v2 MMU calls Flush uTLB Cmd 159 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 160 * This is because in v1 TLBWrite itself invalidate uTLBs 161 ***************************************************************************/ 162 163 static void utlb_invalidate(void) 164 { 165 #if (CONFIG_ARC_MMU_VER >= 2) 166 167 #if (CONFIG_ARC_MMU_VER == 2) 168 /* MMU v2 introduced the uTLB Flush command. 169 * There was however an obscure hardware bug, where uTLB flush would 170 * fail when a prior probe for J-TLB (both totally unrelated) would 171 * return lkup err - because the entry didn't exist in MMU. 172 * The Workround was to set Index reg with some valid value, prior to 173 * flush. This was fixed in MMU v3 hence not needed any more 174 */ 175 unsigned int idx; 176 177 /* make sure INDEX Reg is valid */ 178 idx = read_aux_reg(ARC_REG_TLBINDEX); 179 180 /* If not write some dummy val */ 181 if (unlikely(idx & TLB_LKUP_ERR)) 182 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 183 #endif 184 185 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 186 #endif 187 188 } 189 190 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 191 { 192 unsigned int idx; 193 194 /* 195 * First verify if entry for this vaddr+ASID already exists 196 * This also sets up PD0 (vaddr, ASID..) for final commit 197 */ 198 idx = tlb_entry_lkup(pd0); 199 200 /* 201 * If Not already present get a free slot from MMU. 202 * Otherwise, Probe would have located the entry and set INDEX Reg 203 * with existing location. This will cause Write CMD to over-write 204 * existing entry with new PD0 and PD1 205 */ 206 if (likely(idx & TLB_LKUP_ERR)) 207 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 208 209 /* setup the other half of TLB entry (pfn, rwx..) */ 210 write_aux_reg(ARC_REG_TLBPD1, pd1); 211 212 /* 213 * Commit the Entry to MMU 214 * It doesn't sound safe to use the TLBWriteNI cmd here 215 * which doesn't flush uTLBs. I'd rather be safe than sorry. 216 */ 217 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 218 } 219 220 #else /* CONFIG_ARC_MMU_VER >= 4) */ 221 222 static void utlb_invalidate(void) 223 { 224 /* No need since uTLB is always in sync with JTLB */ 225 } 226 227 static void tlb_entry_erase(unsigned int vaddr_n_asid) 228 { 229 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 230 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 231 } 232 233 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 234 { 235 write_aux_reg(ARC_REG_TLBPD0, pd0); 236 write_aux_reg(ARC_REG_TLBPD1, pd1); 237 238 if (is_pae40_enabled()) 239 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 240 241 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 242 } 243 244 #endif 245 246 /* 247 * Un-conditionally (without lookup) erase the entire MMU contents 248 */ 249 250 noinline void local_flush_tlb_all(void) 251 { 252 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 253 unsigned long flags; 254 unsigned int entry; 255 int num_tlb = mmu->sets * mmu->ways; 256 257 local_irq_save(flags); 258 259 /* Load PD0 and PD1 with template for a Blank Entry */ 260 write_aux_reg(ARC_REG_TLBPD1, 0); 261 262 if (is_pae40_enabled()) 263 write_aux_reg(ARC_REG_TLBPD1HI, 0); 264 265 write_aux_reg(ARC_REG_TLBPD0, 0); 266 267 for (entry = 0; entry < num_tlb; entry++) { 268 /* write this entry to the TLB */ 269 write_aux_reg(ARC_REG_TLBINDEX, entry); 270 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 271 } 272 273 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 274 const int stlb_idx = 0x800; 275 276 /* Blank sTLB entry */ 277 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 278 279 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 280 write_aux_reg(ARC_REG_TLBINDEX, entry); 281 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 282 } 283 } 284 285 utlb_invalidate(); 286 287 local_irq_restore(flags); 288 } 289 290 /* 291 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 292 */ 293 noinline void local_flush_tlb_mm(struct mm_struct *mm) 294 { 295 /* 296 * Small optimisation courtesy IA64 297 * flush_mm called during fork,exit,munmap etc, multiple times as well. 298 * Only for fork( ) do we need to move parent to a new MMU ctxt, 299 * all other cases are NOPs, hence this check. 