1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <asm/arcregs.h> 57 #include <asm/setup.h> 58 #include <asm/mmu_context.h> 59 #include <asm/mmu.h> 60 61 /* Need for ARC MMU v2 62 * 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 65 * map into same set, there would be contention for the 2 ways causing severe 66 * Thrashing. 67 * 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 70 * Given this, the thrasing problem should never happen because once the 3 71 * J-TLB entries are created (even though 3rd will knock out one of the prev 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 73 * 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 75 * This is a simple design for keeping them in sync. So what do we do? 76 * The solution which James came up was pretty neat. It utilised the assoc 77 * of uTLBs by not invalidating always but only when absolutely necessary. 78 * 79 * - Existing TLB commands work as before 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 81 * - New command (TLBIVUTLB) to invalidate uTLBs. 82 * 83 * The uTLBs need only be invalidated when pages are being removed from the 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 85 * as a result of a miss, the removed entry is still allowed to exist in the 86 * uTLBs as it is still valid and present in the OS page table. This allows the 87 * full associativity of the uTLBs to hide the limited associativity of the main 88 * TLB. 89 * 90 * During a miss handler, the new "TLBWriteNI" command is used to load 91 * entries without clearing the uTLBs. 92 * 93 * When the OS page table is updated, TLB entries that may be associated with a 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this 95 * circumstance, the uTLBs must also be cleared. This is done by using the 96 * existing TLBWrite command. An explicit IVUTLB is also required for those 97 * corner cases when TLBWrite was not executed at all because the corresp 98 * J-TLB entry got evicted/replaced. 99 */ 100 101 102 /* A copy of the ASID from the PID reg is kept in asid_cache */ 103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 104 105 /* 106 * Utility Routine to erase a J-TLB entry 107 * Caller needs to setup Index Reg (manually or via getIndex) 108 */ 109 static inline void __tlb_entry_erase(void) 110 { 111 write_aux_reg(ARC_REG_TLBPD1, 0); 112 write_aux_reg(ARC_REG_TLBPD0, 0); 113 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 114 } 115 116 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 117 { 118 unsigned int idx; 119 120 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 121 122 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 123 idx = read_aux_reg(ARC_REG_TLBINDEX); 124 125 return idx; 126 } 127 128 static void tlb_entry_erase(unsigned int vaddr_n_asid) 129 { 130 unsigned int idx; 131 132 /* Locate the TLB entry for this vaddr + ASID */ 133 idx = tlb_entry_lkup(vaddr_n_asid); 134 135 /* No error means entry found, zero it out */ 136 if (likely(!(idx & TLB_LKUP_ERR))) { 137 __tlb_entry_erase(); 138 } else { 139 /* Duplicate entry error */ 140 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 141 vaddr_n_asid); 142 } 143 } 144 145 /**************************************************************************** 146 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 147 * 148 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 149 * 150 * utlb_invalidate ( ) 151 * -For v2 MMU calls Flush uTLB Cmd 152 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 153 * This is because in v1 TLBWrite itself invalidate uTLBs 154 ***************************************************************************/ 155 156 static void utlb_invalidate(void) 157 { 158 #if (CONFIG_ARC_MMU_VER >= 2) 159 160 #if (CONFIG_ARC_MMU_VER == 2) 161 /* MMU v2 introduced the uTLB Flush command. 162 * There was however an obscure hardware bug, where uTLB flush would 163 * fail when a prior probe for J-TLB (both totally unrelated) would 164 * return lkup err - because the entry didnt exist in MMU. 165 * The Workround was to set Index reg with some valid value, prior to 166 * flush. This was fixed in MMU v3 hence not needed any more 167 */ 168 unsigned int idx; 169 170 /* make sure INDEX Reg is valid */ 171 idx = read_aux_reg(ARC_REG_TLBINDEX); 172 173 /* If not write some dummy val */ 174 if (unlikely(idx & TLB_LKUP_ERR)) 175 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 176 #endif 177 178 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 179 #endif 180 181 } 182 183 