xref: /openbmc/linux/arch/arc/mm/cache.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23 
24 static int l2_line_sz;
25 int ioc_exists;
26 volatile int slc_enable = 1, ioc_enable = 1;
27 
28 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
29 			       unsigned long sz, const int cacheop);
30 
31 void (*__dma_cache_wback_inv)(unsigned long start, unsigned long sz);
32 void (*__dma_cache_inv)(unsigned long start, unsigned long sz);
33 void (*__dma_cache_wback)(unsigned long start, unsigned long sz);
34 
35 char *arc_cache_mumbojumbo(int c, char *buf, int len)
36 {
37 	int n = 0;
38 	struct cpuinfo_arc_cache *p;
39 
40 #define PR_CACHE(p, cfg, str)						\
41 	if (!(p)->ver)							\
42 		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
43 	else								\
44 		n += scnprintf(buf + n, len - n,			\
45 			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
46 			(p)->sz_k, (p)->assoc, (p)->line_len,		\
47 			(p)->vipt ? "VIPT" : "PIPT",			\
48 			(p)->alias ? " aliasing" : "",			\
49 			IS_USED_CFG(cfg));
50 
51 	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
52 	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
53 
54 	if (!is_isa_arcv2())
55                 return buf;
56 
57 	p = &cpuinfo_arc700[c].slc;
58 	if (p->ver)
59 		n += scnprintf(buf + n, len - n,
60 			       "SLC\t\t: %uK, %uB Line%s\n",
61 			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
62 
63 	if (ioc_exists)
64 		n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n",
65 				IS_DISABLED_RUN(ioc_enable));
66 
67 	return buf;
68 }
69 
70 /*
71  * Read the Cache Build Confuration Registers, Decode them and save into
72  * the cpuinfo structure for later use.
73  * No Validation done here, simply read/convert the BCRs
74  */
75 static void read_decode_cache_bcr_arcv2(int cpu)
76 {
77 	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
78 	struct bcr_generic sbcr;
79 
80 	struct bcr_slc_cfg {
81 #ifdef CONFIG_CPU_BIG_ENDIAN
82 		unsigned int pad:24, way:2, lsz:2, sz:4;
83 #else
84 		unsigned int sz:4, lsz:2, way:2, pad:24;
85 #endif
86 	} slc_cfg;
87 
88 	struct bcr_clust_cfg {
89 #ifdef CONFIG_CPU_BIG_ENDIAN
90 		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
91 #else
92 		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
93 #endif
94 	} cbcr;
95 
96 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
97 	if (sbcr.ver) {
98 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
99 		p_slc->ver = sbcr.ver;
100 		p_slc->sz_k = 128 << slc_cfg.sz;
101 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
102 	}
103 
104 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
105 	if (cbcr.c && ioc_enable)
106 		ioc_exists = 1;
107 }
108 
109 void read_decode_cache_bcr(void)
110 {
111 	struct cpuinfo_arc_cache *p_ic, *p_dc;
112 	unsigned int cpu = smp_processor_id();
113 	struct bcr_cache {
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
116 #else
117 		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
118 #endif
119 	} ibcr, dbcr;
120 
121 	p_ic = &cpuinfo_arc700[cpu].icache;
122 	READ_BCR(ARC_REG_IC_BCR, ibcr);
123 
124 	if (!ibcr.ver)
125 		goto dc_chk;
126 
127 	if (ibcr.ver <= 3) {
128 		BUG_ON(ibcr.config != 3);
129 		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
130 	} else if (ibcr.ver >= 4) {
131 		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
132 	}
133 
134 	p_ic->line_len = 8 << ibcr.line_len;
135 	p_ic->sz_k = 1 << (ibcr.sz - 1);
136 	p_ic->ver = ibcr.ver;
137 	p_ic->vipt = 1;
138 	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
139 
140 dc_chk:
141 	p_dc = &cpuinfo_arc700[cpu].dcache;
142 	READ_BCR(ARC_REG_DC_BCR, dbcr);
143 
144 	if (!dbcr.ver)
145 		goto slc_chk;
146 
147 	if (dbcr.ver <= 3) {
148 		BUG_ON(dbcr.config != 2);
149 		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
150 		p_dc->vipt = 1;
151 		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
152 	} else if (dbcr.ver >= 4) {
153 		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
154 		p_dc->vipt = 0;
155 		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
156 	}
157 
158 	p_dc->line_len = 16 << dbcr.line_len;
159 	p_dc->sz_k = 1 << (dbcr.sz - 1);
160 	p_dc->ver = dbcr.ver;
161 
162 slc_chk:
163 	if (is_isa_arcv2())
164                 read_decode_cache_bcr_arcv2(cpu);
165 }
166 
167 /*
168  * Line Operation on {I,D}-Cache
169  */
170 
171 #define OP_INV		0x1
172 #define OP_FLUSH	0x2
173 #define OP_FLUSH_N_INV	0x3
174 #define OP_INV_IC	0x4
175 
176 /*
177  *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
178  *
179  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
180  * The orig Cache Management Module "CDU" only required paddr to invalidate a
181  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
182  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
183  * the exact same line.
