xref: /openbmc/linux/arch/arc/mm/cache.c (revision f2b0b25a)
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23 
24 static int l2_line_sz;
25 int ioc_exists;
26 
27 void (*_cache_line_loop_ic_fn)(unsigned long paddr, unsigned long vaddr,
28 			       unsigned long sz, const int cacheop);
29 
30 void (*__dma_cache_wback_inv)(unsigned long start, unsigned long sz);
31 void (*__dma_cache_inv)(unsigned long start, unsigned long sz);
32 void (*__dma_cache_wback)(unsigned long start, unsigned long sz);
33 
34 char *arc_cache_mumbojumbo(int c, char *buf, int len)
35 {
36 	int n = 0;
37 	struct cpuinfo_arc_cache *p;
38 
39 #define PR_CACHE(p, cfg, str)						\
40 	if (!(p)->ver)							\
41 		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
42 	else								\
43 		n += scnprintf(buf + n, len - n,			\
44 			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
45 			(p)->sz_k, (p)->assoc, (p)->line_len,		\
46 			(p)->vipt ? "VIPT" : "PIPT",			\
47 			(p)->alias ? " aliasing" : "",			\
48 			IS_ENABLED(cfg) ? "" : " (not used)");
49 
50 	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
51 	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
52 
53 	p = &cpuinfo_arc700[c].slc;
54 	if (p->ver)
55 		n += scnprintf(buf + n, len - n,
56 			"SLC\t\t: %uK, %uB Line\n", p->sz_k, p->line_len);
57 
58 	if (ioc_exists)
59 		n += scnprintf(buf + n, len - n, "IOC\t\t: exists\n");
60 
61 	return buf;
62 }
63 
64 /*
65  * Read the Cache Build Confuration Registers, Decode them and save into
66  * the cpuinfo structure for later use.
67  * No Validation done here, simply read/convert the BCRs
68  */
69 void read_decode_cache_bcr(void)
70 {
71 	struct cpuinfo_arc_cache *p_ic, *p_dc, *p_slc;
72 	unsigned int cpu = smp_processor_id();
73 	struct bcr_cache {
74 #ifdef CONFIG_CPU_BIG_ENDIAN
75 		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
76 #else
77 		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
78 #endif
79 	} ibcr, dbcr;
80 
81 	struct bcr_generic sbcr;
82 
83 	struct bcr_slc_cfg {
84 #ifdef CONFIG_CPU_BIG_ENDIAN
85 		unsigned int pad:24, way:2, lsz:2, sz:4;
86 #else
87 		unsigned int sz:4, lsz:2, way:2, pad:24;
88 #endif
89 	} slc_cfg;
90 
91 	struct bcr_clust_cfg {
92 #ifdef CONFIG_CPU_BIG_ENDIAN
93 		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
94 #else
95 		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
96 #endif
97 	} cbcr;
98 
99 	p_ic = &cpuinfo_arc700[cpu].icache;
100 	READ_BCR(ARC_REG_IC_BCR, ibcr);
101 
102 	if (!ibcr.ver)
103 		goto dc_chk;
104 
105 	if (ibcr.ver <= 3) {
106 		BUG_ON(ibcr.config != 3);
107 		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
108 	} else if (ibcr.ver >= 4) {
109 		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
110 	}
111 
112 	p_ic->line_len = 8 << ibcr.line_len;
113 	p_ic->sz_k = 1 << (ibcr.sz - 1);
114 	p_ic->ver = ibcr.ver;
115 	p_ic->vipt = 1;
116 	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
117 
118 dc_chk:
119 	p_dc = &cpuinfo_arc700[cpu].dcache;
120 	READ_BCR(ARC_REG_DC_BCR, dbcr);
121 
122 	if (!dbcr.ver)
123 		goto slc_chk;
124 
125 	if (dbcr.ver <= 3) {
126 		BUG_ON(dbcr.config != 2);
127 		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
128 		p_dc->vipt = 1;
129 		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
130 	} else if (dbcr.ver >= 4) {
131 		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
132 		p_dc->vipt = 0;
133 		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
134 	}
135 
136 	p_dc->line_len = 16 << dbcr.line_len;
137 	p_dc->sz_k = 1 << (dbcr.sz - 1);
138 	p_dc->ver = dbcr.ver;
139 
140 slc_chk:
141 	if (!is_isa_arcv2())
142 		return;
143 
144 	p_slc = &cpuinfo_arc700[cpu].slc;
145 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
146 	if (sbcr.ver) {
147 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
148 		p_slc->ver = sbcr.ver;
149 		p_slc->sz_k = 128 << slc_cfg.sz;
150 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
151 	}
152 
153 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
154 	if (cbcr.c)
155 		ioc_exists = 1;
156 }
157 
158 /*
159  * Line Operation on {I,D}-Cache
160  */
161 
162 #define OP_INV		0x1
163 #define OP_FLUSH	0x2
164 #define OP_FLUSH_N_INV	0x3
165 #define OP_INV_IC	0x4
166 
167 /*
168  *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
169  *
170  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
171  * The orig Cache Management Module "CDU" only required paddr to invalidate a
172  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
173  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
174  * the exact same line.
