1 /* 2 * ARC Cache Management 3 * 4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com) 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/sched.h> 15 #include <linux/cache.h> 16 #include <linux/mmu_context.h> 17 #include <linux/syscalls.h> 18 #include <linux/uaccess.h> 19 #include <linux/pagemap.h> 20 #include <asm/cacheflush.h> 21 #include <asm/cachectl.h> 22 #include <asm/setup.h> 23 24 static int l2_line_sz; 25 int ioc_exists; 26 volatile int slc_enable = 1, ioc_enable = 1; 27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */ 28 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */ 29 30 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr, 31 unsigned long sz, const int cacheop); 32 33 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz); 34 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz); 35 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz); 36 37 char *arc_cache_mumbojumbo(int c, char *buf, int len) 38 { 39 int n = 0; 40 struct cpuinfo_arc_cache *p; 41 42 #define PR_CACHE(p, cfg, str) \ 43 if (!(p)->ver) \ 44 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \ 45 else \ 46 n += scnprintf(buf + n, len - n, \ 47 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \ 48 (p)->sz_k, (p)->assoc, (p)->line_len, \ 49 (p)->vipt ? "VIPT" : "PIPT", \ 50 (p)->alias ? " aliasing" : "", \ 51 IS_USED_CFG(cfg)); 52 53 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache"); 54 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache"); 55 56 if (!is_isa_arcv2()) 57 return buf; 58 59 p = &cpuinfo_arc700[c].slc; 60 if (p->ver) 61 n += scnprintf(buf + n, len - n, 62 "SLC\t\t: %uK, %uB Line%s\n", 63 p->sz_k, p->line_len, IS_USED_RUN(slc_enable)); 64 65 if (ioc_exists) 66 n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n", 67 IS_DISABLED_RUN(ioc_enable)); 68 69 return buf; 70 } 71 72 /* 73 * Read the Cache Build Confuration Registers, Decode them and save into 74 * the cpuinfo structure for later use. 75 * No Validation done here, simply read/convert the BCRs 76 */ 77 static void read_decode_cache_bcr_arcv2(int cpu) 78 { 79 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc; 80 struct bcr_generic sbcr; 81 82 struct bcr_slc_cfg { 83 #ifdef CONFIG_CPU_BIG_ENDIAN 84 unsigned int pad:24, way:2, lsz:2, sz:4; 85 #else 86 unsigned int sz:4, lsz:2, way:2, pad:24; 87 #endif 88 } slc_cfg; 89 90 struct bcr_clust_cfg { 91 #ifdef CONFIG_CPU_BIG_ENDIAN 92 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8; 93 #else 94 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7; 95 #endif 96 } cbcr; 97 98 struct bcr_volatile { 99 #ifdef CONFIG_CPU_BIG_ENDIAN 100 unsigned int start:4, limit:4, pad:22, order:1, disable:1; 101 #else 102 unsigned int disable:1, order:1, pad:22, limit:4, start:4; 103 #endif 104 } vol; 105 106 107 READ_BCR(ARC_REG_SLC_BCR, sbcr); 108 if (sbcr.ver) { 109 READ_BCR(ARC_REG_SLC_CFG, slc_cfg); 110 p_slc->ver = sbcr.ver; 111 p_slc->sz_k = 128 << slc_cfg.sz; 112 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64; 113 } 114 115 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr); 116 if (cbcr.c && ioc_enable) 117 ioc_exists = 1; 118 119 /* HS 2.0 didn't have AUX_VOL */ 120 if (cpuinfo_arc700[cpu].core.family > 0x51) { 121 READ_BCR(AUX_VOL, vol); 122 perip_base = vol.start << 28; 123 /* HS 3.0 has limit and strict-ordering fields */ 124 if (cpuinfo_arc700[cpu].core.family > 0x52) 125 perip_end = (vol.limit << 28) - 1; 126 } 127 } 128 129 void read_decode_cache_bcr(void) 130 { 131 struct cpuinfo_arc_cache *p_ic, *p_dc; 132 unsigned int cpu = smp_processor_id(); 133 struct bcr_cache { 134 #ifdef CONFIG_CPU_BIG_ENDIAN 135 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8; 136 #else 137 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12; 138 #endif 139 } ibcr, dbcr; 140 141 p_ic = &cpuinfo_arc700[cpu].icache; 142 READ_BCR(ARC_REG_IC_BCR, ibcr); 