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1) 184 { 185 unsigned int idx; 186 187 /* 188 * First verify if entry for this vaddr+ASID already exists 189 * This also sets up PD0 (vaddr, ASID..) for final commit 190 */ 191 idx = tlb_entry_lkup(pd0); 192 193 /* 194 * If Not already present get a free slot from MMU. 195 * Otherwise, Probe would have located the entry and set INDEX Reg 196 * with existing location. This will cause Write CMD to over-write 197 * existing entry with new PD0 and PD1 198 */ 199 if (likely(idx & TLB_LKUP_ERR)) 200 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 201 202 /* setup the other half of TLB entry (pfn, rwx..) */ 203 write_aux_reg(ARC_REG_TLBPD1, pd1); 204 205 /* 206 * Commit the Entry to MMU 207 * It doesnt sound safe to use the TLBWriteNI cmd here 208 * which doesn't flush uTLBs. I'd rather be safe than sorry. 209 */ 210 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 211 } 212 213 /* 214 * Un-conditionally (without lookup) erase the entire MMU contents 215 */ 216 217 noinline void local_flush_tlb_all(void) 218 { 219 unsigned long flags; 220 unsigned int entry; 221 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 222 223 local_irq_save(flags); 224 225 /* Load PD0 and PD1 with template for a Blank Entry */ 226 write_aux_reg(ARC_REG_TLBPD1, 0); 227 write_aux_reg(ARC_REG_TLBPD0, 0); 228 229 for (entry = 0; entry < mmu->num_tlb; entry++) { 230 /* write this entry to the TLB */ 231 write_aux_reg(ARC_REG_TLBINDEX, entry); 232 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 233 } 234 235 utlb_invalidate(); 236 237 local_irq_restore(flags); 238 } 239 240 /* 241 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 242 */ 243 noinline void local_flush_tlb_mm(struct mm_struct *mm) 244 { 245 /* 246 * Small optimisation courtesy IA64 247 * flush_mm called during fork,exit,munmap etc, multiple times as well. 248 * Only for fork( ) do we need to move parent to a new MMU ctxt, 249 * all other cases are NOPs, hence this check. 250 */ 251 if (atomic_read(&mm->mm_users) == 0) 252 return; 253 254 /* 255 * - Move to a new ASID, but only if the mm is still wired in 256 * (Android Binder ended up calling this for vma->mm != tsk->mm, 257 * causing h/w - s/w ASID to get out of sync) 258 * - Also get_new_mmu_context() new implementation allocates a new 259 * ASID only if it is not allocated already - so unallocate first 260 */ 261 destroy_context(mm); 262 if (current->mm == mm) 263 get_new_mmu_context(mm); 264 } 265 266 /* 267 * Flush a Range of TLB entries for userland. 268 * @start is inclusive, while @end is exclusive 269 * Difference between this and Kernel Range Flush is 270 * -Here the fastest way (if range is too large) is to move to next ASID 271 * without doing any explicit Shootdown 272 * -In case of kernel Flush, entry has to be shot down explictly 273 */ 274 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 275 unsigned long end) 276 { 277 const unsigned int cpu = smp_processor_id(); 278 unsigned long flags; 279 280 /* If range @start to @end is more than 32 TLB entries deep, 281 * its better to move to a new ASID rather than searching for 282 * individual entries and then shooting them down 283 * 284 * The calc above is rough, doesn't account for unaligned parts, 285 * since this is heuristics based anyways 286 */ 287 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 288 local_flush_tlb_mm(vma->vm_mm); 289 return; 290 } 291 292 /* 293 * @start moved to page start: this alone suffices for checking 294 * loop end condition below, w/o need for aligning @end to end 295 * e.g. 2000 to 4001 will anyhow loop twice 296 */ 297 start &= PAGE_MASK; 298 299 local_irq_save(flags); 300 301 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 302 while (start < end) { 303 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 304 start += PAGE_SIZE; 305 } 306 } 307 308 utlb_invalidate(); 309 310 local_irq_restore(flags); 311 } 312 313 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 314 * @start, @end interpreted as kvaddr 315 * Interestingly, shared TLB entries can also be flushed using just 316 * @start,@end alone (interpreted as user vaddr), although technically SASID 317 * is also needed. However our smart TLbProbe lookup takes care of that. 318 */ 319 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 320 { 321 unsigned long flags; 322 323 /* exactly same as above, except for TLB entry not taking ASID */ 324 325 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 326 local_flush_tlb_all(); 327 return; 