175  *
176  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
177  * paddr alone could not be used to correctly index the cache.
178  *
179  * ------------------
180  * MMU v1/v2 (Fixed Page Size 8k)
181  * ------------------
182  * The solution was to provide CDU with these additonal vaddr bits. These
183  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
184  * standard page size of 8k.
185  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
186  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
187  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
188  * represent the offset within cache-line. The adv of using this "clumsy"
189  * interface for additional info was no new reg was needed in CDU programming
190  * model.
191  *
192  * 17:13 represented the max num of bits passable, actual bits needed were
193  * fewer, based on the num-of-aliases possible.
194  * -for 2 alias possibility, only bit 13 needed (32K cache)
195  * -for 4 alias possibility, bits 14:13 needed (64K cache)
196  *
197  * ------------------
198  * MMU v3
199  * ------------------
200  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
201  * only support 8k (default), 16k and 4k.
202  * However from hardware perspective, smaller page sizes aggrevate aliasing
203  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
204  * the existing scheme of piggybacking won't work for certain configurations.
205  * Two new registers IC_PTAG and DC_PTAG inttoduced.
206  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
207  */
208 
209 static inline
210 void __cache_line_loop_v2(unsigned long paddr, unsigned long vaddr,
211 			  unsigned long sz, const int op)
212 {
213 	unsigned int aux_cmd;
214 	int num_lines;
215 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
216 
217 	if (op == OP_INV_IC) {
218 		aux_cmd = ARC_REG_IC_IVIL;
219 	} else {
220 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
221 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
222 	}
223 
224 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
225 	 * and have @paddr - aligned to cache line and integral @num_lines.
226 	 * This however can be avoided for page sized since:
227 	 *  -@paddr will be cache-line aligned already (being page aligned)
228 	 *  -@sz will be integral multiple of line size (being page sized).
229 	 */
230 	if (!full_page) {
231 		sz += paddr & ~CACHE_LINE_MASK;
232 		paddr &= CACHE_LINE_MASK;
233 		vaddr &= CACHE_LINE_MASK;
234 	}
235 
236 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
237 
238 	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
239 	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
240 
241 	while (num_lines-- > 0) {
242 		write_aux_reg(aux_cmd, paddr);
243 		paddr += L1_CACHE_BYTES;
244 	}
245 }
246 
247 static inline
248 void __cache_line_loop_v3(unsigned long paddr, unsigned long vaddr,
249 			  unsigned long sz, const int op)
250 {
251 	unsigned int aux_cmd, aux_tag;
252 	int num_lines;
253 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
254 
255 	if (op == OP_INV_IC) {
256 		aux_cmd = ARC_REG_IC_IVIL;
257 		aux_tag = ARC_REG_IC_PTAG;
258 	} else {
259 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
260 		aux_tag = ARC_REG_DC_PTAG;
261 	}
262 
263 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
264 	 * and have @paddr - aligned to cache line and integral @num_lines.
265 	 * This however can be avoided for page sized since:
266 	 *  -@paddr will be cache-line aligned already (being page aligned)
267 	 *  -@sz will be integral multiple of line size (being page sized).