300 */ 301 if (atomic_read(&mm->mm_users) == 0) 302 return; 303 304 /* 305 * - Move to a new ASID, but only if the mm is still wired in 306 * (Android Binder ended up calling this for vma->mm != tsk->mm, 307 * causing h/w - s/w ASID to get out of sync) 308 * - Also get_new_mmu_context() new implementation allocates a new 309 * ASID only if it is not allocated already - so unallocate first 310 */ 311 destroy_context(mm); 312 if (current->mm == mm) 313 get_new_mmu_context(mm); 314 } 315 316 /* 317 * Flush a Range of TLB entries for userland. 318 * @start is inclusive, while @end is exclusive 319 * Difference between this and Kernel Range Flush is 320 * -Here the fastest way (if range is too large) is to move to next ASID 321 * without doing any explicit Shootdown 322 * -In case of kernel Flush, entry has to be shot down explictly 323 */ 324 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 325 unsigned long end) 326 { 327 const unsigned int cpu = smp_processor_id(); 328 unsigned long flags; 329 330 /* If range @start to @end is more than 32 TLB entries deep, 331 * its better to move to a new ASID rather than searching for 332 * individual entries and then shooting them down 333 * 334 * The calc above is rough, doesn't account for unaligned parts, 335 * since this is heuristics based anyways 336 */ 337 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 338 local_flush_tlb_mm(vma->vm_mm); 339 return; 340 } 341 342 /* 343 * @start moved to page start: this alone suffices for checking 344 * loop end condition below, w/o need for aligning @end to end 345 * e.g. 2000 to 4001 will anyhow loop twice 346 */ 347 start &= PAGE_MASK; 348 349 local_irq_save(flags); 350 351 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 352 while (start < end) { 353 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 354 start += PAGE_SIZE; 355 } 356 } 357 358 utlb_invalidate(); 359 360 local_irq_restore(flags); 361 } 362 363 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 364 * @start, @end interpreted as kvaddr 365 * Interestingly, shared TLB entries can also be flushed using just 366 * @start,@end alone (interpreted as user vaddr), although technically SASID 367 * is also needed. However our smart TLbProbe lookup takes care of that. 368 */ 369 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 370 { 371 unsigned long flags; 372 373 /* exactly same as above, except for TLB entry not taking ASID */ 374 375 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 376 local_flush_tlb_all(); 377 return; 378 } 379 380 start &= PAGE_MASK; 381 382 local_irq_save(flags); 383 while (start < end) { 384 tlb_entry_erase(start); 385 start += PAGE_SIZE; 386 } 387 388 utlb_invalidate(); 389 390 local_irq_restore(flags); 391 } 392 393 /* 394 * Delete TLB entry in MMU for a given page (??? address) 395 * NOTE One TLB entry contains translation for single PAGE 396 */ 397 398 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 399 { 400 const unsigned int cpu = smp_processor_id(); 401 unsigned long flags; 402 403 /* Note that it is critical that interrupts are DISABLED between 404 * checking the ASID and using it flush the TLB entry 405 */ 406 local_irq_save(flags); 407 408 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 409 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 410 utlb_invalidate(); 411 } 412 413 local_irq_restore(flags); 414 } 415 416 #ifdef CONFIG_SMP 417 418 struct tlb_args { 419 struct vm_area_struct *ta_vma; 420 unsigned long ta_start; 421 unsigned long ta_end; 422 }; 423 424 static inline void ipi_flush_tlb_page(void *arg) 425 { 426 struct tlb_args *ta = arg; 427 428 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 429 } 430 431 static inline void ipi_flush_tlb_range(void *arg) 432 { 433 struct tlb_args *ta = arg; 434 435 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 436 } 437 438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 439 static inline void ipi_flush_pmd_tlb_range(void *arg) 440 { 441 struct tlb_args *ta = arg; 442 443 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 444 } 445 #endif 446 447 static inline void ipi_flush_tlb_kernel_range(void *arg) 448 { 449 struct tlb_args *ta = (struct tlb_args *)arg; 450 451 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 452 } 453 454 void flush_tlb_all(void) 455 { 456 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 457 } 458 459 void flush_tlb_mm(struct mm_struct *mm) 460 { 461 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 462 mm, 1); 463 } 464 465 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 466 { 467 struct tlb_args ta = { 468 .ta_vma = vma, 469 .ta_start = uaddr 470 }; 471 472 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 473 } 474 475 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 476 unsigned long end) 477 { 478 struct tlb_args ta = { 479 .ta_vma = vma, 480 .ta_start = start, 481 .ta_end = end 482 }; 483 484 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 485 } 486 487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 488 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 489 unsigned long end) 490 { 491 struct tlb_args ta = { 492 .ta_vma = vma, 493 .ta_start = start, 494 .ta_end = end 495 }; 496 497 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 498 } 499 #endif 500 501 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 502 { 503 struct tlb_args ta = { 504 .ta_start = start, 505 .ta_end = end 506 }; 507 508 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 509 } 510 #endif 511 512 /* 513 * Routine to create a TLB entry 514 */ 515 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 516 { 517 unsigned long flags; 518 unsigned int asid_or_sasid, rwx; 519 unsigned long pd0; 520 pte_t pd1; 521 522 /* 523 * create_tlb() assumes that current->mm == vma->mm, since 524 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 525 * -completes the lazy write to SASID reg (again valid for curr tsk) 526 * 527 * Removing the assumption involves 528 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 529 * -Fix the TLB paranoid debug code to not trigger false negatives. 530 * -More importantly it makes this handler inconsistent with fast-path 531 * TLB Refill handler which always deals with "current" 532 * 533 * Lets see the use cases when current->mm != vma->mm and we land here 534 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 535 * Here VM wants to pre-install a TLB entry for user stack while 536 * current->mm still points to pre-execve mm (hence the condition). 537 * However the stack vaddr is soon relocated (randomization) and 538 * move_page_tables() tries to undo that TLB entry. 539 * Thus not creating TLB entry is not any worse. 540 * 541 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 542 * breakpoint in debugged task. Not creating a TLB now is not 543 * performance critical. 544 * 545 * Both the cases above are not good enough for code churn. 546 */ 547 if (current->active_mm != vma->vm_mm) 548 return; 549 550 local_irq_save(flags); 551 552 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); 553 554 vaddr &= PAGE_MASK; 555 556 /* update this PTE credentials */ 557 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 558 559 /* Create HW TLB(PD0,PD1) from PTE */ 560 561 /* ASID for this task */ 562 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 563 564 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 565 566 /* 567 * ARC MMU provides fully orthogonal access bits for K/U mode, 568 * however Linux only saves 1 set to save PTE real-estate 569 * Here we convert 3 PTE bits into 6 MMU bits: 570 * -Kernel only entries have Kr Kw Kx 0 0 0 571 * -User entries have mirrored K and U bits 572 */ 573 rwx = pte_val(*ptep) & PTE_BITS_RWX; 574 575 if (pte_val(*ptep) & _PAGE_GLOBAL) 576 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 577 else 578 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 579 580 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 581 582 tlb_entry_insert(pd0, pd1); 583 584 local_irq_restore(flags); 585 } 586 587 /* 588 * Called at the end of pagefault, for a userspace mapped page 589 * -pre-install the corresponding TLB entry into MMU 590 * -Finalize the delayed D-cache flush of kernel mapping of page due to 591 * flush_dcache_page(), copy_user_page() 592 * 593 * Note that flush (when