1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4 4 * 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 */ 8 9 #include <linux/module.h> 10 #include <linux/bug.h> 11 #include <linux/mm_types.h> 12 13 #include <asm/arcregs.h> 14 #include <asm/setup.h> 15 #include <asm/mmu_context.h> 16 #include <asm/mmu.h> 17 18 /* A copy of the ASID from the PID reg is kept in asid_cache */ 19 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 20 21 static int __read_mostly pae_exists; 22 23 /* 24 * Utility Routine to erase a J-TLB entry 25 * Caller needs to setup Index Reg (manually or via getIndex) 26 */ 27 static inline void __tlb_entry_erase(void) 28 { 29 write_aux_reg(ARC_REG_TLBPD1, 0); 30 31 if (is_pae40_enabled()) 32 write_aux_reg(ARC_REG_TLBPD1HI, 0); 33 34 write_aux_reg(ARC_REG_TLBPD0, 0); 35 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 36 } 37 38 static void utlb_invalidate(void) 39 { 40 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 41 } 42 43 #ifdef CONFIG_ARC_MMU_V3 44 45 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 46 { 47 unsigned int idx; 48 49 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 50 51 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 52 idx = read_aux_reg(ARC_REG_TLBINDEX); 53 54 return idx; 55 } 56 57 static void tlb_entry_erase(unsigned int vaddr_n_asid) 58 { 59 unsigned int idx; 60 61 /* Locate the TLB entry for this vaddr + ASID */ 62 idx = tlb_entry_lkup(vaddr_n_asid); 63 64 /* No error means entry found, zero it out */ 65 if (likely(!(idx & TLB_LKUP_ERR))) { 66 __tlb_entry_erase(); 67 } else { 68 /* Duplicate entry error */ 69 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 70 vaddr_n_asid); 71 } 72 } 73 74 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) 75 { 76 unsigned int idx; 77 78 /* 79 * First verify if entry for this vaddr+ASID already exists 80 * This also sets up PD0 (vaddr, ASID..) for final commit 81 */ 82 idx = tlb_entry_lkup(pd0); 83 84 /* 85 * If Not already present get a free slot from MMU. 86 * Otherwise, Probe would have located the entry and set INDEX Reg 87 * with existing location. This will cause Write CMD to over-write 88 * existing entry with new PD0 and PD1 89 */ 90 if (likely(idx & TLB_LKUP_ERR)) 91 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 92 93 /* setup the other half of TLB entry (pfn, rwx..) */ 94 write_aux_reg(ARC_REG_TLBPD1, pd1); 95 96 /* 97 * Commit the Entry to MMU 98 * It doesn't sound safe to use the TLBWriteNI cmd here 99 * which doesn't flush uTLBs. I'd rather be safe than sorry. 100 */ 101 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 102 } 103 104 #else /* MMUv4 */ 105 106 static void tlb_entry_erase(unsigned int vaddr_n_asid) 107 { 108 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 109 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 110 } 111 112 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) 113 { 114 write_aux_reg(ARC_REG_TLBPD0, pd0); 115 116 if (!is_pae40_enabled()) { 117 write_aux_reg(ARC_REG_TLBPD1, pd1); 118 } else { 119 write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF); 120 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 121 } 122 123 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 124 } 125 126 #endif 127 128 /* 129 * Un-conditionally (without lookup) erase the entire MMU contents 130 */ 131 132 noinline void local_flush_tlb_all(void) 133 { 134 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 135 unsigned long flags; 136 unsigned int entry; 137 int num_tlb = mmu->sets * mmu->ways; 138 139 local_irq_save(flags); 140 141 /* Load PD0 and PD1 with template for a Blank Entry */ 142 write_aux_reg(ARC_REG_TLBPD1, 0); 143 144 if (is_pae40_enabled()) 145 write_aux_reg(ARC_REG_TLBPD1HI, 0); 146 147 write_aux_reg(ARC_REG_TLBPD0, 0); 148 149 for (entry = 0; entry < num_tlb; entry++) { 150 /* write this entry to the TLB */ 151 write_aux_reg(ARC_REG_TLBINDEX, entry); 152 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); 153 } 154 155 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 156 const int stlb_idx = 0x800; 157 158 /* Blank sTLB entry */ 159 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 160 161 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 162 write_aux_reg(ARC_REG_TLBINDEX, entry); 163 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); 164 } 165 } 166 167 utlb_invalidate(); 168 169 local_irq_restore(flags); 170 } 171 172 /* 173 * Flush the entire MM for userland. The fastest way is to move to Next ASID 174 */ 175 noinline void local_flush_tlb_mm(struct mm_struct *mm) 176 { 177 /* 178 * Small optimisation courtesy IA64 179 * flush_mm called during fork,exit,munmap etc, multiple times as well. 180 * Only for fork( ) do we need to move parent to a new MMU ctxt, 181 * all other cases are NOPs, hence this check. 