184  *
185  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
186  * paddr alone could not be used to correctly index the cache.
187  *
188  * ------------------
189  * MMU v1/v2 (Fixed Page Size 8k)
190  * ------------------
191  * The solution was to provide CDU with these additonal vaddr bits. These
192  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
193  * standard page size of 8k.
194  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
195  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
196  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
197  * represent the offset within cache-line. The adv of using this "clumsy"
198  * interface for additional info was no new reg was needed in CDU programming
199  * model.
200  *
201  * 17:13 represented the max num of bits passable, actual bits needed were
202  * fewer, based on the num-of-aliases possible.
203  * -for 2 alias possibility, only bit 13 needed (32K cache)
204  * -for 4 alias possibility, bits 14:13 needed (64K cache)
205  *
206  * ------------------
207  * MMU v3
208  * ------------------
209  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
210  * only support 8k (default), 16k and 4k.
211  * However from hardware perspective, smaller page sizes aggrevate aliasing
212  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
213  * the existing scheme of piggybacking won't work for certain configurations.
214  * Two new registers IC_PTAG and DC_PTAG inttoduced.
215  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
216  */
217 
218 static inline
219 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
220 			  unsigned long sz, const int op)
221 {
222 	unsigned int aux_cmd;
223 	int num_lines;
224 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
225 
226 	if (op == OP_INV_IC) {
227 		aux_cmd = ARC_REG_IC_IVIL;
228 	} else {
229 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
230 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
231 	}
232 
233 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
234 	 * and have @paddr - aligned to cache line and integral @num_lines.
235 	 * This however can be avoided for page sized since:
236 	 *  -@paddr will be cache-line aligned already (being page aligned)
237 	 *  -@sz will be integral multiple of line size (being page sized).
238 	 */
239 	if (!full_page) {
240 		sz += paddr & ~CACHE_LINE_MASK;
241 		paddr &= CACHE_LINE_MASK;
242 		vaddr &= CACHE_LINE_MASK;
243 	}
244 
245 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
246 
247 	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
248 	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
249 
250 	while (num_lines-- > 0) {
251 		write_aux_reg(aux_cmd, paddr);
252 		paddr += L1_CACHE_BYTES;
253 	}
254 }
255 
256 /*
257  * For ARC700 MMUv3 I-cache and D-cache flushes
258  * Also reused for HS38 aliasing I-cache configuration
259  */
260 static inline
261 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
262 			  unsigned long sz, const int op)
263 {
264 	unsigned int aux_cmd, aux_tag;
265 	int num_lines;
266 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
267 
268 	if (op == OP_INV_IC) {
269 		aux_cmd = ARC_REG_IC_IVIL;
270 		aux_tag = ARC_REG_IC_PTAG;
271 	} else {
272 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
273 		aux_tag = ARC_REG_DC_PTAG;
274 	}
275 
276 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
277 	 * and have @paddr - aligned to cache line and integral @num_lines.
278 	 * This however can be avoided for page sized since:
279 	 *  -@paddr will be cache-line aligned already (being page aligned)
280 	 *  -@sz will be integral multiple of line size (being page sized).
