xref: /openbmc/linux/arch/arc/mm/tlb.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TLB Management (flush/create/diagnostics) for ARC700
4  *
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * vineetg: Aug 2011
8  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
9  *
10  * vineetg: May 2011
11  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
12  *   some of the LMBench tests improved amazingly
13  *      = page-fault thrice as fast (75 usec to 28 usec)
14  *      = mmap twice as fast (9.6 msec to 4.6 msec),
15  *      = fork (5.3 msec to 3.7 msec)
16  *
17  * vineetg: April 2011 :
18  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
19  *      helps avoid a shift when preparing PD0 from PTE
20  *
21  * vineetg: April 2011 : Preparing for MMU V3
22  *  -MMU v2/v3 BCRs decoded differently
23  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
24  *  -tlb_entry_erase( ) can be void
25  *  -local_flush_tlb_range( ):
26  *      = need not "ceil" @end
27  *      = walks MMU only if range spans < 32 entries, as opposed to 256
28  *
29  * Vineetg: Sept 10th 2008
30  *  -Changes related to MMU v2 (Rel 4.8)
31  *
32  * Vineetg: Aug 29th 2008
33  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
34  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
35  *    it fails. Thus need to load it with ANY valid value before invoking
36  *    TLBIVUTLB cmd
37  *
38  * Vineetg: Aug 21th 2008:
39  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
40  *  -Multiple copies of TLB erase code seperated into a "single" function
41  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
42  *       in interrupt-safe region.
43  *
44  * Vineetg: April 23rd Bug #93131
45  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
46  *              flush is more than the size of TLB itself.
47  *
48  * Rahul Trivedi : Codito Technologies 2004
49  */
50 
51 #include <linux/module.h>
52 #include <linux/bug.h>
53 #include <linux/mm_types.h>
54 
55 #include <asm/arcregs.h>
56 #include <asm/setup.h>
57 #include <asm/mmu_context.h>
58 #include <asm/mmu.h>
59 
60 /*			Need for ARC MMU v2
61  *
62  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64  * map into same set, there would be contention for the 2 ways causing severe
65  * Thrashing.
66  *
67  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69  * Given this, the thrasing problem should never happen because once the 3
70  * J-TLB entries are created (even though 3rd will knock out one of the prev
71  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72  *
73  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74  * This is a simple design for keeping them in sync. So what do we do?
75  * The solution which James came up was pretty neat. It utilised the assoc
76  * of uTLBs by not invalidating always but only when absolutely necessary.
77  *
78  * - Existing TLB commands work as before
79  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80  * - New command (TLBIVUTLB) to invalidate uTLBs.
81  *
82  * The uTLBs need only be invalidated when pages are being removed from the
83  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84  * as a result of a miss, the removed entry is still allowed to exist in the
85  * uTLBs as it is still valid and present in the OS page table. This allows the
86  * full associativity of the uTLBs to hide the limited associativity of the main
87  * TLB.
88  *
89  * During a miss handler, the new "TLBWriteNI" command is used to load
90  * entries without clearing the uTLBs.
91  *
92  * When the OS page table is updated, TLB entries that may be associated with a
93  * removed page are removed (flushed) from the TLB using TLBWrite. In this
94  * circumstance, the uTLBs must also be cleared. This is done by using the
95  * existing TLBWrite command. An explicit IVUTLB is also required for those
96  * corner cases when TLBWrite was not executed at all because the corresp
97  * J-TLB entry got evicted/replaced.
98  */
99 
100 
101 /* A copy of the ASID from the PID reg is kept in asid_cache */
102 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
103 
104 static int __read_mostly pae_exists;
105 
106 /*
107  * Utility Routine to erase a J-TLB entry
108  * Caller needs to setup Index Reg (manually or via getIndex)
109  */
110 static inline void __tlb_entry_erase(void)
111 {
112 	write_aux_reg(ARC_REG_TLBPD1, 0);
113 
114 	if (is_pae40_enabled())
115 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
116 
117 	write_aux_reg(ARC_REG_TLBPD0, 0);
118 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
119 }
120 
121 static void utlb_invalidate(void)
122 {
123 #if (CONFIG_ARC_MMU_VER >= 2)
124 
125 #if (CONFIG_ARC_MMU_VER == 2)
126 	/* MMU v2 introduced the uTLB Flush command.