143 144 if (!ibcr.ver) 145 goto dc_chk; 146 147 if (ibcr.ver <= 3) { 148 BUG_ON(ibcr.config != 3); 149 p_ic->assoc = 2; /* Fixed to 2w set assoc */ 150 } else if (ibcr.ver >= 4) { 151 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */ 152 } 153 154 p_ic->line_len = 8 << ibcr.line_len; 155 p_ic->sz_k = 1 << (ibcr.sz - 1); 156 p_ic->ver = ibcr.ver; 157 p_ic->vipt = 1; 158 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1; 159 160 dc_chk: 161 p_dc = &cpuinfo_arc700[cpu].dcache; 162 READ_BCR(ARC_REG_DC_BCR, dbcr); 163 164 if (!dbcr.ver) 165 goto slc_chk; 166 167 if (dbcr.ver <= 3) { 168 BUG_ON(dbcr.config != 2); 169 p_dc->assoc = 4; /* Fixed to 4w set assoc */ 170 p_dc->vipt = 1; 171 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1; 172 } else if (dbcr.ver >= 4) { 173 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */ 174 p_dc->vipt = 0; 175 p_dc->alias = 0; /* PIPT so can't VIPT alias */ 176 } 177 178 p_dc->line_len = 16 << dbcr.line_len; 179 p_dc->sz_k = 1 << (dbcr.sz - 1); 180 p_dc->ver = dbcr.ver; 181 182 slc_chk: 183 if (is_isa_arcv2()) 184 read_decode_cache_bcr_arcv2(cpu); 185 } 186 187 /* 188 * Line Operation on {I,D}-Cache 189 */ 190 191 #define OP_INV 0x1 192 #define OP_FLUSH 0x2 193 #define OP_FLUSH_N_INV 0x3 194 #define OP_INV_IC 0x4 195 196 /* 197 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3) 198 * 199 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag. 200 * The orig Cache Management Module "CDU" only required paddr to invalidate a 201 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry. 202 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching 203 * the exact same line. 204 * 205 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config, 206 * paddr alone could not be used to correctly index the cache. 207 * 208 * ------------------ 209 * MMU v1/v2 (Fixed Page Size 8k) 210 * ------------------ 211 * The solution was to provide CDU with these additonal vaddr bits. These 212 * would be bits [x:13], x would depend on cache-geometry, 13 comes from 213 * standard page size of 8k. 214 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits 215 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the 216 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they 217 * represent the offset within cache-line. The adv of using this "clumsy" 218 * interface for additional info was no new reg was needed in CDU programming 219 * model. 220 * 221 * 17:13 represented the max num of bits passable, actual bits needed were 222 * fewer, based on the num-of-aliases possible. 223 * -for 2 alias possibility, only bit 13 needed (32K cache) 224 * -for 4 alias possibility, bits 14:13 needed (64K cache) 225 * 226 * ------------------ 227 * MMU v3 228 * ------------------ 229 * This ver of MMU supports variable page sizes (1k-16k): although Linux will 230 * only support 8k (default), 16k and 4k. 231 * However from hardware perspective, smaller page sizes aggravate aliasing 232 * meaning more vaddr bits needed to disambiguate the cache-line-op ; 233 * the existing scheme of piggybacking won't work for certain configurations. 234 * Two new registers IC_PTAG and DC_PTAG inttoduced. 235 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs 236 */ 237 238 static inline 239 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr, 240 unsigned long sz, const int op) 241 { 242 unsigned int aux_cmd; 243 int num_lines; 244 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 245 246 if (op == OP_INV_IC) { 247 aux_cmd = ARC_REG_IC_IVIL; 248 } else { 249 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 250 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 251 } 252 253 /* Ensure we properly floor/ceil the non-line aligned/sized requests 254 * and have @paddr - aligned to cache line and integral @num_lines. 