281 	 */
282 	if (!full_page) {
283 		sz += paddr & ~CACHE_LINE_MASK;
284 		paddr &= CACHE_LINE_MASK;
285 		vaddr &= CACHE_LINE_MASK;
286 	}
287 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
288 
289 	/*
290 	 * MMUv3, cache ops require paddr in PTAG reg
291 	 * if V-P const for loop, PTAG can be written once outside loop
292 	 */
293 	if (full_page)
294 		write_aux_reg(aux_tag, paddr);
295 
296 	/*
297 	 * This is technically for MMU v4, using the MMU v3 programming model
298 	 * Special work for HS38 aliasing I-cache configuratino with PAE40
299 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
300 	 *   - (and needs to be written before the lower 32 bits)
301 	 * Note that PTAG_HI is hoisted outside the line loop
302 	 */
303 	if (is_pae40_enabled() && op == OP_INV_IC)
304 		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
305 
306 	while (num_lines-- > 0) {
307 		if (!full_page) {
308 			write_aux_reg(aux_tag, paddr);
309 			paddr += L1_CACHE_BYTES;
310 		}
311 
312 		write_aux_reg(aux_cmd, vaddr);
313 		vaddr += L1_CACHE_BYTES;
314 	}
315 }
316 
317 /*
318  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
319  * Here's how cache ops are implemented
320  *
321  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
322  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
323  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
324  *    respectively, similar to MMU v3 programming model, hence
325  *    __cache_line_loop_v3() is used)
326  *
327  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
328  * needs to be written into PTAG_HI
329  */
330 static inline
331 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
332 			  unsigned long sz, const int cacheop)
333 {
334 	unsigned int aux_cmd;
335 	int num_lines;
336 	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
337 
338 	if (cacheop == OP_INV_IC) {
339 		aux_cmd = ARC_REG_IC_IVIL;
340 	} else {
341 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
342 		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
343 	}
344 
345 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
346 	 * and have @paddr - aligned to cache line and integral @num_lines.
347 	 * This however can be avoided for page sized since:
348 	 *  -@paddr will be cache-line aligned already (being page aligned)
349 	 *  -@sz will be integral multiple of line size (being page sized).
350 	 */
351 	if (!full_page_op) {
352 		sz += paddr & ~CACHE_LINE_MASK;
353 		paddr &= CACHE_LINE_MASK;
354 	}
355 
356 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
357 
358 	/*
359 	 * For HS38 PAE40 configuration
360 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
361 	 *   - (and needs to be written before the lower 32 bits)
362 	 */
363 	if (is_pae40_enabled()) {
364 		if (cacheop == OP_INV_IC)
365 			/*
366 			 * Non aliasing I-cache in HS38,
367 			 * aliasing I-cache handled in __cache_line_loop_v3()
368 			 */
369 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
370 		else
371 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
372 	}
373 
374 	while (num_lines-- > 0) {
375 		write_aux_reg(aux_cmd, paddr);
376 		paddr += L1_CACHE_BYTES;
377 	}
378 }
379 
380 #if (CONFIG_ARC_MMU_VER < 3)
381 #define __cache_line_loop	__cache_line_loop_v2
382 #elif (CONFIG_ARC_MMU_VER == 3)
383 #define __cache_line_loop	__cache_line_loop_v3
384 #elif (CONFIG_ARC_MMU_VER > 3)
385 #define __cache_line_loop	__cache_line_loop_v4
386 #endif
387 
388 #ifdef CONFIG_ARC_HAS_DCACHE
389 
390 /***************************************************************
391  * Machine specific helpers for Entire D-Cache or Per Line ops
392  */
393 
394 static inline void __before_dc_op(const int op)
395 {
396 	if (op == OP_FLUSH_N_INV) {
397 		/* Dcache provides 2 cmd: FLUSH or INV
398 		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
399 		 * flush-n-inv is achieved by INV cmd but with IM=1
400 		 * So toggle INV sub-mode depending on op request and default
401 		 */
402 		const unsigned int ctl = ARC_REG_DC_CTRL;
403 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
404 	}
405 }
406 
407 static inline void __after_dc_op(const int op)
408 {
409 	if (op & OP_FLUSH) {
410 		const unsigned int ctl = ARC_REG_DC_CTRL;
411 		unsigned int reg;
412 
413 		/* flush / flush-n-inv both wait */
414 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
415 			;
416 
417 		/* Switch back to default Invalidate mode */
418 		if (op == OP_FLUSH_N_INV)
419 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
420 	}
421 }
422 
423 /*
424  * Operation on Entire D-Cache
425  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