268 	 */
269 	if (!full_page) {
270 		sz += paddr & ~CACHE_LINE_MASK;
271 		paddr &= CACHE_LINE_MASK;
272 		vaddr &= CACHE_LINE_MASK;
273 	}
274 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
275 
276 	/*
277 	 * MMUv3, cache ops require paddr in PTAG reg
278 	 * if V-P const for loop, PTAG can be written once outside loop
279 	 */
280 	if (full_page)
281 		write_aux_reg(aux_tag, paddr);
282 
283 	while (num_lines-- > 0) {
284 		if (!full_page) {
285 			write_aux_reg(aux_tag, paddr);
286 			paddr += L1_CACHE_BYTES;
287 		}
288 
289 		write_aux_reg(aux_cmd, vaddr);
290 		vaddr += L1_CACHE_BYTES;
291 	}
292 }
293 
294 /*
295  * In HS38x (MMU v4), although icache is VIPT, only paddr is needed for cache
296  * maintenance ops (in IVIL reg), as long as icache doesn't alias.
297  *
298  * For Aliasing icache, vaddr is also needed (in IVIL), while paddr is
299  * specified in PTAG (similar to MMU v3)
300  */
301 static inline
302 void __cache_line_loop_v4(unsigned long paddr, unsigned long vaddr,
303 			  unsigned long sz, const int cacheop)
304 {
305 	unsigned int aux_cmd;
306 	int num_lines;
307 	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
308 
309 	if (cacheop == OP_INV_IC) {
310 		aux_cmd = ARC_REG_IC_IVIL;
311 	} else {
312 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
313 		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
314 	}
315 
316 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
317 	 * and have @paddr - aligned to cache line and integral @num_lines.
318 	 * This however can be avoided for page sized since:
319 	 *  -@paddr will be cache-line aligned already (being page aligned)
320 	 *  -@sz will be integral multiple of line size (being page sized).
321 	 */
322 	if (!full_page_op) {
323 		sz += paddr & ~CACHE_LINE_MASK;
324 		paddr &= CACHE_LINE_MASK;
325 	}
326 
327 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
328 
329 	while (num_lines-- > 0) {
330 		write_aux_reg(aux_cmd, paddr);
331 		paddr += L1_CACHE_BYTES;
332 	}
333 }
334 
335 #if (CONFIG_ARC_MMU_VER < 3)
336 #define __cache_line_loop	__cache_line_loop_v2
337 #elif (CONFIG_ARC_MMU_VER == 3)
338 #define __cache_line_loop	__cache_line_loop_v3
339 #elif (CONFIG_ARC_MMU_VER > 3)
340 #define __cache_line_loop	__cache_line_loop_v4
341 #endif
342 
343 #ifdef CONFIG_ARC_HAS_DCACHE
344 
345 /***************************************************************
346  * Machine specific helpers for Entire D-Cache or Per Line ops
347  */
348 
349 static inline void __before_dc_op(const int op)
350 {
351 	if (op == OP_FLUSH_N_INV) {
352 		/* Dcache provides 2 cmd: FLUSH or INV
353 		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
354 		 * flush-n-inv is achieved by INV cmd but with IM=1
355 		 * So toggle INV sub-mode depending on op request and default
356 		 */
357 		const unsigned int ctl = ARC_REG_DC_CTRL;
358 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
359 	}
360 }
361 
362 static inline void __after_dc_op(const int op)
363 {
364 	if (op & OP_FLUSH) {
365 		const unsigned int ctl = ARC_REG_DC_CTRL;
366 		unsigned int reg;
367 
368 		/* flush / flush-n-inv both wait */
369 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
370 			;
371 
372 		/* Switch back to default Invalidate mode */
373 		if (op == OP_FLUSH_N_INV)
374 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
375 	}
376 }
377 
378 /*
379  * Operation on Entire D-Cache
380  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
381  * Note that constant propagation ensures all the checks are gone
382  * in generated code
383  */
384 static inline void __dc_entire_op(const int op)
385 {
386 	int aux;
387 
388 	__before_dc_op(op);
389 
390 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
391 		aux = ARC_REG_DC_IVDC;
392 	else
393 		aux = ARC_REG_DC_FLSH;
394 
395 	write_aux_reg(aux, 0x1);
396 
397 	__after_dc_op(op);
398 }
399 
400 /* For kernel mappings cache operation: index is same as paddr */
401 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
402 
403 /*
404  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
405  */