255 * This however can be avoided for page sized since: 256 * -@paddr will be cache-line aligned already (being page aligned) 257 * -@sz will be integral multiple of line size (being page sized). 258 */ 259 if (!full_page) { 260 sz += paddr & ~CACHE_LINE_MASK; 261 paddr &= CACHE_LINE_MASK; 262 vaddr &= CACHE_LINE_MASK; 263 } 264 265 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 266 267 /* MMUv2 and before: paddr contains stuffed vaddrs bits */ 268 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F; 269 270 while (num_lines-- > 0) { 271 write_aux_reg(aux_cmd, paddr); 272 paddr += L1_CACHE_BYTES; 273 } 274 } 275 276 /* 277 * For ARC700 MMUv3 I-cache and D-cache flushes 278 * Also reused for HS38 aliasing I-cache configuration 279 */ 280 static inline 281 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr, 282 unsigned long sz, const int op) 283 { 284 unsigned int aux_cmd, aux_tag; 285 int num_lines; 286 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 287 288 if (op == OP_INV_IC) { 289 aux_cmd = ARC_REG_IC_IVIL; 290 aux_tag = ARC_REG_IC_PTAG; 291 } else { 292 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 293 aux_tag = ARC_REG_DC_PTAG; 294 } 295 296 /* Ensure we properly floor/ceil the non-line aligned/sized requests 297 * and have @paddr - aligned to cache line and integral @num_lines. 298 * This however can be avoided for page sized since: 299 * -@paddr will be cache-line aligned already (being page aligned) 300 * -@sz will be integral multiple of line size (being page sized). 301 */ 302 if (!full_page) { 303 sz += paddr & ~CACHE_LINE_MASK; 304 paddr &= CACHE_LINE_MASK; 305 vaddr &= CACHE_LINE_MASK; 306 } 307 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 308 309 /* 310 * MMUv3, cache ops require paddr in PTAG reg 311 * if V-P const for loop, PTAG can be written once outside loop 312 */ 313 if (full_page) 314 write_aux_reg(aux_tag, paddr); 315 316 /* 317 * This is technically for MMU v4, using the MMU v3 programming model 318 * Special work for HS38 aliasing I-cache configuration with PAE40 319 * - upper 8 bits of paddr need to be written into PTAG_HI 320 * - (and needs to be written before the lower 32 bits) 321 * Note that PTAG_HI is hoisted outside the line loop 322 */ 323 if (is_pae40_enabled() && op == OP_INV_IC) 324 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 325 326 while (num_lines-- > 0) { 327 if (!full_page) { 328 write_aux_reg(aux_tag, paddr); 329 paddr += L1_CACHE_BYTES; 330 } 331 332 write_aux_reg(aux_cmd, vaddr); 333 vaddr += L1_CACHE_BYTES; 334 } 335 } 336 337 /* 338 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT 339 * Here's how cache ops are implemented 340 * 341 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL) 342 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL) 343 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG 344 * respectively, similar to MMU v3 programming model, hence 345 * __cache_line_loop_v3() is used) 346 * 347 * If PAE40 is enabled, independent of aliasing considerations, the higher bits 348 * needs to be written into PTAG_HI 349 */ 350 static inline 351 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, 352 unsigned long sz, const int cacheop) 353 { 354 unsigned int aux_cmd; 355 int num_lines; 356 const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE; 357 358 if (cacheop == OP_INV_IC) { 359 aux_cmd = ARC_REG_IC_IVIL; 360 } else { 361 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 362 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 363 } 364 365 /* Ensure we properly floor/ceil the non-line aligned/sized requests 366 * and have @paddr - aligned to cache line and integral @num_lines. 367 * This however can be avoided for page sized since: 368 * -@paddr will be cache-line aligned already (being page aligned) 369 * -@sz will be integral multiple of line size (being page sized). 