127 	 * There was however an obscure hardware bug, where uTLB flush would
128 	 * fail when a prior probe for J-TLB (both totally unrelated) would
129 	 * return lkup err - because the entry didn't exist in MMU.
130 	 * The Workround was to set Index reg with some valid value, prior to
131 	 * flush. This was fixed in MMU v3
132 	 */
133 	unsigned int idx;
134 
135 	/* make sure INDEX Reg is valid */
136 	idx = read_aux_reg(ARC_REG_TLBINDEX);
137 
138 	/* If not write some dummy val */
139 	if (unlikely(idx & TLB_LKUP_ERR))
140 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
141 #endif
142 
143 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
144 #endif
145 
146 }
147 
148 #if (CONFIG_ARC_MMU_VER < 4)
149 
150 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
151 {
152 	unsigned int idx;
153 
154 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
155 
156 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
157 	idx = read_aux_reg(ARC_REG_TLBINDEX);
158 
159 	return idx;
160 }
161 
162 static void tlb_entry_erase(unsigned int vaddr_n_asid)
163 {
164 	unsigned int idx;
165 
166 	/* Locate the TLB entry for this vaddr + ASID */
167 	idx = tlb_entry_lkup(vaddr_n_asid);
168 
169 	/* No error means entry found, zero it out */
170 	if (likely(!(idx & TLB_LKUP_ERR))) {
171 		__tlb_entry_erase();
172 	} else {
173 		/* Duplicate entry error */
174 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
175 					   vaddr_n_asid);
176 	}
177 }
178 
179 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
180 {
181 	unsigned int idx;
182 
183 	/*
184 	 * First verify if entry for this vaddr+ASID already exists
185 	 * This also sets up PD0 (vaddr, ASID..) for final commit
186 	 */
187 	idx = tlb_entry_lkup(pd0);
188 
189 	/*
190 	 * If Not already present get a free slot from MMU.
191 	 * Otherwise, Probe would have located the entry and set INDEX Reg
192 	 * with existing location. This will cause Write CMD to over-write
193 	 * existing entry with new PD0 and PD1
194 	 */
195 	if (likely(idx & TLB_LKUP_ERR))
196 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
197 
198 	/* setup the other half of TLB entry (pfn, rwx..) */
199 	write_aux_reg(ARC_REG_TLBPD1, pd1);
200 
201 	/*
202 	 * Commit the Entry to MMU
203 	 * It doesn't sound safe to use the TLBWriteNI cmd here
204 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
205 	 */
206 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
207 }
208 
209 #else	/* CONFIG_ARC_MMU_VER >= 4) */
210 
211 static void tlb_entry_erase(unsigned int vaddr_n_asid)
212 {
213 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
214 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
215 }
216 
217 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
218 {
219 	write_aux_reg(ARC_REG_TLBPD0, pd0);
220 	write_aux_reg(ARC_REG_TLBPD1, pd1);
221 
222 	if (is_pae40_enabled())
223 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
224 
225 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
226 }
227 
228 #endif
229 
230 /*
231  * Un-conditionally (without lookup) erase the entire MMU contents
232  */
233 
234 noinline void local_flush_tlb_all(void)
235 {
236 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
237 	unsigned long flags;
238 	unsigned int entry;
239 	int num_tlb = mmu->sets * mmu->ways;
240 
241 	local_irq_save(flags);
242 
243 	/* Load PD0 and PD1 with template for a Blank Entry */
244 	write_aux_reg(ARC_REG_TLBPD1, 0);
245 
246 	if (is_pae40_enabled())
247 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
248 
249 	write_aux_reg(ARC_REG_TLBPD0, 0);
250 
251 	for (entry = 0; entry < num_tlb; entry++) {
252 		/* write this entry to the TLB */
253 		write_aux_reg(ARC_REG_TLBINDEX, entry);
254 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
255 	}
256 
257 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
258 		const int stlb_idx = 0x800;
259 
260 		/* Blank sTLB entry */
261 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
262 
263 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
264 			write_aux_reg(ARC_REG_TLBINDEX, entry);
265 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
266 		}
267 	}
268 
269 	utlb_invalidate();
270 
271 	local_irq_restore(flags);
272 }
273 
274 /*
275  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
276  */
277 noinline void local_flush_tlb_mm(struct mm_struct *mm)
278 {
279 	/*
280 	 * Small optimisation courtesy IA64
281 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
282 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
283 	 * all other cases are NOPs, hence this check.