426  * Note that constant propagation ensures all the checks are gone
427  * in generated code
428  */
429 static inline void __dc_entire_op(const int op)
430 {
431 	int aux;
432 
433 	__before_dc_op(op);
434 
435 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
436 		aux = ARC_REG_DC_IVDC;
437 	else
438 		aux = ARC_REG_DC_FLSH;
439 
440 	write_aux_reg(aux, 0x1);
441 
442 	__after_dc_op(op);
443 }
444 
445 /* For kernel mappings cache operation: index is same as paddr */
446 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
447 
448 /*
449  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
450  */
451 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
452 				unsigned long sz, const int op)
453 {
454 	unsigned long flags;
455 
456 	local_irq_save(flags);
457 
458 	__before_dc_op(op);
459 
460 	__cache_line_loop(paddr, vaddr, sz, op);
461 
462 	__after_dc_op(op);
463 
464 	local_irq_restore(flags);
465 }
466 
467 #else
468 
469 #define __dc_entire_op(op)
470 #define __dc_line_op(paddr, vaddr, sz, op)
471 #define __dc_line_op_k(paddr, sz, op)
472 
473 #endif /* CONFIG_ARC_HAS_DCACHE */
474 
475 #ifdef CONFIG_ARC_HAS_ICACHE
476 
477 static inline void __ic_entire_inv(void)
478 {
479 	write_aux_reg(ARC_REG_IC_IVIC, 1);
480 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
481 }
482 
483 static inline void
484 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
485 			  unsigned long sz)
486 {
487 	unsigned long flags;
488 
489 	local_irq_save(flags);
490 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
491 	local_irq_restore(flags);
492 }
493 
494 #ifndef CONFIG_SMP
495 
496 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
497 
498 #else
499 
500 struct ic_inv_args {
501 	phys_addr_t paddr, vaddr;
502 	int sz;
503 };
504 
505 static void __ic_line_inv_vaddr_helper(void *info)
506 {
507         struct ic_inv_args *ic_inv = info;
508 
509         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
510 }
511 
512 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
513 				unsigned long sz)
514 {
515 	struct ic_inv_args ic_inv = {
516 		.paddr = paddr,
517 		.vaddr = vaddr,
518 		.sz    = sz
519 	};
520 
521 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
522 }
523 
524 #endif	/* CONFIG_SMP */
525 
526 #else	/* !CONFIG_ARC_HAS_ICACHE */
527 
528 #define __ic_entire_inv()
529 #define __ic_line_inv_vaddr(pstart, vstart, sz)
530 
531 #endif /* CONFIG_ARC_HAS_ICACHE */
532 
533 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
534 {
535 #ifdef CONFIG_ISA_ARCV2
536 	/*
537 	 * SLC is shared between all cores and concurrent aux operations from
538 	 * multiple cores need to be serialized using a spinlock
539 	 * A concurrent operation can be silently ignored and/or the old/new
540 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
541 	 * below)
542 	 */
543 	static DEFINE_SPINLOCK(lock);
544 	unsigned long flags;
545 	unsigned int ctrl;
546 
547 	spin_lock_irqsave(&lock, flags);
548 
549 	/*
550 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
551 	 *  - b'000 (default) is Flush,
552 	 *  - b'001 is Invalidate if CTRL.IM == 0
553 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
554 	 */
555 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
556 
557 	/* Don't rely on default value of IM bit */
558 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
559 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
560 	else
561 		ctrl |= SLC_CTRL_IM;
562 
563 	if (op & OP_INV)
564 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
565 	else
566 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
567 
568 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
569 
570 	/*
571 	 * Lower bits are ignored, no need to clip
572 	 * END needs to be setup before START (latter triggers the operation)
573 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
574 	 */
575 	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
576 	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
577 
578 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
579 
580 	spin_unlock_irqrestore(&lock, flags);
581 #endif
582 }
583 
584 /***********************************************************
585  * Exported APIs
586  */
587 
588 /*
589  * Handle cache congruency of kernel and userspace mappings of page when kernel
590  * writes-to/reads-from
591  *
592  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
593  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
594  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
595  *  -In SMP, if hardware caches are coherent
596  *
597  * There's a corollary case, where kernel READs from a userspace mapped page.