370 */ 371 if (!full_page_op) { 372 sz += paddr & ~CACHE_LINE_MASK; 373 paddr &= CACHE_LINE_MASK; 374 } 375 376 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 377 378 /* 379 * For HS38 PAE40 configuration 380 * - upper 8 bits of paddr need to be written into PTAG_HI 381 * - (and needs to be written before the lower 32 bits) 382 */ 383 if (is_pae40_enabled()) { 384 if (cacheop == OP_INV_IC) 385 /* 386 * Non aliasing I-cache in HS38, 387 * aliasing I-cache handled in __cache_line_loop_v3() 388 */ 389 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 390 else 391 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); 392 } 393 394 while (num_lines-- > 0) { 395 write_aux_reg(aux_cmd, paddr); 396 paddr += L1_CACHE_BYTES; 397 } 398 } 399 400 #if (CONFIG_ARC_MMU_VER < 3) 401 #define __cache_line_loop __cache_line_loop_v2 402 #elif (CONFIG_ARC_MMU_VER == 3) 403 #define __cache_line_loop __cache_line_loop_v3 404 #elif (CONFIG_ARC_MMU_VER > 3) 405 #define __cache_line_loop __cache_line_loop_v4 406 #endif 407 408 #ifdef CONFIG_ARC_HAS_DCACHE 409 410 /*************************************************************** 411 * Machine specific helpers for Entire D-Cache or Per Line ops 412 */ 413 414 static inline void __before_dc_op(const int op) 415 { 416 if (op == OP_FLUSH_N_INV) { 417 /* Dcache provides 2 cmd: FLUSH or INV 418 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE 419 * flush-n-inv is achieved by INV cmd but with IM=1 420 * So toggle INV sub-mode depending on op request and default 421 */ 422 const unsigned int ctl = ARC_REG_DC_CTRL; 423 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH); 424 } 425 } 426 427 static inline void __after_dc_op(const int op) 428 { 429 if (op & OP_FLUSH) { 430 const unsigned int ctl = ARC_REG_DC_CTRL; 431 unsigned int reg; 432 433 /* flush / flush-n-inv both wait */ 434 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS) 435 ; 436 437 /* Switch back to default Invalidate mode */ 438 if (op == OP_FLUSH_N_INV) 439 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH); 440 } 441 } 442 443 /* 444 * Operation on Entire D-Cache 445 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV} 446 * Note that constant propagation ensures all the checks are gone 447 * in generated code 448 */ 449 static inline void __dc_entire_op(const int op) 450 { 451 int aux; 452 453 __before_dc_op(op); 454 455 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */ 456 aux = ARC_REG_DC_IVDC; 457 else 458 aux = ARC_REG_DC_FLSH; 459 460 write_aux_reg(aux, 0x1); 461 462 __after_dc_op(op); 463 } 464 465 /* For kernel mappings cache operation: index is same as paddr */ 466 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op) 467 468 /* 469 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback) 470 */ 471 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr, 472 unsigned long sz, const int op) 473 { 474 unsigned long flags; 475 476 local_irq_save(flags); 477 478 __before_dc_op(op); 479 480 __cache_line_loop(paddr, vaddr, sz, op); 481 482 __after_dc_op(op); 483 484 local_irq_restore(flags); 485 } 486 487 #else 488 489 #define __dc_entire_op(op) 490 #define __dc_line_op(paddr, vaddr, sz, op) 491 #define __dc_line_op_k(paddr, sz, op) 492 493 #endif /* CONFIG_ARC_HAS_DCACHE */ 494 495 #ifdef CONFIG_ARC_HAS_ICACHE 496 497 static inline void __ic_entire_inv(void) 498 { 499 write_aux_reg(ARC_REG_IC_IVIC, 1); 500 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */ 501 } 502 503 static inline void 504 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr, 505 unsigned long sz) 506 { 507 unsigned long flags; 508 509 local_irq_save(flags); 510 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC); 511 local_irq_restore(flags); 512 } 513 514 #ifndef CONFIG_SMP 515 516 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s) 517 518 #else 519 520 struct ic_inv_args { 521 phys_addr_t