182 */ 183 if (atomic_read(&mm->mm_users) == 0) 184 return; 185 186 /* 187 * - Move to a new ASID, but only if the mm is still wired in 188 * (Android Binder ended up calling this for vma->mm != tsk->mm, 189 * causing h/w - s/w ASID to get out of sync) 190 * - Also get_new_mmu_context() new implementation allocates a new 191 * ASID only if it is not allocated already - so unallocate first 192 */ 193 destroy_context(mm); 194 if (current->mm == mm) 195 get_new_mmu_context(mm); 196 } 197 198 /* 199 * Flush a Range of TLB entries for userland. 200 * @start is inclusive, while @end is exclusive 201 * Difference between this and Kernel Range Flush is 202 * -Here the fastest way (if range is too large) is to move to next ASID 203 * without doing any explicit Shootdown 204 * -In case of kernel Flush, entry has to be shot down explicitly 205 */ 206 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 207 unsigned long end) 208 { 209 const unsigned int cpu = smp_processor_id(); 210 unsigned long flags; 211 212 /* If range @start to @end is more than 32 TLB entries deep, 213 * its better to move to a new ASID rather than searching for 214 * individual entries and then shooting them down 215 * 216 * The calc above is rough, doesn't account for unaligned parts, 217 * since this is heuristics based anyways 218 */ 219 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 220 local_flush_tlb_mm(vma->vm_mm); 221 return; 222 } 223 224 /* 225 * @start moved to page start: this alone suffices for checking 226 * loop end condition below, w/o need for aligning @end to end 227 * e.g. 2000 to 4001 will anyhow loop twice 228 */ 229 start &= PAGE_MASK; 230 231 local_irq_save(flags); 232 233 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 234 while (start < end) { 235 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 236 start += PAGE_SIZE; 237 } 238 } 239 240 local_irq_restore(flags); 241 } 242 243 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 244 * @start, @end interpreted as kvaddr 245 * Interestingly, shared TLB entries can also be flushed using just 246 * @start,@end alone (interpreted as user vaddr), although technically SASID 247 * is also needed. However our smart TLbProbe lookup takes care of that. 248 */ 249 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 250 { 251 unsigned long flags; 252 253 /* exactly same as above, except for TLB entry not taking ASID */ 254 255 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 256 local_flush_tlb_all(); 257 return; 258 } 259 260 start &= PAGE_MASK; 261 262 local_irq_save(flags); 263 while (start < end) { 264 tlb_entry_erase(start); 265 start += PAGE_SIZE; 266 } 267 268 local_irq_restore(flags); 269 } 270 271 /* 272 * Delete TLB entry in MMU for a given page (??? address) 273 * NOTE One TLB entry contains translation for single PAGE 274 */ 275 276 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 277 { 278 const unsigned int cpu = smp_processor_id(); 279 unsigned long flags; 280 281 /* Note that it is critical that interrupts are DISABLED between 282 * checking the ASID and using it flush the TLB entry 283 */ 284 local_irq_save(flags); 285 286 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 287 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 288 } 289 290 local_irq_restore(flags); 291 } 292 293 #ifdef CONFIG_SMP 294 295 struct tlb_args { 296 struct vm_area_struct *ta_vma; 297 unsigned long ta_start; 298 unsigned long ta_end; 299 }; 300 301 static inline void ipi_flush_tlb_page(void *arg) 302 { 303 struct tlb_args *ta = arg; 304 305 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 306 } 307 308 static inline void ipi_flush_tlb_range(void *arg) 309 { 310 struct tlb_args *ta = arg; 311 312 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 313 } 314 315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 316 static inline void ipi_flush_pmd_tlb_range(void *arg) 317 { 318 struct tlb_args *ta = arg; 319 320 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 321 } 322 #endif 323 324 static inline void ipi_flush_tlb_kernel_range(void *arg) 325 { 326 struct tlb_args *ta = (struct tlb_args *)arg; 327 328 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 329 } 330 331 void flush_tlb_all(void) 332 { 333 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 