406 static inline void __dc_line_op(unsigned long paddr, unsigned long vaddr,
407 				unsigned long sz, const int op)
408 {
409 	unsigned long flags;
410 
411 	local_irq_save(flags);
412 
413 	__before_dc_op(op);
414 
415 	__cache_line_loop(paddr, vaddr, sz, op);
416 
417 	__after_dc_op(op);
418 
419 	local_irq_restore(flags);
420 }
421 
422 #else
423 
424 #define __dc_entire_op(op)
425 #define __dc_line_op(paddr, vaddr, sz, op)
426 #define __dc_line_op_k(paddr, sz, op)
427 
428 #endif /* CONFIG_ARC_HAS_DCACHE */
429 
430 #ifdef CONFIG_ARC_HAS_ICACHE
431 
432 static inline void __ic_entire_inv(void)
433 {
434 	write_aux_reg(ARC_REG_IC_IVIC, 1);
435 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
436 }
437 
438 static inline void
439 __ic_line_inv_vaddr_local(unsigned long paddr, unsigned long vaddr,
440 			  unsigned long sz)
441 {
442 	unsigned long flags;
443 
444 	local_irq_save(flags);
445 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
446 	local_irq_restore(flags);
447 }
448 
449 #ifndef CONFIG_SMP
450 
451 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
452 
453 #else
454 
455 struct ic_inv_args {
456 	unsigned long paddr, vaddr;
457 	int sz;
458 };
459 
460 static void __ic_line_inv_vaddr_helper(void *info)
461 {
462         struct ic_inv_args *ic_inv = info;
463 
464         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
465 }
466 
467 static void __ic_line_inv_vaddr(unsigned long paddr, unsigned long vaddr,
468 				unsigned long sz)
469 {
470 	struct ic_inv_args ic_inv = {
471 		.paddr = paddr,
472 		.vaddr = vaddr,
473 		.sz    = sz
474 	};
475 
476 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
477 }
478 
479 #endif	/* CONFIG_SMP */
480 
481 #else	/* !CONFIG_ARC_HAS_ICACHE */
482 
483 #define __ic_entire_inv()
484 #define __ic_line_inv_vaddr(pstart, vstart, sz)
485 
486 #endif /* CONFIG_ARC_HAS_ICACHE */
487 
488 noinline void slc_op(unsigned long paddr, unsigned long sz, const int op)
489 {
490 #ifdef CONFIG_ISA_ARCV2
491 	/*
492 	 * SLC is shared between all cores and concurrent aux operations from
493 	 * multiple cores need to be serialized using a spinlock
494 	 * A concurrent operation can be silently ignored and/or the old/new
495 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
496 	 * below)
497 	 */
498 	static DEFINE_SPINLOCK(lock);
499 	unsigned long flags;
500 	unsigned int ctrl;
501 
502 	spin_lock_irqsave(&lock, flags);
503 
504 	/*
505 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
506 	 *  - b'000 (default) is Flush,
507 	 *  - b'001 is Invalidate if CTRL.IM == 0
508 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
509 	 */
510 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
511 
512 	/* Don't rely on default value of IM bit */
513 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
514 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
515 	else
516 		ctrl |= SLC_CTRL_IM;
517 
518 	if (op & OP_INV)
519 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
520 	else
521 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
522 
523 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
524 
525 	/*
526 	 * Lower bits are ignored, no need to clip
527 	 * END needs to be setup before START (latter triggers the operation)
528 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
529 	 */
530 	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
531 	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
532 
533 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
534 
535 	spin_unlock_irqrestore(&lock, flags);
536 #endif
537 }
538 
539 /***********************************************************
540  * Exported APIs
541  */
542 
543 /*
544  * Handle cache congruency of kernel and userspace mappings of page when kernel
545  * writes-to/reads-from
546  *
547  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
548  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
549  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
550  *  -In SMP, if hardware caches are coherent
551  *
552  * There's a corollary case, where kernel READs from a userspace mapped page.