paddr, vaddr; 522 int sz; 523 }; 524 525 static void __ic_line_inv_vaddr_helper(void *info) 526 { 527 struct ic_inv_args *ic_inv = info; 528 529 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz); 530 } 531 532 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr, 533 unsigned long sz) 534 { 535 struct ic_inv_args ic_inv = { 536 .paddr = paddr, 537 .vaddr = vaddr, 538 .sz = sz 539 }; 540 541 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1); 542 } 543 544 #endif /* CONFIG_SMP */ 545 546 #else /* !CONFIG_ARC_HAS_ICACHE */ 547 548 #define __ic_entire_inv() 549 #define __ic_line_inv_vaddr(pstart, vstart, sz) 550 551 #endif /* CONFIG_ARC_HAS_ICACHE */ 552 553 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op) 554 { 555 #ifdef CONFIG_ISA_ARCV2 556 /* 557 * SLC is shared between all cores and concurrent aux operations from 558 * multiple cores need to be serialized using a spinlock 559 * A concurrent operation can be silently ignored and/or the old/new 560 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop 561 * below) 562 */ 563 static DEFINE_SPINLOCK(lock); 564 unsigned long flags; 565 unsigned int ctrl; 566 567 spin_lock_irqsave(&lock, flags); 568 569 /* 570 * The Region Flush operation is specified by CTRL.RGN_OP[11..9] 571 * - b'000 (default) is Flush, 572 * - b'001 is Invalidate if CTRL.IM == 0 573 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1 574 */ 575 ctrl = read_aux_reg(ARC_REG_SLC_CTRL); 576 577 /* Don't rely on default value of IM bit */ 578 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 579 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 580 else 581 ctrl |= SLC_CTRL_IM; 582 583 if (op & OP_INV) 584 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */ 585 else 586 ctrl &= ~SLC_CTRL_RGN_OP_INV; 587 588 write_aux_reg(ARC_REG_SLC_CTRL, ctrl); 589 590 /* 591 * Lower bits are ignored, no need to clip 592 * END needs to be setup before START (latter triggers the operation) 593 * END can't be same as START, so add (l2_line_sz - 1) to sz 594 */ 595 write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1)); 596 write_aux_reg(ARC_REG_SLC_RGN_START, paddr); 597 598 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 599 600 spin_unlock_irqrestore(&lock, flags); 601 #endif 602 } 603 604 /*********************************************************** 605 * Exported APIs 606 */ 607 608 /* 609 * Handle cache congruency of kernel and userspace mappings of page when kernel 610 * writes-to/reads-from 611 * 612 * The idea is to defer flushing of kernel mapping after a WRITE, possible if: 613 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent 614 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache) 615 * -In SMP, if hardware caches are coherent 616 * 617 * There's a corollary case, where kernel READs from a userspace mapped page. 618 * If the U-mapping is not congruent to to K-mapping, former needs flushing. 619 */ 620 void flush_dcache_page(struct page *page) 621 { 622 struct address_space *mapping; 623 624 if (!cache_is_vipt_aliasing()) { 625 clear_bit(PG_dc_clean, &page->flags); 626 return; 627 } 628 629 /* don't handle anon pages here */ 630 mapping = page_mapping(page); 631 if (!mapping) 632 return; 633 634 /* 635 * pagecache page, file not yet mapped to userspace 636 * Make a note that K-mapping is dirty 637 */ 638 if (!mapping_mapped(mapping)) { 639 clear_bit(PG_dc_clean, &page->flags); 640 } else if (page_mapcount(page)) { 641 642 /* kernel reading from page with U-mapping */ 643 phys_addr_t paddr = (unsigned long)page_address(page); 644 unsigned long vaddr = page->index << PAGE_SHIFT; 645 646 if (addr_not_cache_congruent(paddr, vaddr)) 647 __flush_dcache_page(paddr, vaddr); 648 } 649 } 650 EXPORT_SYMBOL(flush_dcache_page); 651 652 /* 653 * DMA ops for systems with L1 cache only 654 * Make memory coherent with L1 cache by