334 } 335 336 void flush_tlb_mm(struct mm_struct *mm) 337 { 338 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 339 mm, 1); 340 } 341 342 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 343 { 344 struct tlb_args ta = { 345 .ta_vma = vma, 346 .ta_start = uaddr 347 }; 348 349 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 350 } 351 352 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 353 unsigned long end) 354 { 355 struct tlb_args ta = { 356 .ta_vma = vma, 357 .ta_start = start, 358 .ta_end = end 359 }; 360 361 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 362 } 363 364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 365 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 366 unsigned long end) 367 { 368 struct tlb_args ta = { 369 .ta_vma = vma, 370 .ta_start = start, 371 .ta_end = end 372 }; 373 374 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 375 } 376 #endif 377 378 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 379 { 380 struct tlb_args ta = { 381 .ta_start = start, 382 .ta_end = end 383 }; 384 385 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 386 } 387 #endif 388 389 /* 390 * Routine to create a TLB entry 391 */ 392 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 393 { 394 unsigned long flags; 395 unsigned int asid_or_sasid, rwx; 396 unsigned long pd0; 397 phys_addr_t pd1; 398 399 /* 400 * create_tlb() assumes that current->mm == vma->mm, since 401 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 402 * -completes the lazy write to SASID reg (again valid for curr tsk) 403 * 404 * Removing the assumption involves 405 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 406 * -More importantly it makes this handler inconsistent with fast-path 407 * TLB Refill handler which always deals with "current" 408 * 409 * Lets see the use cases when current->mm != vma->mm and we land here 410 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 411 * Here VM wants to pre-install a TLB entry for user stack while 412 * current->mm still points to pre-execve mm (hence the condition). 413 * However the stack vaddr is soon relocated (randomization) and 414 * move_page_tables() tries to undo that TLB entry. 415 * Thus not creating TLB entry is not any worse. 416 * 417 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 418 * breakpoint in debugged task. Not creating a TLB now is not 419 * performance critical. 420 * 421 * Both the cases above are not good enough for code churn. 422 */ 423 if (current->active_mm != vma->vm_mm) 424 return; 425 426 local_irq_save(flags); 427 428 vaddr &= PAGE_MASK; 429 430 /* update this PTE credentials */ 431 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 432 433 /* Create HW TLB(PD0,PD1) from PTE */ 434 435 /* ASID for this task */ 436 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 437 438 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 439 440 /* 441 * ARC MMU provides fully orthogonal access bits for K/U mode, 442 * however Linux only saves 1 set to save PTE real-estate 443 * Here we convert 3 PTE bits into 6 MMU bits: 444 * -Kernel only entries have Kr Kw Kx 0 0 0 445 * -User entries have mirrored K and U bits 446 */ 447 rwx = pte_val(*ptep) & PTE_BITS_RWX; 448 449 if (pte_val(*ptep) & _PAGE_GLOBAL) 450 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 451 else 452 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 453 454 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 455 456 tlb_entry_insert(pd0, pd1); 457 458 local_irq_restore(flags); 459 } 460 461 /* 462 * Called at the end of pagefault, for a userspace mapped page 463 * -pre-install the corresponding TLB entry into MMU 464 * -Finalize the delayed D-cache flush of kernel mapping of page due to 465 * flush_dcache_page(), copy_user_page() 466 * 467 * Note that flush (when done) involves both WBACK - so physical page is 468 * in sync as well as INV - so any non-congruent aliases don't remain 469 */ 470 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 471 pte_t *ptep) 472 { 473 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 474 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS; 475 struct page *page = pfn_to_page(pte_pfn(*ptep)); 476 477 create_tlb(vma, vaddr, ptep); 478 479 if (page == ZERO_PAGE(0)) { 480 return; 481 } 482 483 /* 484 * Exec page : Independent of aliasing/page-color considerations, 485 * since icache doesn't snoop dcache on ARC, any dirty 486 * K-mapping of a code page needs to be wback+inv so that 487 * icache fetch by userspace sees code correctly. 