done) involves both WBACK - so physical page is 594 * in sync as well as INV - so any non-congruent aliases don't remain 595 */ 596 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 597 pte_t *ptep) 598 { 599 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 600 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK; 601 struct page *page = pfn_to_page(pte_pfn(*ptep)); 602 603 create_tlb(vma, vaddr, ptep); 604 605 if (page == ZERO_PAGE(0)) { 606 return; 607 } 608 609 /* 610 * Exec page : Independent of aliasing/page-color considerations, 611 * since icache doesn't snoop dcache on ARC, any dirty 612 * K-mapping of a code page needs to be wback+inv so that 613 * icache fetch by userspace sees code correctly. 614 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 615 * so userspace sees the right data. 616 * (Avoids the flush for Non-exec + congruent mapping case) 617 */ 618 if ((vma->vm_flags & VM_EXEC) || 619 addr_not_cache_congruent(paddr, vaddr)) { 620 621 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 622 if (dirty) { 623 /* wback + inv dcache lines (K-mapping) */ 624 __flush_dcache_page(paddr, paddr); 625 626 /* invalidate any existing icache lines (U-mapping) */ 627 if (vma->vm_flags & VM_EXEC) 628 __inv_icache_page(paddr, vaddr); 629 } 630 } 631 } 632 633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 634 635 /* 636 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 637 * support. 638 * 639 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 640 * new bit "SZ" in TLB page descriptor to distinguish between them. 641 * Super Page size is configurable in hardware (4K to 16M), but fixed once 642 * RTL builds. 643 * 644 * The exact THP size a Linx configuration will support is a function of: 645 * - MMU page size (typical 8K, RTL fixed) 646 * - software page walker address split between PGD:PTE:PFN (typical 647 * 11:8:13, but can be changed with 1 line) 648 * So for above default, THP size supported is 8K * (2^8) = 2M 649 * 650 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 651 * reduces to 1 level (as PTE is folded into PGD and canonically referred 652 * to as PMD). 653 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 654 */ 655 656 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 657 pmd_t *pmd) 658 { 659 pte_t pte = __pte(pmd_val(*pmd)); 660 update_mmu_cache(vma, addr, &pte); 661 } 662 663 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 664 pgtable_t pgtable) 665 { 666 struct list_head *lh = (struct list_head *) pgtable; 667 668 assert_spin_locked(&mm->page_table_lock); 669 670 /* FIFO */ 671 if (!pmd_huge_pte(mm, pmdp)) 672 INIT_LIST_HEAD(lh); 673 else 674 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 675 pmd_huge_pte(mm, pmdp) = pgtable; 676 } 677 678 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 679 { 680 struct list_head *lh; 681 pgtable_t pgtable; 682 683 assert_spin_locked(&mm->page_table_lock); 684 685 pgtable = pmd_huge_pte(mm, pmdp); 686 lh = (struct list_head *) pgtable; 687 if (list_empty(lh)) 688 pmd_huge_pte(mm, pmdp) = NULL; 689 else { 690 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 691 list_del(lh); 692 } 693 694 pte_val(pgtable[0]) = 0; 695 pte_val(pgtable[1]) = 0; 696 697 return pgtable; 698 } 699 700 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 701 unsigned long end) 702 { 703 unsigned int cpu; 704 unsigned long flags; 705 706 local_irq_save(flags); 707 708 cpu = smp_processor_id(); 709 710 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 711 unsigned int asid = hw_pid(vma->vm_mm, cpu); 712 713 /* No need to loop here: this will always be for 1 Huge Page */ 714 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 715 } 716 717 local_irq_restore(flags); 718 } 719 720 #endif 721 722 /* Read the Cache Build Confuration Registers, Decode them and save into 723 * the cpuinfo structure for later use. 724 * No Validation is done here, simply read/convert the BCRs 725 */ 726 void read_decode_mmu_bcr(void) 727 { 728 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 729 unsigned int tmp; 730 struct bcr_mmu_1_2 { 731 #ifdef CONFIG_CPU_BIG_ENDIAN 732 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 733 #else 734 