flushing/invalidating L1 lines 655 */ 656 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz) 657 { 658 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 659 } 660 661 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz) 662 { 663 __dc_line_op_k(start, sz, OP_INV); 664 } 665 666 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz) 667 { 668 __dc_line_op_k(start, sz, OP_FLUSH); 669 } 670 671 /* 672 * DMA ops for systems with both L1 and L2 caches, but without IOC 673 * Both L1 and L2 lines need to be explicitly flushed/invalidated 674 */ 675 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz) 676 { 677 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 678 slc_op(start, sz, OP_FLUSH_N_INV); 679 } 680 681 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz) 682 { 683 __dc_line_op_k(start, sz, OP_INV); 684 slc_op(start, sz, OP_INV); 685 } 686 687 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz) 688 { 689 __dc_line_op_k(start, sz, OP_FLUSH); 690 slc_op(start, sz, OP_FLUSH); 691 } 692 693 /* 694 * DMA ops for systems with IOC 695 * IOC hardware snoops all DMA traffic keeping the caches consistent with 696 * memory - eliding need for any explicit cache maintenance of DMA buffers 697 */ 698 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {} 699 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {} 700 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {} 701 702 /* 703 * Exported DMA API 704 */ 705 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz) 706 { 707 __dma_cache_wback_inv(start, sz); 708 } 709 EXPORT_SYMBOL(dma_cache_wback_inv); 710 711 void dma_cache_inv(phys_addr_t start, unsigned long sz) 712 { 713 __dma_cache_inv(start, sz); 714 } 715 EXPORT_SYMBOL(dma_cache_inv); 716 717 void dma_cache_wback(phys_addr_t start, unsigned long sz) 718 { 719 __dma_cache_wback(start, sz); 720 } 721 EXPORT_SYMBOL(dma_cache_wback); 722 723 /* 724 * This is API for making I/D Caches consistent when modifying 725 * kernel code (loadable modules, kprobes, kgdb...) 726 * This is called on insmod, with kernel virtual address for CODE of 727 * the module. ARC cache maintenance ops require PHY address thus we 728 * need to convert vmalloc addr to PHY addr 729 */ 730 void flush_icache_range(unsigned long kstart, unsigned long kend) 731 { 732 unsigned int tot_sz; 733 734 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__); 735 736 /* Shortcut for bigger flush ranges. 737 * Here we don't care if this was kernel virtual or phy addr 738 */ 739 tot_sz = kend - kstart; 740 if (tot_sz > PAGE_SIZE) { 741 flush_cache_all(); 742 return; 743 } 744 745 /* Case: Kernel Phy addr (0x8000_0000 onwards) */ 746 if (likely(kstart > PAGE_OFFSET)) { 747 /* 748 * The 2nd arg despite being paddr will be used to index icache 749 * This is OK since no alternate virtual mappings will exist 750 * given the callers for this case: kprobe/kgdb in built-in 751 * kernel code only. 752 */ 753 __sync_icache_dcache(kstart, kstart, kend - kstart); 754 return; 755 } 756 757 /* 758 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff) 759 * (1) ARC Cache Maintenance ops only take Phy addr, hence special 760 * handling of kernel vaddr. 761 * 762 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already), 763 * it still needs to handle a 2 page scenario, where the range 764 * straddles across 2 virtual pages and hence need for loop 765 */ 766 while (tot_sz > 0) { 767 unsigned int off, sz; 768 unsigned long phy, pfn; 769 770 off = kstart % PAGE_SIZE; 771 pfn = vmalloc_to_pfn((void *)kstart); 772 phy = (pfn << PAGE_SHIFT) + off; 773 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off); 774 __sync_icache_dcache(phy, kstart, sz); 775 kstart += sz; 776 tot_sz -= sz; 777 } 778 } 779 EXPORT_SYMBOL(flush_icache_range); 780 781 /* 782 * General purpose helper to make I and D cache lines consistent. 