xref: /openbmc/linux/arch/arc/mm/dma.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /*
10  * DMA Coherent API Notes
11  *
12  * I/O is inherently non-coherent on ARC. So a coherent DMA buffer is
13  * implemented by accessing it using a kernel virtual address, with
14  * Cache bit off in the TLB entry.
15  *
16  * The default DMA address == Phy address which is 0x8000_0000 based.
17  */
18 
19 #include <linux/dma-mapping.h>
20 #include <asm/cache.h>
21 #include <asm/cacheflush.h>
22 
23 
24 static void *arc_dma_alloc(struct device *dev, size_t size,
25 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
26 {
27 	unsigned long order = get_order(size);
28 	struct page *page;
29 	phys_addr_t paddr;
30 	void *kvaddr;
31 	int need_coh = 1, need_kvaddr = 0;
32 
33 	page = alloc_pages(gfp, order);
34 	if (!page)
35 		return NULL;
36 
37 	/*
38 	 * IOC relies on all data (even coherent DMA data) being in cache
39 	 * Thus allocate normal cached memory
40 	 *
41 	 * The gains with IOC are two pronged:
42 	 *   -For streaming data, elides need for cache maintenance, saving
43 	 *    cycles in flush code, and bus bandwidth as all the lines of a
44 	 *    buffer need to be flushed out to memory
45 	 *   -For coherent data, Read/Write to buffers terminate early in cache
46 	 *   (vs. always going to memory - thus are faster)
47 	 */
48 	if ((is_isa_arcv2() && ioc_enable) ||
49 	    (attrs & DMA_ATTR_NON_CONSISTENT))
50 		need_coh = 0;
51 
52 	/*
53 	 * - A coherent buffer needs MMU mapping to enforce non-cachability
54 	 * - A highmem page needs a virtual handle (hence MMU mapping)
55 	 *   independent of cachability
56 	 */
57 	if (PageHighMem(page) || need_coh)
58 		need_kvaddr = 1;
59 
60 	/* This is linear addr (0x8000_0000 based) */
61 	paddr = page_to_phys(page);
62 
63 	*dma_handle = plat_phys_to_dma(dev, paddr);
64 
65 	/* This is kernel Virtual address (0x7000_0000 based) */
66 	if (need_kvaddr) {
67 		kvaddr = ioremap_nocache(paddr, size);
68 		if (kvaddr == NULL) {
69 			__free_pages(page, order);
70 			return NULL;
71 		}
72 	} else {
73 		kvaddr = (void *)(u32)paddr;
74 	}
75 
76 	/*
77 	 * Evict any existing L1 and/or L2 lines for the backing page
78 	 * in case it was used earlier as a normal "cached" page.
79 	 * Yeah this bit us - STAR 9000898266
80 	 *
81 	 * Although core does call flush_cache_vmap(), it gets kvaddr hence
82 	 * can't be used to efficiently flush L1 and/or L2 which need paddr
83 	 * Currently flush_cache_vmap nukes the L1 cache completely which
84 	 * will be optimized as a separate commit
85 	 */
86 	if (need_coh)
87 		dma_cache_wback_inv(paddr, size);
88 
89 	return kvaddr;
90 }
91 
92 static void arc_dma_free(struct device *dev, size_t size, void *vaddr,
93 		dma_addr_t dma_handle, unsigned long attrs)
94 {
95 	phys_addr_t paddr = plat_dma_to_phys(dev, dma_handle);
96 	struct page *page = virt_to_page(paddr);
97 	int is_non_coh = 1;
98 
99 	is_non_coh = (attrs & DMA_ATTR_NON_CONSISTENT) ||
100 			(is_isa_arcv2() && ioc_enable);
101 
102 	if (PageHighMem(page) || !is_non_coh)
103 		iounmap((void __force __iomem *)vaddr);
104 
105 	__free_pages(page, get_order(size));
106 }
107 
108 static int arc_dma_mmap(struct device *dev, struct vm_area_struct *vma,
109 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
110 			unsigned long attrs)
111 {
112 	unsigned long user_count = vma_pages(vma);
113 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
114 	unsigned long pfn = __phys_to_pfn(plat_dma_to_phys(dev, dma_addr));
115 	unsigned long off = vma->vm_pgoff;
116 	int ret = -ENXIO;
117 
118 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
119 
120 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
121 		return ret;
122 
123 	if (off < count && user_count <= (count - off)) {
124 		ret = remap_pfn_range(vma, vma->vm_start,
125 				      pfn + off,
126 				      user_count << PAGE_SHIFT,
127 				      vma->vm_page_prot);
128 	}
129 
130 	return ret;
131 }
132 
133 /*
134  * streaming DMA Mapping API...