488 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 489 * so userspace sees the right data. 490 * (Avoids the flush for Non-exec + congruent mapping case) 491 */ 492 if ((vma->vm_flags & VM_EXEC) || 493 addr_not_cache_congruent(paddr, vaddr)) { 494 495 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 496 if (dirty) { 497 /* wback + inv dcache lines (K-mapping) */ 498 __flush_dcache_page(paddr, paddr); 499 500 /* invalidate any existing icache lines (U-mapping) */ 501 if (vma->vm_flags & VM_EXEC) 502 __inv_icache_page(paddr, vaddr); 503 } 504 } 505 } 506 507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 508 509 /* 510 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 511 * support. 512 * 513 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 514 * new bit "SZ" in TLB page descriptor to distinguish between them. 515 * Super Page size is configurable in hardware (4K to 16M), but fixed once 516 * RTL builds. 517 * 518 * The exact THP size a Linux configuration will support is a function of: 519 * - MMU page size (typical 8K, RTL fixed) 520 * - software page walker address split between PGD:PTE:PFN (typical 521 * 11:8:13, but can be changed with 1 line) 522 * So for above default, THP size supported is 8K * (2^8) = 2M 523 * 524 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 525 * reduces to 1 level (as PTE is folded into PGD and canonically referred 526 * to as PMD). 527 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 528 */ 529 530 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 531 pmd_t *pmd) 532 { 533 pte_t pte = __pte(pmd_val(*pmd)); 534 update_mmu_cache(vma, addr, &pte); 535 } 536 537 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 538 unsigned long end) 539 { 540 unsigned int cpu; 541 unsigned long flags; 542 543 local_irq_save(flags); 544 545 cpu = smp_processor_id(); 546 547 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 548 unsigned int asid = hw_pid(vma->vm_mm, cpu); 549 550 /* No need to loop here: this will always be for 1 Huge Page */ 551 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 552 } 553 554 local_irq_restore(flags); 555 } 556 557 #endif 558 559 /* Read the Cache Build Configuration Registers, Decode them and save into 560 * the cpuinfo structure for later use. 561 * No Validation is done here, simply read/convert the BCRs 562 */ 563 void read_decode_mmu_bcr(void) 564 { 565 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 566 unsigned int tmp; 567 struct bcr_mmu_3 { 568 #ifdef CONFIG_CPU_BIG_ENDIAN 569 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, 570 u_itlb:4, u_dtlb:4; 571 #else 572 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, 573 ways:4, ver:8; 574 #endif 575 } *mmu3; 576 577 struct bcr_mmu_4 { 578 #ifdef CONFIG_CPU_BIG_ENDIAN 579 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 580 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 581 #else 582 /* DTLB ITLB JES JE JA */ 583 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 584 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 585 #endif 586 } *mmu4; 587 588 tmp = read_aux_reg(ARC_REG_MMU_BCR); 589 mmu->ver = (tmp >> 24); 590 591 if (is_isa_arcompact() && mmu->ver == 3) { 592 mmu3 = (struct bcr_mmu_3 *)&tmp; 593 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 594 mmu->sets = 1 << mmu3->sets; 595 mmu->ways = 1 << mmu3->ways; 596 mmu->u_dtlb = mmu3->u_dtlb; 597 mmu->u_itlb = mmu3->u_itlb; 598 mmu->sasid = mmu3->sasid; 599 } else { 600 mmu4 = (struct bcr_mmu_4 *)&tmp; 601 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 602 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 603 mmu->sets = 64 << mmu4->n_entry; 604 mmu->ways = mmu4->n_ways * 2; 605 mmu->u_dtlb = mmu4->u_dtlb * 4; 606 mmu->u_itlb = mmu4->u_itlb * 4; 607 mmu->sasid = mmu4->sasid; 608 pae_exists = mmu->pae = mmu4->pae; 609 } 610 } 611 612 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 613 { 614 int n = 0; 615 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 616 char super_pg[64] = ""; 617 618 if (p_mmu->s_pg_sz_m) 619 scnprintf(super_pg, 64, "%dM Super Page %s", 620 p_mmu->s_pg_sz_m, 621 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); 622 623 n += scnprintf(buf + n, len - n, 624 "MMU [v%x]\t: %dk PAGE, %s, swalk %d lvl, JTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", 625 p_mmu->ver, p_mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS, 626 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, 627 p_mmu->u_dtlb, p_mmu->u_itlb, 628 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); 629 630 return