783 * @paddr is phy addr of region 784 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc) 785 * However in one instance, when called by kprobe (for a breakpt in 786 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will 787 * use a paddr to index the cache (despite VIPT). This is fine since since a 788 * builtin kernel page will not have any virtual mappings. 789 * kprobe on loadable module will be kernel vaddr. 790 */ 791 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len) 792 { 793 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV); 794 __ic_line_inv_vaddr(paddr, vaddr, len); 795 } 796 797 /* wrapper to compile time eliminate alignment checks in flush loop */ 798 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr) 799 { 800 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE); 801 } 802 803 /* 804 * wrapper to clearout kernel or userspace mappings of a page 805 * For kernel mappings @vaddr == @paddr 806 */ 807 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr) 808 { 809 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV); 810 } 811 812 noinline void flush_cache_all(void) 813 { 814 unsigned long flags; 815 816 local_irq_save(flags); 817 818 __ic_entire_inv(); 819 __dc_entire_op(OP_FLUSH_N_INV); 820 821 local_irq_restore(flags); 822 823 } 824 825 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING 826 827 void flush_cache_mm(struct mm_struct *mm) 828 { 829 flush_cache_all(); 830 } 831 832 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr, 833 unsigned long pfn) 834 { 835 unsigned int paddr = pfn << PAGE_SHIFT; 836 837 u_vaddr &= PAGE_MASK; 838 839 __flush_dcache_page(paddr, u_vaddr); 840 841 if (vma->vm_flags & VM_EXEC) 842 __inv_icache_page(paddr, u_vaddr); 843 } 844 845 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 846 unsigned long end) 847 { 848 flush_cache_all(); 849 } 850 851 void flush_anon_page(struct vm_area_struct *vma, struct page *page, 852 unsigned long u_vaddr) 853 { 854 /* TBD: do we really need to clear the kernel mapping */ 855 __flush_dcache_page(page_address(page), u_vaddr); 856 __flush_dcache_page(page_address(page), page_address(page)); 857 858 } 859 860 #endif 861 862 void copy_user_highpage(struct page *to, struct page *from, 863 unsigned long u_vaddr, struct vm_area_struct *vma) 864 { 865 void *kfrom = kmap_atomic(from); 866 void *kto = kmap_atomic(to); 867 int clean_src_k_mappings = 0; 868 869 /* 870 * If SRC page was already mapped in userspace AND it's U-mapping is 871 * not congruent with K-mapping, sync former to physical page so that 872 * K-mapping in memcpy below, sees the right data 873 * 874 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is 875 * equally valid for SRC page as well 876 * 877 * For !VIPT cache, all of this gets compiled out as 878 * addr_not_cache_congruent() is 0 879 */ 880 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) { 881 __flush_dcache_page((unsigned long)kfrom, u_vaddr); 882 clean_src_k_mappings = 1; 883 } 884 885 copy_page(kto, kfrom); 886 887 /* 888 * Mark DST page K-mapping as dirty for a later finalization by 889 * update_mmu_cache(). Although the finalization could have been done 890 * here as well (given that both vaddr/paddr are available). 891 * But update_mmu_cache() already has code to do that for other 892 * non copied user pages (e.g. read faults which wire in pagecache page 893 * directly). 