328 } 329 330 start &= PAGE_MASK; 331 332 local_irq_save(flags); 333 while (start < end) { 334 tlb_entry_erase(start); 335 start += PAGE_SIZE; 336 } 337 338 utlb_invalidate(); 339 340 local_irq_restore(flags); 341 } 342 343 /* 344 * Delete TLB entry in MMU for a given page (??? address) 345 * NOTE One TLB entry contains translation for single PAGE 346 */ 347 348 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 349 { 350 const unsigned int cpu = smp_processor_id(); 351 unsigned long flags; 352 353 /* Note that it is critical that interrupts are DISABLED between 354 * checking the ASID and using it flush the TLB entry 355 */ 356 local_irq_save(flags); 357 358 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 359 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 360 utlb_invalidate(); 361 } 362 363 local_irq_restore(flags); 364 } 365 366 #ifdef CONFIG_SMP 367 368 struct tlb_args { 369 struct vm_area_struct *ta_vma; 370 unsigned long ta_start; 371 unsigned long ta_end; 372 }; 373 374 static inline void ipi_flush_tlb_page(void *arg) 375 { 376 struct tlb_args *ta = arg; 377 378 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 379 } 380 381 static inline void ipi_flush_tlb_range(void *arg) 382 { 383 struct tlb_args *ta = arg; 384 385 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 386 } 387 388 static inline void ipi_flush_tlb_kernel_range(void *arg) 389 { 390 struct tlb_args *ta = (struct tlb_args *)arg; 391 392 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 393 } 394 395 void flush_tlb_all(void) 396 { 397 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 398 } 399 400 void flush_tlb_mm(struct mm_struct *mm) 401 { 402 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 403 mm, 1); 404 } 405 406 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 407 { 408 struct tlb_args ta = { 409 .ta_vma = vma, 410 .ta_start = uaddr 411 }; 412 413 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 414 } 415 416 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 417 unsigned long end) 418 { 419 struct tlb_args ta = { 420 .ta_vma = vma, 421 .ta_start = start, 422 .ta_end = end 423 }; 424 425 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 426 } 427 428 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 429 { 430 struct tlb_args ta = { 431 .ta_start = start, 432 .ta_end = end 433 }; 434 435 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 436 } 437 #endif 438 439 /* 440 * Routine to create a TLB entry 441 */ 442 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 443 { 444 unsigned long flags; 445 unsigned int asid_or_sasid, rwx; 446 unsigned long pd0, pd1; 447 448 /* 449 * create_tlb() assumes that current->mm == vma->mm, since 450 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 451 * -completes the lazy write to SASID reg (again valid for curr tsk) 452 * 453 * Removing the assumption involves 454 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 455 * -Fix the TLB paranoid debug code to not trigger false negatives. 456 * -More importantly it makes this handler inconsistent with fast-path 457 * TLB Refill handler which always deals with "current" 458 * 459 * Lets see the use cases when current->mm != vma->mm and we land here 460 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 461 * Here VM wants to pre-install a TLB entry for user stack while 462 * current->mm still points to pre-execve mm (hence the condition). 463 * However the stack vaddr is soon relocated (randomization) and 464 * move_page_tables() tries to undo that TLB entry. 465 * Thus not creating TLB entry is not any worse. 466 * 467 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 468 * breakpoint in debugged task. Not creating a TLB now is not 469 * performance critical. 470 * 471 * Both the cases above are not good enough for code churn. 472 */ 473 if (current->active_mm != vma->vm_mm) 474 return; 475 476 local_irq_save(flags); 477 478 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address); 479 480 address &= PAGE_MASK; 481 482 /* update this PTE credentials */ 483 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 484 485 /* Create HW TLB(PD0,PD1) from PTE */ 486 487 /* ASID for this task */ 488 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 489 490 pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 491 492 /* 493 * ARC MMU provides fully orthogonal access bits for K/U mode, 494 * however Linux only saves 1 set to save PTE real-estate 495 * Here we convert 3 PTE bits into 6 MMU bits: 496 * -Kernel