284 	 */
285 	if (atomic_read(&mm->mm_users) == 0)
286 		return;
287 
288 	/*
289 	 * - Move to a new ASID, but only if the mm is still wired in
290 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
291 	 *    causing h/w - s/w ASID to get out of sync)
292 	 * - Also get_new_mmu_context() new implementation allocates a new
293 	 *   ASID only if it is not allocated already - so unallocate first
294 	 */
295 	destroy_context(mm);
296 	if (current->mm == mm)
297 		get_new_mmu_context(mm);
298 }
299 
300 /*
301  * Flush a Range of TLB entries for userland.
302  * @start is inclusive, while @end is exclusive
303  * Difference between this and Kernel Range Flush is
304  *  -Here the fastest way (if range is too large) is to move to next ASID
305  *      without doing any explicit Shootdown
306  *  -In case of kernel Flush, entry has to be shot down explictly
307  */
308 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
309 			   unsigned long end)
310 {
311 	const unsigned int cpu = smp_processor_id();
312 	unsigned long flags;
313 
314 	/* If range @start to @end is more than 32 TLB entries deep,
315 	 * its better to move to a new ASID rather than searching for
316 	 * individual entries and then shooting them down
317 	 *
318 	 * The calc above is rough, doesn't account for unaligned parts,
319 	 * since this is heuristics based anyways
320 	 */
321 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
322 		local_flush_tlb_mm(vma->vm_mm);
323 		return;
324 	}
325 
326 	/*
327 	 * @start moved to page start: this alone suffices for checking
328 	 * loop end condition below, w/o need for aligning @end to end
329 	 * e.g. 2000 to 4001 will anyhow loop twice
330 	 */
331 	start &= PAGE_MASK;
332 
333 	local_irq_save(flags);
334 
335 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
336 		while (start < end) {
337 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
338 			start += PAGE_SIZE;
339 		}
340 	}
341 
342 	local_irq_restore(flags);
343 }
344 
345 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
346  *  @start, @end interpreted as kvaddr
347  * Interestingly, shared TLB entries can also be flushed using just
348  * @start,@end alone (interpreted as user vaddr), although technically SASID
349  * is also needed. However our smart TLbProbe lookup takes care of that.
350  */
351 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
352 {
353 	unsigned long flags;
354 
355 	/* exactly same as above, except for TLB entry not taking ASID */
356 
357 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
358 		local_flush_tlb_all();
359 		return;
360 	}
361 
362 	start &= PAGE_MASK;
363 
364 	local_irq_save(flags);
365 	while (start < end) {
366 		tlb_entry_erase(start);
367 		start += PAGE_SIZE;
368 	}
369 
370 	local_irq_restore(flags);
371 }
372 
373 /*
374  * Delete TLB entry in MMU for a given page (??? address)
375  * NOTE One TLB entry contains translation for single PAGE
376  */
377 
378 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
379 {
380 	const unsigned int cpu = smp_processor_id();
381 	unsigned long flags;
382 
383 	/* Note that it is critical that interrupts are DISABLED between
384 	 * checking the ASID and using it flush the TLB entry
385 	 */
386 	local_irq_save(flags);
387 
388 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
389 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
390 	}
391 
392 	local_irq_restore(flags);
393 }
394 
395 #ifdef CONFIG_SMP
396 
397 struct tlb_args {
398 	struct vm_area_struct *ta_vma;
399 	unsigned long ta_start;
400 	unsigned long ta_end;
401 };
402 
403 static inline void ipi_flush_tlb_page(void *arg)
404 {
405 	struct tlb_args *ta = arg;
406 
407 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
408 }
409 
410 static inline void ipi_flush_tlb_range(void *arg)
411 {
412 	struct tlb_args *ta = arg;
413 
414 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
415 }
416 
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 static inline void ipi_flush_pmd_tlb_range(void *arg)
419 {
420 	struct tlb_args *ta = arg;
421 
422 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
423 }
424 #endif
425 
426 static inline void ipi_flush_tlb_kernel_range(void *arg)
427 {
428 	struct tlb_args *ta = (struct tlb_args *)arg;
429 
430 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
431 }
432 
433 void flush_tlb_all(void)
434 {
435 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
436 }
437 
438 void flush_tlb_mm(struct mm_struct *mm)
439 {
440 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
441 			 mm, 1);
442 }
443 
444 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