894 */ 895 clear_bit(PG_dc_clean, &to->flags); 896 897 /* 898 * if SRC was already usermapped and non-congruent to kernel mapping 899 * sync the kernel mapping back to physical page 900 */ 901 if (clean_src_k_mappings) { 902 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom); 903 set_bit(PG_dc_clean, &from->flags); 904 } else { 905 clear_bit(PG_dc_clean, &from->flags); 906 } 907 908 kunmap_atomic(kto); 909 kunmap_atomic(kfrom); 910 } 911 912 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page) 913 { 914 clear_page(to); 915 clear_bit(PG_dc_clean, &page->flags); 916 } 917 918 919 /********************************************************************** 920 * Explicit Cache flush request from user space via syscall 921 * Needed for JITs which generate code on the fly 922 */ 923 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags) 924 { 925 /* TBD: optimize this */ 926 flush_cache_all(); 927 return 0; 928 } 929 930 void arc_cache_init(void) 931 { 932 unsigned int __maybe_unused cpu = smp_processor_id(); 933 char str[256]; 934 935 printk(arc_cache_mumbojumbo(0, str, sizeof(str))); 936 937 /* 938 * Only master CPU needs to execute rest of function: 939 * - Assume SMP so all cores will have same cache config so 940 * any geomtry checks will be same for all 941 * - IOC setup / dma callbacks only need to be setup once 942 */ 943 if (cpu) 944 return; 945 946 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) { 947 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache; 948 949 if (!ic->ver) 950 panic("cache support enabled but non-existent cache\n"); 951 952 if (ic->line_len != L1_CACHE_BYTES) 953 panic("ICache line [%d] != kernel Config [%d]", 954 ic->line_len, L1_CACHE_BYTES); 955 956 if (ic->ver != CONFIG_ARC_MMU_VER) 957 panic("Cache ver [%d] doesn't match MMU ver [%d]\n", 958 ic->ver, CONFIG_ARC_MMU_VER); 959 960 /* 961 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG 962 * pair to provide vaddr/paddr respectively, just as in MMU v3 963 */ 964 if (is_isa_arcv2() && ic->alias) 965 _cache_line_loop_ic_fn = __cache_line_loop_v3; 966 else 967 _cache_line_loop_ic_fn = __cache_line_loop; 968 } 969 970 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) { 971 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache; 972 973 if (!dc->ver) 974 panic("cache support enabled but non-existent cache\n"); 975 976 if (dc->line_len != L1_CACHE_BYTES) 977 panic("DCache line [%d] != kernel Config [%d]", 978 dc->line_len, L1_CACHE_BYTES); 979 980 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */ 981 if (is_isa_arcompact()) { 982 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING); 983 984 if (dc->alias && !handled) 985 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 986 else if (!dc->alias && handled) 987 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 988 } 989 } 990 991 if (is_isa_arcv2() && l2_line_sz && !slc_enable) { 992 993 /* IM set : flush before invalidate */ 994 write_aux_reg(ARC_REG_SLC_CTRL, 995 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM); 996 997 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1); 998 999 /* Important to wait for flush to complete */ 1000 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 1001 write_aux_reg(ARC_REG_SLC_CTRL, 1002 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE); 1003 } 1004 1005 if (is_isa_arcv2() && ioc_exists) { 1006 /* IO coherency base - 0x8z */ 1007 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000); 1008 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */ 1009 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11); 1010 /* Enable partial writes */ 1011 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1); 1012 /* Enable IO coherency */ 1013 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1); 1014 1015 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc; 1016 __dma_cache_inv = __dma_cache_inv_ioc; 1017 __dma_cache_wback = __dma_cache_wback_ioc; 1018 } else if (is_isa_arcv2() && l2_line_sz && slc_enable) { 1019 __dma_cache_wback_inv = __dma_cache_wback_inv_slc; 1020 __dma_cache_inv = __dma_cache_inv_slc; 1021 __dma_cache_wback = __dma_cache_wback_slc; 1022 } else { 1023 __dma_cache_wback_inv = __dma_cache_wback_inv_l1; 1024 __dma_cache_inv = __dma_cache_inv_l1; 1025 __dma_cache_wback = __dma_cache_wback_l1; 1026 } 1027 } 1028