only entries have Kr Kw Kx 0 0 0 497 * -User entries have mirrored K and U bits 498 */ 499 rwx = pte_val(*ptep) & PTE_BITS_RWX; 500 501 if (pte_val(*ptep) & _PAGE_GLOBAL) 502 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 503 else 504 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 505 506 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 507 508 tlb_entry_insert(pd0, pd1); 509 510 local_irq_restore(flags); 511 } 512 513 /* 514 * Called at the end of pagefault, for a userspace mapped page 515 * -pre-install the corresponding TLB entry into MMU 516 * -Finalize the delayed D-cache flush of kernel mapping of page due to 517 * flush_dcache_page(), copy_user_page() 518 * 519 * Note that flush (when done) involves both WBACK - so physical page is 520 * in sync as well as INV - so any non-congruent aliases don't remain 521 */ 522 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 523 pte_t *ptep) 524 { 525 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 526 unsigned long paddr = pte_val(*ptep) & PAGE_MASK; 527 struct page *page = pfn_to_page(pte_pfn(*ptep)); 528 529 create_tlb(vma, vaddr, ptep); 530 531 if (page == ZERO_PAGE(0)) { 532 return; 533 } 534 535 /* 536 * Exec page : Independent of aliasing/page-color considerations, 537 * since icache doesn't snoop dcache on ARC, any dirty 538 * K-mapping of a code page needs to be wback+inv so that 539 * icache fetch by userspace sees code correctly. 540 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 541 * so userspace sees the right data. 542 * (Avoids the flush for Non-exec + congruent mapping case) 543 */ 544 if ((vma->vm_flags & VM_EXEC) || 545 addr_not_cache_congruent(paddr, vaddr)) { 546 547 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 548 if (dirty) { 549 /* wback + inv dcache lines */ 550 __flush_dcache_page(paddr, paddr); 551 552 /* invalidate any existing icache lines */ 553 if (vma->vm_flags & VM_EXEC) 554 __inv_icache_page(paddr, vaddr); 555 } 556 } 557 } 558 559 /* Read the Cache Build Confuration Registers, Decode them and save into 560 * the cpuinfo structure for later use. 561 * No Validation is done here, simply read/convert the BCRs 562 */ 563 void read_decode_mmu_bcr(void) 564 { 565 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 566 unsigned int tmp; 567 struct bcr_mmu_1_2 { 568 #ifdef CONFIG_CPU_BIG_ENDIAN 569 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 570 #else 571 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 572 #endif 573 } *mmu2; 574 575 struct bcr_mmu_3 { 576 #ifdef CONFIG_CPU_BIG_ENDIAN 577 unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4, 578 u_itlb:4, u_dtlb:4; 579 #else 580 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4, 581 ways:4, ver:8; 582 #endif 583 } *mmu3; 584 585 tmp = read_aux_reg(ARC_REG_MMU_BCR); 586 mmu->ver = (tmp >> 24); 587 588 if (mmu->ver <= 2) { 589 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 590 mmu->pg_sz = PAGE_SIZE; 591 mmu->sets = 1 << mmu2->sets; 592 mmu->ways = 1 << mmu2->ways; 593 mmu->u_dtlb = mmu2->u_dtlb; 594 mmu->u_itlb = mmu2->u_itlb; 595 } else { 596 mmu3 = (struct bcr_mmu_3 *)&tmp; 597 mmu->pg_sz = 512 << mmu3->pg_sz; 598 mmu->sets = 1 << mmu3->sets; 599 mmu->ways = 1 << mmu3->ways; 600 mmu->u_dtlb = mmu3->u_dtlb; 601 mmu->u_itlb = mmu3->u_itlb; 602 } 603 604 mmu->num_tlb = mmu->sets * mmu->ways; 605 } 606 607 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 608 { 609 int n = 0; 610 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 611 612 n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ", 613 p_mmu->ver, TO_KB(p_mmu->pg_sz)); 614 615 n += scnprintf(buf + n, len - n, 616 "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n", 617 p_mmu->num_tlb, p_mmu->sets, p_mmu->ways, 618 p_mmu->u_dtlb, p_mmu->u_itlb, 619 IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : ""); 620 621 return buf; 622 } 623 624 void arc_mmu_init(void) 625 { 626 char str[256]; 627 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 628 629 printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); 630 631 /* For efficiency sake, kernel is compile time built for a MMU ver 632 * This must match the hardware it is running on. 633 * Linux built for MMU V2, if run on MMU V1 will break down because V1 634 * hardware doesn't understand cmds such as WriteNI, or IVUTLB 635 * On the other hand, Linux built for V1 if run on MMU V2 will do 636 * un-needed workarounds to prevent memcpy thrashing. 