445 {
446 	struct tlb_args ta = {
447 		.ta_vma = vma,
448 		.ta_start = uaddr
449 	};
450 
451 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
452 }
453 
454 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
455 		     unsigned long end)
456 {
457 	struct tlb_args ta = {
458 		.ta_vma = vma,
459 		.ta_start = start,
460 		.ta_end = end
461 	};
462 
463 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
464 }
465 
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
468 			 unsigned long end)
469 {
470 	struct tlb_args ta = {
471 		.ta_vma = vma,
472 		.ta_start = start,
473 		.ta_end = end
474 	};
475 
476 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
477 }
478 #endif
479 
480 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
481 {
482 	struct tlb_args ta = {
483 		.ta_start = start,
484 		.ta_end = end
485 	};
486 
487 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
488 }
489 #endif
490 
491 /*
492  * Routine to create a TLB entry
493  */
494 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
495 {
496 	unsigned long flags;
497 	unsigned int asid_or_sasid, rwx;
498 	unsigned long pd0;
499 	pte_t pd1;
500 
501 	/*
502 	 * create_tlb() assumes that current->mm == vma->mm, since
503 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
504 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
505 	 *
506 	 * Removing the assumption involves
507 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
508 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
509 	 * -More importantly it makes this handler inconsistent with fast-path
510 	 *  TLB Refill handler which always deals with "current"
511 	 *
512 	 * Lets see the use cases when current->mm != vma->mm and we land here
513 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
514 	 *     Here VM wants to pre-install a TLB entry for user stack while
515 	 *     current->mm still points to pre-execve mm (hence the condition).
516 	 *     However the stack vaddr is soon relocated (randomization) and
517 	 *     move_page_tables() tries to undo that TLB entry.
518 	 *     Thus not creating TLB entry is not any worse.
519 	 *
520 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
521 	 *     breakpoint in debugged task. Not creating a TLB now is not
522 	 *     performance critical.
523 	 *
524 	 * Both the cases above are not good enough for code churn.
525 	 */
526 	if (current->active_mm != vma->vm_mm)
527 		return;
528 
529 	local_irq_save(flags);
530 
531 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
532 
533 	vaddr &= PAGE_MASK;
534 
535 	/* update this PTE credentials */
536 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
537 
538 	/* Create HW TLB(PD0,PD1) from PTE  */
539 
540 	/* ASID for this task */
541 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
542 
543 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
544 
545 	/*
546 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
547 	 * however Linux only saves 1 set to save PTE real-estate
548 	 * Here we convert 3 PTE bits into 6 MMU bits:
549 	 * -Kernel only entries have Kr Kw Kx 0 0 0
550 	 * -User entries have mirrored K and U bits
551 	 */
552 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
553 
554 	if (pte_val(*ptep) & _PAGE_GLOBAL)
555 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
556 	else
557 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
558 
559 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
560 
561 	tlb_entry_insert(pd0, pd1);
562 
563 	local_irq_restore(flags);
564 }
565 
566 /*
567  * Called at the end of pagefault, for a userspace mapped page
568  *  -pre-install the corresponding TLB entry into MMU
569  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
570  *  	flush_dcache_page(), copy_user_page()
571  *
572  * Note that flush (when done) involves both WBACK - so physical page is
573  * in sync as well as INV - so any non-congruent aliases don't remain
574  */
575 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
576 		      pte_t *ptep)
577 {
578 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
579 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
580 	struct page *page = pfn_to_page(pte_pfn(*ptep));
581 
582 	create_tlb(vma, vaddr, ptep);
583 
584 	if (page == ZERO_PAGE(0)) {
585 		return;
586 	}
587 
588 	/*
589 	 * Exec page : Independent of aliasing/page-color considerations,
590 	 *	       since icache doesn't snoop dcache on ARC, any dirty
591 	 *	       K-mapping of a code page needs to be wback+inv so that
592 	 *	       icache fetch by userspace sees code correctly.