553  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
554  */
555 void flush_dcache_page(struct page *page)
556 {
557 	struct address_space *mapping;
558 
559 	if (!cache_is_vipt_aliasing()) {
560 		clear_bit(PG_dc_clean, &page->flags);
561 		return;
562 	}
563 
564 	/* don't handle anon pages here */
565 	mapping = page_mapping(page);
566 	if (!mapping)
567 		return;
568 
569 	/*
570 	 * pagecache page, file not yet mapped to userspace
571 	 * Make a note that K-mapping is dirty
572 	 */
573 	if (!mapping_mapped(mapping)) {
574 		clear_bit(PG_dc_clean, &page->flags);
575 	} else if (page_mapped(page)) {
576 
577 		/* kernel reading from page with U-mapping */
578 		unsigned long paddr = (unsigned long)page_address(page);
579 		unsigned long vaddr = page->index << PAGE_CACHE_SHIFT;
580 
581 		if (addr_not_cache_congruent(paddr, vaddr))
582 			__flush_dcache_page(paddr, vaddr);
583 	}
584 }
585 EXPORT_SYMBOL(flush_dcache_page);
586 
587 /*
588  * DMA ops for systems with L1 cache only
589  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
590  */
591 static void __dma_cache_wback_inv_l1(unsigned long start, unsigned long sz)
592 {
593 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
594 }
595 
596 static void __dma_cache_inv_l1(unsigned long start, unsigned long sz)
597 {
598 	__dc_line_op_k(start, sz, OP_INV);
599 }
600 
601 static void __dma_cache_wback_l1(unsigned long start, unsigned long sz)
602 {
603 	__dc_line_op_k(start, sz, OP_FLUSH);
604 }
605 
606 /*
607  * DMA ops for systems with both L1 and L2 caches, but without IOC
608  * Both L1 and L2 lines need to be explicity flushed/invalidated
609  */
610 static void __dma_cache_wback_inv_slc(unsigned long start, unsigned long sz)
611 {
612 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
613 	slc_op(start, sz, OP_FLUSH_N_INV);
614 }
615 
616 static void __dma_cache_inv_slc(unsigned long start, unsigned long sz)
617 {
618 	__dc_line_op_k(start, sz, OP_INV);
619 	slc_op(start, sz, OP_INV);
620 }
621 
622 static void __dma_cache_wback_slc(unsigned long start, unsigned long sz)
623 {
624 	__dc_line_op_k(start, sz, OP_FLUSH);
625 	slc_op(start, sz, OP_FLUSH);
626 }
627 
628 /*
629  * DMA ops for systems with IOC
630  * IOC hardware snoops all DMA traffic keeping the caches consistent with
631  * memory - eliding need for any explicit cache maintenance of DMA buffers
632  */
633 static void __dma_cache_wback_inv_ioc(unsigned long start, unsigned long sz) {}
634 static void __dma_cache_inv_ioc(unsigned long start, unsigned long sz) {}
635 static void __dma_cache_wback_ioc(unsigned long start, unsigned long sz) {}
636 
637 /*
638  * Exported DMA API
639  */
640 void dma_cache_wback_inv(unsigned long start, unsigned long sz)
641 {
642 	__dma_cache_wback_inv(start, sz);
643 }
644 EXPORT_SYMBOL(dma_cache_wback_inv);
645 
646 void dma_cache_inv(unsigned long start, unsigned long sz)
647 {
648 	__dma_cache_inv(start, sz);
649 }
650 EXPORT_SYMBOL(dma_cache_inv);
651 
652 void dma_cache_wback(unsigned long start, unsigned long sz)
653 {
654 	__dma_cache_wback(start, sz);
655 }
656 EXPORT_SYMBOL(dma_cache_wback);
657 
658 /*
659  * This is API for making I/D Caches consistent when modifying
660  * kernel code (loadable modules, kprobes, kgdb...)
661  * This is called on insmod, with kernel virtual address for CODE of
662  * the module. ARC cache maintenance ops require PHY address thus we
663  * need to convert vmalloc addr to PHY addr
664  */
665 void flush_icache_range(unsigned long kstart, unsigned long kend)
666 {
667 	unsigned int tot_sz;
668 
669 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
670 
671 	/* Shortcut for bigger flush ranges.