637 * Similarly MMU V3 has new features which won't work on older MMU 638 */ 639 if (mmu->ver != CONFIG_ARC_MMU_VER) { 640 panic("MMU ver %d doesn't match kernel built for %d...\n", 641 mmu->ver, CONFIG_ARC_MMU_VER); 642 } 643 644 if (mmu->pg_sz != PAGE_SIZE) 645 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 646 647 /* Enable the MMU */ 648 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 649 650 /* In smp we use this reg for interrupt 1 scratch */ 651 #ifndef CONFIG_SMP 652 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 653 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 654 #endif 655 } 656 657 /* 658 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 659 * The mapping is Column-first. 660 * --------------------- ----------- 661 * |way0|way1|way2|way3| |way0|way1| 662 * --------------------- ----------- 663 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 664 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 665 * ~ ~ ~ ~ 666 * [set127] | 508| 509| 510| 511| | 254| 255| 667 * --------------------- ----------- 668 * For normal operations we don't(must not) care how above works since 669 * MMU cmd getIndex(vaddr) abstracts that out. 670 * However for walking WAYS of a SET, we need to know this 671 */ 672 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 673 674 /* Handling of Duplicate PD (TLB entry) in MMU. 675 * -Could be due to buggy customer tapeouts or obscure kernel bugs 676 * -MMU complaints not at the time of duplicate PD installation, but at the 677 * time of lookup matching multiple ways. 678 * -Ideally these should never happen - but if they do - workaround by deleting 679 * the duplicate one. 680 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 681 */ 682 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */ 683 684 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 685 struct pt_regs *regs) 686 { 687 int set, way, n; 688 unsigned long flags, is_valid; 689 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 690 unsigned int pd0[mmu->ways], pd1[mmu->ways]; 691 692 local_irq_save(flags); 693 694 /* re-enable the MMU */ 695 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 696 697 /* loop thru all sets of TLB */ 698 for (set = 0; set < mmu->sets; set++) { 699 700 /* read out all the ways of current set */ 701 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 702 write_aux_reg(ARC_REG_TLBINDEX, 703 SET_WAY_TO_IDX(mmu, set, way)); 704 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 705 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 706 pd1[way] = read_aux_reg(ARC_REG_TLBPD1); 707 is_valid |= pd0[way] & _PAGE_PRESENT; 708 } 709 710 /* If all the WAYS in SET are empty, skip to next SET */ 711 if (!is_valid) 712 continue; 713 714 /* Scan the set for duplicate ways: needs a nested loop */ 715 for (way = 0; way < mmu->ways - 1; way++) { 716 if (!pd0[way]) 717 continue; 718 719 for (n = way + 1; n < mmu->ways; n++) { 720 if ((pd0[way] & PAGE_MASK) == 721 (pd0[n] & PAGE_MASK)) { 722 723 if (dup_pd_verbose) { 724 pr_info("Duplicate PD's @" 725 "[%d:%d]/[%d:%d]\n", 726 set, way, set, n); 727 pr_info("TLBPD0[%u]: %08x\n", 728 way, pd0[way]); 729 } 730 731 /* 732 * clear entry @way and not @n. This is 733 * critical to our optimised loop 734 */ 735 pd0[way] = pd1[way] = 0; 736 write_aux_reg(ARC_REG_TLBINDEX, 737 SET_WAY_TO_IDX(mmu, set, way)); 738 __tlb_entry_erase(); 739 } 740 } 741 } 742 } 743 744 local_irq_restore(flags); 745 } 746 747 /*********************************************************************** 748 * Diagnostic Routines 749 * -Called from Low Level TLB Hanlders if things don;t look good 750 **********************************************************************/ 751 752 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 753 754 /* 755 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 756 * don't match 757 */ 758 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 759 { 760 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 761 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 762 763 __asm__ __volatile__("flag 1"); 764 } 765 766 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 767 { 768 unsigned int mmu_asid; 769 770 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 771 772 /* 773 * At the time of a TLB miss/installation 774 * - HW version needs to match SW version 775 * - SW needs to have a valid ASID 776 */ 777 if (addr < 0x70000000 && 778 ((mm_asid == MM_CTXT_NO_ASID) || 779 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 780 print_asid_mismatch(mm_asid, mmu_asid, 0); 781 } 782 #endif 783