593 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
594 	 *	       so userspace sees the right data.
595 	 *  (Avoids the flush for Non-exec + congruent mapping case)
596 	 */
597 	if ((vma->vm_flags & VM_EXEC) ||
598 	     addr_not_cache_congruent(paddr, vaddr)) {
599 
600 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
601 		if (dirty) {
602 			/* wback + inv dcache lines (K-mapping) */
603 			__flush_dcache_page(paddr, paddr);
604 
605 			/* invalidate any existing icache lines (U-mapping) */
606 			if (vma->vm_flags & VM_EXEC)
607 				__inv_icache_page(paddr, vaddr);
608 		}
609 	}
610 }
611 
612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
613 
614 /*
615  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
616  * support.
617  *
618  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
619  * new bit "SZ" in TLB page descriptor to distinguish between them.
620  * Super Page size is configurable in hardware (4K to 16M), but fixed once
621  * RTL builds.
622  *
623  * The exact THP size a Linx configuration will support is a function of:
624  *  - MMU page size (typical 8K, RTL fixed)
625  *  - software page walker address split between PGD:PTE:PFN (typical
626  *    11:8:13, but can be changed with 1 line)
627  * So for above default, THP size supported is 8K * (2^8) = 2M
628  *
629  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
630  * reduces to 1 level (as PTE is folded into PGD and canonically referred
631  * to as PMD).
632  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
633  */
634 
635 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
636 				 pmd_t *pmd)
637 {
638 	pte_t pte = __pte(pmd_val(*pmd));
639 	update_mmu_cache(vma, addr, &pte);
640 }
641 
642 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
643 				pgtable_t pgtable)
644 {
645 	struct list_head *lh = (struct list_head *) pgtable;
646 
647 	assert_spin_locked(&mm->page_table_lock);
648 
649 	/* FIFO */
650 	if (!pmd_huge_pte(mm, pmdp))
651 		INIT_LIST_HEAD(lh);
652 	else
653 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
654 	pmd_huge_pte(mm, pmdp) = pgtable;
655 }
656 
657 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
658 {
659 	struct list_head *lh;
660 	pgtable_t pgtable;
661 
662 	assert_spin_locked(&mm->page_table_lock);
663 
664 	pgtable = pmd_huge_pte(mm, pmdp);
665 	lh = (struct list_head *) pgtable;
666 	if (list_empty(lh))
667 		pmd_huge_pte(mm, pmdp) = NULL;
668 	else {
669 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
670 		list_del(lh);
671 	}
672 
673 	pte_val(pgtable[0]) = 0;
674 	pte_val(pgtable[1]) = 0;
675 
676 	return pgtable;
677 }
678 
679 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
680 			       unsigned long end)
681 {
682 	unsigned int cpu;
683 	unsigned long flags;
684 
685 	local_irq_save(flags);
686 
687 	cpu = smp_processor_id();
688 
689 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
690 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
691 
692 		/* No need to loop here: this will always be for 1 Huge Page */
693 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
694 	}
695 
696 	local_irq_restore(flags);
697 }
698 
699 #endif
700 
701 /* Read the Cache Build Confuration Registers, Decode them and save into
702  * the cpuinfo structure for later use.