672 	 * Here we don't care if this was kernel virtual or phy addr
673 	 */
674 	tot_sz = kend - kstart;
675 	if (tot_sz > PAGE_SIZE) {
676 		flush_cache_all();
677 		return;
678 	}
679 
680 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
681 	if (likely(kstart > PAGE_OFFSET)) {
682 		/*
683 		 * The 2nd arg despite being paddr will be used to index icache
684 		 * This is OK since no alternate virtual mappings will exist
685 		 * given the callers for this case: kprobe/kgdb in built-in
686 		 * kernel code only.
687 		 */
688 		__sync_icache_dcache(kstart, kstart, kend - kstart);
689 		return;
690 	}
691 
692 	/*
693 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
694 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
695 	 *     handling of kernel vaddr.
696 	 *
697 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
698 	 *     it still needs to handle  a 2 page scenario, where the range
699 	 *     straddles across 2 virtual pages and hence need for loop
700 	 */
701 	while (tot_sz > 0) {
702 		unsigned int off, sz;
703 		unsigned long phy, pfn;
704 
705 		off = kstart % PAGE_SIZE;
706 		pfn = vmalloc_to_pfn((void *)kstart);
707 		phy = (pfn << PAGE_SHIFT) + off;
708 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
709 		__sync_icache_dcache(phy, kstart, sz);
710 		kstart += sz;
711 		tot_sz -= sz;
712 	}
713 }
714 EXPORT_SYMBOL(flush_icache_range);
715 
716 /*
717  * General purpose helper to make I and D cache lines consistent.
718  * @paddr is phy addr of region
719  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
720  *    However in one instance, when called by kprobe (for a breakpt in
721  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
722  *    use a paddr to index the cache (despite VIPT). This is fine since since a
723  *    builtin kernel page will not have any virtual mappings.
724  *    kprobe on loadable module will be kernel vaddr.
725  */
726 void __sync_icache_dcache(unsigned long paddr, unsigned long vaddr, int len)
727 {
728 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
729 	__ic_line_inv_vaddr(paddr, vaddr, len);
730 }
731 
732 /* wrapper to compile time eliminate alignment checks in flush loop */
733 void __inv_icache_page(unsigned long paddr, unsigned long vaddr)
734 {
735 	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
736 }
737 
738 /*
739  * wrapper to clearout kernel or userspace mappings of a page
740  * For kernel mappings @vaddr == @paddr
741  */
742 void __flush_dcache_page(unsigned long paddr, unsigned long vaddr)
743 {
744 	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
745 }
746 
747 noinline void flush_cache_all(void)
748 {
749 	unsigned long flags;
750 
751 	local_irq_save(flags);
752 
753 	__ic_entire_inv();
754 	__dc_entire_op(OP_FLUSH_N_INV);
755 
756 	local_irq_restore(flags);
757 
758 }
759 
760 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
761 
762 void flush_cache_mm(struct mm_struct *mm)
763 {
764 	flush_cache_all();
765 }
766 
767 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
768 		      unsigned long pfn)
769 {
770 	unsigned int paddr = pfn << PAGE_SHIFT;
771 
772 	u_vaddr &= PAGE_MASK;
773 
774 	__flush_dcache_page(paddr, u_vaddr);
775 
776 	if (vma->vm_flags & VM_EXEC)
777 		__inv_icache_page(paddr, u_vaddr);
778 }
779 
780 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
781 		       unsigned long end)
782 {
783 	flush_cache_all();
784 }
785 
786 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
787 		     unsigned long u_vaddr)
788 {
789 	/* TBD: do we really need to clear the kernel mapping */
790 	__flush_dcache_page(page_address(page), u_vaddr);
791 	__flush_dcache_page(page_address(page), page_address(page));
792 
793 }
794 
795 #endif
796 
797 void copy_user_highpage(struct page *to, struct page *from,
798 	unsigned long u_vaddr, struct vm_area_struct *vma)
799 {
800 	unsigned long kfrom = (unsigned long)page_address(from);
801 	unsigned long kto = (unsigned long)page_address(to);
802 	int clean_src_k_mappings = 0;
803 
804 	/*
805 	 * If SRC page was already mapped in userspace AND it's U-mapping is
806 	 * not congruent with K-mapping, sync former to physical page so that
807 	 * K-mapping in memcpy below, sees the right data
808 	 *
809 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
810 	 * equally valid for SRC page as well
811 	 */
812 	if (page_mapped(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
813 		__flush_dcache_page(kfrom, u_vaddr);
814 		clean_src_k_mappings = 1;
815 	}
816 
817 	copy_page((void *)kto, (void *)kfrom);
818 
819 	/*
820 	 * Mark DST page K-mapping as dirty for a later finalization by
821 	 * update_mmu_cache(). Although the finalization could have been done
822 	 * here as well (given that both vaddr/paddr are available).