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 735 #endif 736 } *mmu2; 737 738 struct bcr_mmu_3 { 739 #ifdef CONFIG_CPU_BIG_ENDIAN 740 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, 741 u_itlb:4, u_dtlb:4; 742 #else 743 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, 744 ways:4, ver:8; 745 #endif 746 } *mmu3; 747 748 struct bcr_mmu_4 { 749 #ifdef CONFIG_CPU_BIG_ENDIAN 750 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 751 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 752 #else 753 /* DTLB ITLB JES JE JA */ 754 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 755 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 756 #endif 757 } *mmu4; 758 759 tmp = read_aux_reg(ARC_REG_MMU_BCR); 760 mmu->ver = (tmp >> 24); 761 762 if (is_isa_arcompact()) { 763 if (mmu->ver <= 2) { 764 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 765 mmu->pg_sz_k = TO_KB(0x2000); 766 mmu->sets = 1 << mmu2->sets; 767 mmu->ways = 1 << mmu2->ways; 768 mmu->u_dtlb = mmu2->u_dtlb; 769 mmu->u_itlb = mmu2->u_itlb; 770 } else { 771 mmu3 = (struct bcr_mmu_3 *)&tmp; 772 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 773 mmu->sets = 1 << mmu3->sets; 774 mmu->ways = 1 << mmu3->ways; 775 mmu->u_dtlb = mmu3->u_dtlb; 776 mmu->u_itlb = mmu3->u_itlb; 777 mmu->sasid = mmu3->sasid; 778 } 779 } else { 780 mmu4 = (struct bcr_mmu_4 *)&tmp; 781 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 782 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 783 mmu->sets = 64 << mmu4->n_entry; 784 mmu->ways = mmu4->n_ways * 2; 785 mmu->u_dtlb = mmu4->u_dtlb * 4; 786 mmu->u_itlb = mmu4->u_itlb * 4; 787 mmu->sasid = mmu4->sasid; 788 pae_exists = mmu->pae = mmu4->pae; 789 } 790 } 791 792 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 793 { 794 int n = 0; 795 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 796 char super_pg[64] = ""; 797 798 if (p_mmu->s_pg_sz_m) 799 scnprintf(super_pg, 64, "%dM Super Page %s", 800 p_mmu->s_pg_sz_m, 801 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); 802 803 n += scnprintf(buf + n, len - n, 804 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", 805 p_mmu->ver, p_mmu->pg_sz_k, super_pg, 806 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, 807 p_mmu->u_dtlb, p_mmu->u_itlb, 808 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); 809 810 return buf; 811 } 812 813 int pae40_exist_but_not_enab(void) 814 { 815 return pae_exists && !is_pae40_enabled(); 816 } 817 818 void arc_mmu_init(void) 819 { 820 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 821 char str[256]; 822 int compat = 0; 823 824 pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); 825 826 /* 827 * Can't be done in processor.h due to header include depenedencies 828 */ 829 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); 830 831 /* 832 * stack top size sanity check, 833 * Can't be done in processor.h due to header include depenedencies 834 */ 835 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); 836 837 /* 838 * Ensure that MMU features assumed by kernel exist in hardware. 839 * For older ARC700 cpus, it has to be exact match, since the MMU 840 * revisions were not backwards compatible (MMUv3 TLB layout changed 841 * so even if kernel for v2 didn't use any new cmds of v3, it would 842 * still not work. 843 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible 844 * (will run older software). 845 */ 846 if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER) 847 compat = 1; 848 else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER) 849 compat = 1; 850 851 if (!compat) { 852 panic("MMU ver %d doesn't match kernel built for %d...\n", 853 mmu->ver, CONFIG_ARC_MMU_VER); 854 } 855 856 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 857 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 858 859 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 860 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 861 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 862 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 863 864 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 865 panic("Hardware doesn't support PAE40\n"); 866 867 /* Enable the MMU */ 868 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 869 870 /* In smp we use this reg for interrupt 1 scratch */ 871 #ifndef CONFIG_SMP 872 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 873 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 874 #endif 875 876 if (pae40_exist_but_not_enab()) 877 write_aux_reg(ARC_REG_TLBPD1HI, 0); 878 } 879 880 /* 881 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 882 * The mapping is Column-first. 