703  * No Validation is done here, simply read/convert the BCRs
704  */
705 void read_decode_mmu_bcr(void)
706 {
707 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
708 	unsigned int tmp;
709 	struct bcr_mmu_1_2 {
710 #ifdef CONFIG_CPU_BIG_ENDIAN
711 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
712 #else
713 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
714 #endif
715 	} *mmu2;
716 
717 	struct bcr_mmu_3 {
718 #ifdef CONFIG_CPU_BIG_ENDIAN
719 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
720 		     u_itlb:4, u_dtlb:4;
721 #else
722 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
723 		     ways:4, ver:8;
724 #endif
725 	} *mmu3;
726 
727 	struct bcr_mmu_4 {
728 #ifdef CONFIG_CPU_BIG_ENDIAN
729 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
730 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
731 #else
732 	/*           DTLB      ITLB      JES        JE         JA      */
733 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
734 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
735 #endif
736 	} *mmu4;
737 
738 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
739 	mmu->ver = (tmp >> 24);
740 
741 	if (is_isa_arcompact()) {
742 		if (mmu->ver <= 2) {
743 			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
744 			mmu->pg_sz_k = TO_KB(0x2000);
745 			mmu->sets = 1 << mmu2->sets;
746 			mmu->ways = 1 << mmu2->ways;
747 			mmu->u_dtlb = mmu2->u_dtlb;
748 			mmu->u_itlb = mmu2->u_itlb;
749 		} else {
750 			mmu3 = (struct bcr_mmu_3 *)&tmp;
751 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
752 			mmu->sets = 1 << mmu3->sets;
753 			mmu->ways = 1 << mmu3->ways;
754 			mmu->u_dtlb = mmu3->u_dtlb;
755 			mmu->u_itlb = mmu3->u_itlb;
756 			mmu->sasid = mmu3->sasid;
757 		}
758 	} else {
759 		mmu4 = (struct bcr_mmu_4 *)&tmp;
760 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
761 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
762 		mmu->sets = 64 << mmu4->n_entry;
763 		mmu->ways = mmu4->n_ways * 2;
764 		mmu->u_dtlb = mmu4->u_dtlb * 4;
765 		mmu->u_itlb = mmu4->u_itlb * 4;
766 		mmu->sasid = mmu4->sasid;
767 		pae_exists = mmu->pae = mmu4->pae;
768 	}
769 }
770 
771 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
772 {
773 	int n = 0;
774 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
775 	char super_pg[64] = "";
776 
777 	if (p_mmu->s_pg_sz_m)
778 		scnprintf(super_pg, 64, "%dM Super Page %s",
779 			  p_mmu->s_pg_sz_m,
780 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
781 
782 	n += scnprintf(buf + n, len - n,
783 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
784 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
785 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
786 		       p_mmu->u_dtlb, p_mmu->u_itlb,
787 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
788 
789 	return buf;
790 }
791 
792 int pae40_exist_but_not_enab(void)
793 {
794 	return pae_exists && !is_pae40_enabled();
795 }
796 
797 void arc_mmu_init(void)
798 {
799 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
800 	char str[256];
801 	int compat = 0;
802 
803 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
804 
805 	/*
806 	 * Can't be done in processor.h due to header include depenedencies
807 	 */
808 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
809 
810 	/*
811 	 * stack top size sanity check,
812 	 * Can't be done in processor.h due to header include depenedencies
813 	 */
814 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
815 
816 	/*
817 	 * Ensure that MMU features assumed by kernel exist in hardware.
818 	 * For older ARC700 cpus, it has to be exact match, since the MMU
819 	 * revisions were not backwards compatible (MMUv3 TLB layout changed
820 	 * so even if kernel for v2 didn't use any new cmds of v3, it would
821 	 * still not work.
822 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
823 	 * (will run older software).