823 	 * But update_mmu_cache() already has code to do that for other
824 	 * non copied user pages (e.g. read faults which wire in pagecache page
825 	 * directly).
826 	 */
827 	clear_bit(PG_dc_clean, &to->flags);
828 
829 	/*
830 	 * if SRC was already usermapped and non-congruent to kernel mapping
831 	 * sync the kernel mapping back to physical page
832 	 */
833 	if (clean_src_k_mappings) {
834 		__flush_dcache_page(kfrom, kfrom);
835 		set_bit(PG_dc_clean, &from->flags);
836 	} else {
837 		clear_bit(PG_dc_clean, &from->flags);
838 	}
839 }
840 
841 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
842 {
843 	clear_page(to);
844 	clear_bit(PG_dc_clean, &page->flags);
845 }
846 
847 
848 /**********************************************************************
849  * Explicit Cache flush request from user space via syscall
850  * Needed for JITs which generate code on the fly
851  */
852 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
853 {
854 	/* TBD: optimize this */
855 	flush_cache_all();
856 	return 0;
857 }
858 
859 void arc_cache_init(void)
860 {
861 	unsigned int __maybe_unused cpu = smp_processor_id();
862 	char str[256];
863 
864 	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
865 
866 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
867 		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
868 
869 		if (!ic->ver)
870 			panic("cache support enabled but non-existent cache\n");
871 
872 		if (ic->line_len != L1_CACHE_BYTES)
873 			panic("ICache line [%d] != kernel Config [%d]",
874 			      ic->line_len, L1_CACHE_BYTES);
875 
876 		if (ic->ver != CONFIG_ARC_MMU_VER)
877 			panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
878 			      ic->ver, CONFIG_ARC_MMU_VER);
879 
880 		/*
881 		 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
882 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
883 		 */
884 		if (is_isa_arcv2() && ic->alias)
885 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
886 		else
887 			_cache_line_loop_ic_fn = __cache_line_loop;
888 	}
889 
890 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
891 		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
892 
893 		if (!dc->ver)
894 			panic("cache support enabled but non-existent cache\n");
895 
896 		if (dc->line_len != L1_CACHE_BYTES)
897 			panic("DCache line [%d] != kernel Config [%d]",
898 			      dc->line_len, L1_CACHE_BYTES);
899 
900 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
901 		if (is_isa_arcompact()) {
902 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
903 
904 			if (dc->alias && !handled)
905 				panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
906 			else if (!dc->alias && handled)
907 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
908 		}
909 	}
910 
911 	if (is_isa_arcv2() && ioc_exists) {
912 		/* IO coherency base - 0x8z */
913 		write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
914 		/* IO coherency aperture size - 512Mb: 0x8z-0xAz */
915 		write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
916 		/* Enable partial writes */
917 		write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
918 		/* Enable IO coherency */
919 		write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
920 
921 		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
922 		__dma_cache_inv = __dma_cache_inv_ioc;
923 		__dma_cache_wback = __dma_cache_wback_ioc;
924 	} else if (is_isa_arcv2() && l2_line_sz) {
925 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
926 		__dma_cache_inv = __dma_cache_inv_slc;
927 		__dma_cache_wback = __dma_cache_wback_slc;
928 	} else {
929 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
930 		__dma_cache_inv = __dma_cache_inv_l1;
931 		__dma_cache_wback = __dma_cache_wback_l1;
932 	}
933 }
934