135  * CPU accesses page via normal paddr, thus needs to explicitly made
136  * consistent before each use
137  */
138 static void _dma_cache_sync(phys_addr_t paddr, size_t size,
139 		enum dma_data_direction dir)
140 {
141 	switch (dir) {
142 	case DMA_FROM_DEVICE:
143 		dma_cache_inv(paddr, size);
144 		break;
145 	case DMA_TO_DEVICE:
146 		dma_cache_wback(paddr, size);
147 		break;
148 	case DMA_BIDIRECTIONAL:
149 		dma_cache_wback_inv(paddr, size);
150 		break;
151 	default:
152 		pr_err("Invalid DMA dir [%d] for OP @ %pa[p]\n", dir, &paddr);
153 	}
154 }
155 
156 static dma_addr_t arc_dma_map_page(struct device *dev, struct page *page,
157 		unsigned long offset, size_t size, enum dma_data_direction dir,
158 		unsigned long attrs)
159 {
160 	phys_addr_t paddr = page_to_phys(page) + offset;
161 
162 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
163 		_dma_cache_sync(paddr, size, dir);
164 
165 	return plat_phys_to_dma(dev, paddr);
166 }
167 
168 static int arc_dma_map_sg(struct device *dev, struct scatterlist *sg,
169 	   int nents, enum dma_data_direction dir, unsigned long attrs)
170 {
171 	struct scatterlist *s;
172 	int i;
173 
174 	for_each_sg(sg, s, nents, i)
175 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
176 					       s->length, dir);
177 
178 	return nents;
179 }
180 
181 static void arc_dma_sync_single_for_cpu(struct device *dev,
182 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
183 {
184 	_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_FROM_DEVICE);
185 }
186 
187 static void arc_dma_sync_single_for_device(struct device *dev,
188 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
189 {
190 	_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_TO_DEVICE);
191 }
192 
193 static void arc_dma_sync_sg_for_cpu(struct device *dev,
194 		struct scatterlist *sglist, int nelems,
195 		enum dma_data_direction dir)
196 {
197 	int i;
198 	struct scatterlist *sg;
199 
200 	for_each_sg(sglist, sg, nelems, i)
201 		_dma_cache_sync(sg_phys(sg), sg->length, dir);
202 }
203 
204 static void arc_dma_sync_sg_for_device(struct device *dev,
205 		struct scatterlist *sglist, int nelems,
206 		enum dma_data_direction dir)
207 {
208 	int i;
209 	struct scatterlist *sg;
210 
211 	for_each_sg(sglist, sg, nelems, i)
212 		_dma_cache_sync(sg_phys(sg), sg->length, dir);
213 }
214 
215 static int arc_dma_supported(struct device *dev, u64 dma_mask)
216 {
217 	/* Support 32 bit DMA mask exclusively */
218 	return dma_mask == DMA_BIT_MASK(32);
219 }
220 
221 const struct dma_map_ops arc_dma_ops = {
222 	.alloc			= arc_dma_alloc,
223 	.free			= arc_dma_free,
224 	.mmap			= arc_dma_mmap,
225 	.map_page		= arc_dma_map_page,
226 	.map_sg			= arc_dma_map_sg,
227 	.sync_single_for_device	= arc_dma_sync_single_for_device,
228 	.sync_single_for_cpu	= arc_dma_sync_single_for_cpu,
229 	.sync_sg_for_cpu	= arc_dma_sync_sg_for_cpu,
230 	.sync_sg_for_device	= arc_dma_sync_sg_for_device,
231 	.dma_supported		= arc_dma_supported,
232 };
233 EXPORT_SYMBOL(arc_dma_ops);
234