824 	 */
825 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
826 		compat = 1;
827 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
828 		compat = 1;
829 
830 	if (!compat) {
831 		panic("MMU ver %d doesn't match kernel built for %d...\n",
832 		      mmu->ver, CONFIG_ARC_MMU_VER);
833 	}
834 
835 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
836 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
837 
838 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
839 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
840 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
841 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
842 
843 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
844 		panic("Hardware doesn't support PAE40\n");
845 
846 	/* Enable the MMU */
847 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
848 
849 	/* In smp we use this reg for interrupt 1 scratch */
850 #ifdef ARC_USE_SCRATCH_REG
851 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
852 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
853 #endif
854 
855 	if (pae40_exist_but_not_enab())
856 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
857 }
858 
859 /*
860  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
861  * The mapping is Column-first.
862  *		---------------------	-----------
863  *		|way0|way1|way2|way3|	|way0|way1|
864  *		---------------------	-----------
865  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
866  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
867  *		~		    ~	~	  ~
868  * [set127]	| 508| 509| 510| 511|	| 254| 255|
869  *		---------------------	-----------
870  * For normal operations we don't(must not) care how above works since
871  * MMU cmd getIndex(vaddr) abstracts that out.
872  * However for walking WAYS of a SET, we need to know this
873  */
874 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
875 
876 /* Handling of Duplicate PD (TLB entry) in MMU.
877  * -Could be due to buggy customer tapeouts or obscure kernel bugs
878  * -MMU complaints not at the time of duplicate PD installation, but at the
879  *      time of lookup matching multiple ways.
880  * -Ideally these should never happen - but if they do - workaround by deleting
881  *      the duplicate one.
882  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
883  */
884 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
885 
886 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
887 			  struct pt_regs *regs)
888 {
889 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
890 	unsigned long flags;
891 	int set, n_ways = mmu->ways;
892 
893 	n_ways = min(n_ways, 4);
894 	BUG_ON(mmu->ways > 4);
895 
896 	local_irq_save(flags);
897 
898 	/* loop thru all sets of TLB */
899 	for (set = 0; set < mmu->sets; set++) {
900 
901 		int is_valid, way;
902 		unsigned int pd0[4];
903 
904 		/* read out all the ways of current set */
905 		for (way = 0, is_valid = 0; way < n_ways; way++) {
906 			write_aux_reg(ARC_REG_TLBINDEX,
907 					  SET_WAY_TO_IDX(mmu, set, way));
908 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
909 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
910 			is_valid |= pd0[way] & _PAGE_PRESENT;
911 			pd0[way] &= PAGE_MASK;
912 		}
913 
914 		/* If all the WAYS in SET are empty, skip to next SET */
915 		if (!is_valid)
916 			continue;
917 
918 		/* Scan the set for duplicate ways: needs a nested loop */
919 		for (way = 0; way < n_ways - 1; way++) {
920 
921 			int n;
922 
923 			if (!pd0[way])
924 				continue;
925 
926 			for (n = way + 1; n < n_ways; n++) {
927 				if (pd0[way] != pd0[n])
928 					continue;
929 
930 				if (!dup_pd_silent)
931 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
932 						pd0[way], set, way, n);
933 
934 				/*
935 				 * clear entry @way and not @n.
936 				 * This is critical to our optimised loop
937 				 */
938 				pd0[way] = 0;
939 				write_aux_reg(ARC_REG_TLBINDEX,
940 						SET_WAY_TO_IDX(mmu, set, way));
941 				__tlb_entry_erase();
942 			}
943 		}
944 	}
945 
946 	local_irq_restore(flags);
947 }
948 
949 /***********************************************************************
950  * Diagnostic Routines
951  *  -Called from Low Level TLB Hanlders if things don;t look good
952  **********************************************************************/
953 
954 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
955 
956 /*
957  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
958  * don't match
959  */
960 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
961 {
962 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
963 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
964 
965 	__asm__ __volatile__("flag 1");
966 }
967 
968 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
969 {
970 	unsigned int mmu_asid;
971 
972 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
973 
974 	/*
975 	 * At the time of a TLB miss/installation
976 	 *   - HW version needs to match SW version
977 	 *   - SW needs to have a valid ASID
978 	 */
979 	if (addr < 0x70000000 &&
980 	    ((mm_asid == MM_CTXT_NO_ASID) ||
981 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
982 		print_asid_mismatch(mm_asid, mmu_asid, 0);
983 }
984 #endif
985