buf; 631 } 632 633 int pae40_exist_but_not_enab(void) 634 { 635 return pae_exists && !is_pae40_enabled(); 636 } 637 638 void arc_mmu_init(void) 639 { 640 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 641 char str[256]; 642 int compat = 0; 643 644 pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); 645 646 /* 647 * Can't be done in processor.h due to header include dependencies 648 */ 649 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); 650 651 /* 652 * stack top size sanity check, 653 * Can't be done in processor.h due to header include dependencies 654 */ 655 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); 656 657 /* 658 * Ensure that MMU features assumed by kernel exist in hardware. 659 * - For older ARC700 cpus, only v3 supported 660 * - For HS cpus, v4 was baseline and v5 is backwards compatible 661 * (will run older software). 662 */ 663 if (is_isa_arcompact() && mmu->ver == 3) 664 compat = 1; 665 else if (is_isa_arcv2() && mmu->ver >= 4) 666 compat = 1; 667 668 if (!compat) 669 panic("MMU ver %d doesn't match kernel built for\n", mmu->ver); 670 671 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 672 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 673 674 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 675 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 676 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 677 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 678 679 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 680 panic("Hardware doesn't support PAE40\n"); 681 682 /* Enable the MMU with ASID 0 */ 683 mmu_setup_asid(NULL, 0); 684 685 /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */ 686 mmu_setup_pgd(NULL, swapper_pg_dir); 687 688 if (pae40_exist_but_not_enab()) 689 write_aux_reg(ARC_REG_TLBPD1HI, 0); 690 } 691 692 /* 693 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 694 * The mapping is Column-first. 695 * --------------------- ----------- 696 * |way0|way1|way2|way3| |way0|way1| 697 * --------------------- ----------- 698 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 699 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 700 * ~ ~ ~ ~ 701 * [set127] | 508| 509| 510| 511| | 254| 255| 702 * --------------------- ----------- 703 * For normal operations we don't(must not) care how above works since 704 * MMU cmd getIndex(vaddr) abstracts that out. 705 * However for walking WAYS of a SET, we need to know this 706 */ 707 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 708 709 /* Handling of Duplicate PD (TLB entry) in MMU. 710 * -Could be due to buggy customer tapeouts or obscure kernel bugs 711 * -MMU complaints not at the time of duplicate PD installation, but at the 712 * time of lookup matching multiple ways. 713 * -Ideally these should never happen - but if they do - workaround by deleting 714 * the duplicate one. 715 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 716 */ 717 volatile int dup_pd_silent; /* Be silent abt it or complain (default) */ 718 719 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 720 struct pt_regs *regs) 721 { 722 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 723 unsigned long flags; 724 int set, n_ways = mmu->ways; 725 726 n_ways = min(n_ways, 4); 727 BUG_ON(mmu->ways > 4); 728 729 local_irq_save(flags); 730 731 /* loop thru all sets of TLB */ 732 for (set = 0; set < mmu->sets; set++) { 733 734 int is_valid, way; 735 unsigned int pd0[4]; 736 737 /* read out all the ways of current set */ 738 for (way = 0, is_valid = 0; way < n_ways; way++) { 739 write_aux_reg(ARC_REG_TLBINDEX, 740 SET_WAY_TO_IDX(mmu, set, way)); 741 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 742 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 743 is_valid |= pd0[way] & _PAGE_PRESENT; 744 pd0[way] &= PAGE_MASK; 745 } 746 747 /* If all the WAYS in SET are empty, skip to next SET */ 748 if (!is_valid) 749 continue; 750 751 /* Scan the set for duplicate ways: needs a nested loop */ 752 for (way = 0; way < n_ways - 1; way++) { 753 754 int n; 755 756 if (!pd0[way]) 757 continue; 758 759 for (n = way + 1; n < n_ways; n++) { 760 if (pd0[way] != pd0[n]) 761 continue; 762 763 if (!dup_pd_silent) 764 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 765 pd0[way], set, way, n); 766 767 /* 768 * clear entry @way and not @n. 769 * This is critical to our optimised loop 770 */ 771 pd0[way] = 0; 772 write_aux_reg(ARC_REG_TLBINDEX, 773 SET_WAY_TO_IDX(mmu, set, way)); 774 __tlb_entry_erase(); 775 } 776 } 777 } 778 779 local_irq_restore(flags); 780 } 781