883 * --------------------- ----------- 884 * |way0|way1|way2|way3| |way0|way1| 885 * --------------------- ----------- 886 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 887 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 888 * ~ ~ ~ ~ 889 * [set127] | 508| 509| 510| 511| | 254| 255| 890 * --------------------- ----------- 891 * For normal operations we don't(must not) care how above works since 892 * MMU cmd getIndex(vaddr) abstracts that out. 893 * However for walking WAYS of a SET, we need to know this 894 */ 895 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 896 897 /* Handling of Duplicate PD (TLB entry) in MMU. 898 * -Could be due to buggy customer tapeouts or obscure kernel bugs 899 * -MMU complaints not at the time of duplicate PD installation, but at the 900 * time of lookup matching multiple ways. 901 * -Ideally these should never happen - but if they do - workaround by deleting 902 * the duplicate one. 903 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 904 */ 905 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ 906 907 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 908 struct pt_regs *regs) 909 { 910 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 911 unsigned long flags; 912 int set, n_ways = mmu->ways; 913 914 n_ways = min(n_ways, 4); 915 BUG_ON(mmu->ways > 4); 916 917 local_irq_save(flags); 918 919 /* loop thru all sets of TLB */ 920 for (set = 0; set < mmu->sets; set++) { 921 922 int is_valid, way; 923 unsigned int pd0[4]; 924 925 /* read out all the ways of current set */ 926 for (way = 0, is_valid = 0; way < n_ways; way++) { 927 write_aux_reg(ARC_REG_TLBINDEX, 928 SET_WAY_TO_IDX(mmu, set, way)); 929 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 930 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 931 is_valid |= pd0[way] & _PAGE_PRESENT; 932 pd0[way] &= PAGE_MASK; 933 } 934 935 /* If all the WAYS in SET are empty, skip to next SET */ 936 if (!is_valid) 937 continue; 938 939 /* Scan the set for duplicate ways: needs a nested loop */ 940 for (way = 0; way < n_ways - 1; way++) { 941 942 int n; 943 944 if (!pd0[way]) 945 continue; 946 947 for (n = way + 1; n < n_ways; n++) { 948 if (pd0[way] != pd0[n]) 949 continue; 950 951 if (!dup_pd_silent) 952 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 953 pd0[way], set, way, n); 954 955 /* 956 * clear entry @way and not @n. 957 * This is critical to our optimised loop 958 */ 959 pd0[way] = 0; 960 write_aux_reg(ARC_REG_TLBINDEX, 961 SET_WAY_TO_IDX(mmu, set, way)); 962 __tlb_entry_erase(); 963 } 964 } 965 } 966 967 local_irq_restore(flags); 968 } 969 970 /*********************************************************************** 971 * Diagnostic Routines 972 * -Called from Low Level TLB Hanlders if things don;t look good 973 **********************************************************************/ 974 975 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 976 977 /* 978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 979 * don't match 980 */ 981 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 982 { 983 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 984 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 985 986 __asm__ __volatile__("flag 1"); 987 } 988 989 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 990 { 991 unsigned int mmu_asid; 992 993 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 994 995 /* 996 * At the time of a TLB miss/installation 997 * - HW version needs to match SW version 998 * - SW needs to have a valid ASID 999 */ 1000 if (addr < 0x70000000 && 1001 ((mm_asid == MM_CTXT_NO_ASID) || 1002 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 1003 print_asid_mismatch(mm_asid, mmu_asid, 0); 1004 } 1005 #endif 1006