598  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
599  */
600 void flush_dcache_page(struct page *page)
601 {
602 	struct address_space *mapping;
603 
604 	if (!cache_is_vipt_aliasing()) {
605 		clear_bit(PG_dc_clean, &page->flags);
606 		return;
607 	}
608 
609 	/* don't handle anon pages here */
610 	mapping = page_mapping(page);
611 	if (!mapping)
612 		return;
613 
614 	/*
615 	 * pagecache page, file not yet mapped to userspace
616 	 * Make a note that K-mapping is dirty
617 	 */
618 	if (!mapping_mapped(mapping)) {
619 		clear_bit(PG_dc_clean, &page->flags);
620 	} else if (page_mapcount(page)) {
621 
622 		/* kernel reading from page with U-mapping */
623 		phys_addr_t paddr = (unsigned long)page_address(page);
624 		unsigned long vaddr = page->index << PAGE_CACHE_SHIFT;
625 
626 		if (addr_not_cache_congruent(paddr, vaddr))
627 			__flush_dcache_page(paddr, vaddr);
628 	}
629 }
630 EXPORT_SYMBOL(flush_dcache_page);
631 
632 /*
633  * DMA ops for systems with L1 cache only
634  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
635  */
636 static void __dma_cache_wback_inv_l1(unsigned long start, unsigned long sz)
637 {
638 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
639 }
640 
641 static void __dma_cache_inv_l1(unsigned long start, unsigned long sz)
642 {
643 	__dc_line_op_k(start, sz, OP_INV);
644 }
645 
646 static void __dma_cache_wback_l1(unsigned long start, unsigned long sz)
647 {
648 	__dc_line_op_k(start, sz, OP_FLUSH);
649 }
650 
651 /*
652  * DMA ops for systems with both L1 and L2 caches, but without IOC
653  * Both L1 and L2 lines need to be explicity flushed/invalidated
654  */
655 static void __dma_cache_wback_inv_slc(unsigned long start, unsigned long sz)
656 {
657 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
658 	slc_op(start, sz, OP_FLUSH_N_INV);
659 }
660 
661 static void __dma_cache_inv_slc(unsigned long start, unsigned long sz)
662 {
663 	__dc_line_op_k(start, sz, OP_INV);
664 	slc_op(start, sz, OP_INV);
665 }
666 
667 static void __dma_cache_wback_slc(unsigned long start, unsigned long sz)
668 {
669 	__dc_line_op_k(start, sz, OP_FLUSH);
670 	slc_op(start, sz, OP_FLUSH);
671 }
672 
673 /*
674  * DMA ops for systems with IOC
675  * IOC hardware snoops all DMA traffic keeping the caches consistent with
676  * memory - eliding need for any explicit cache maintenance of DMA buffers
677  */
678 static void __dma_cache_wback_inv_ioc(unsigned long start, unsigned long sz) {}
679 static void __dma_cache_inv_ioc(unsigned long start, unsigned long sz) {}
680 static void __dma_cache_wback_ioc(unsigned long start, unsigned long sz) {}
681 
682 /*
683  * Exported DMA API
684  */
685 void dma_cache_wback_inv(unsigned long start, unsigned long sz)
686 {
687 	__dma_cache_wback_inv(start, sz);
688 }
689 EXPORT_SYMBOL(dma_cache_wback_inv);
690 
691 void dma_cache_inv(unsigned long start, unsigned long sz)
692 {
693 	__dma_cache_inv(start, sz);
694 }
695 EXPORT_SYMBOL(dma_cache_inv);
696 
697 void dma_cache_wback(unsigned long start, unsigned long sz)
698 {
699 	__dma_cache_wback(start, sz);
700 }
701 EXPORT_SYMBOL(dma_cache_wback);
702 
703 /*
704  * This is API for making I/D Caches consistent when modifying
705  * kernel code (loadable modules, kprobes, kgdb...)
706  * This is called on insmod, with kernel virtual address for CODE of
707  * the module. ARC cache maintenance ops require PHY address thus we
708  * need to convert vmalloc addr to PHY addr
709  */
710 void flush_icache_range(unsigned long kstart, unsigned long kend)
711 {
712 	unsigned int tot_sz;
713 
714 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
715 
716 	/* Shortcut for bigger flush ranges.
717 	 * Here we don't care if this was kernel virtual or phy addr
718 	 */
719 	tot_sz = kend - kstart;
720 	if (tot_sz > PAGE_SIZE) {
721 		flush_cache_all();
722 		return;
723 	}
724 
725 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
726 	if (likely(kstart > PAGE_OFFSET)) {
727 		/*
728 		 * The 2nd arg despite being paddr will be used to index icache
729 		 * This is OK since no alternate virtual mappings will exist
730 		 * given the callers for this case: kprobe/kgdb in built-in
731 		 * kernel code only.
732 		 */
733 		__sync_icache_dcache(kstart, kstart, kend - kstart);
734 		return;
735 	}
736 
737 	/*
738 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
739 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
740 	 *     handling of kernel vaddr.
741 	 *
742 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
743 	 *     it still needs to handle  a 2 page scenario, where the range
744 	 *     straddles across 2 virtual pages and hence need for loop
745 	 */
746 	while (tot_sz > 0) {
747 		unsigned int off, sz;
748 		unsigned long phy, pfn;
749 
750 		off = kstart % PAGE_SIZE;
751 		pfn = vmalloc_to_pfn((void *)kstart);
752 		phy = (pfn << PAGE_SHIFT) + off;
753 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
754 		__sync_icache_dcache(phy, kstart, sz);
755 		kstart += sz;
756 		tot_sz -= sz;
757 	}
758 }
759 EXPORT_SYMBOL(flush_icache_range);
760 
761 /*
762  * General purpose helper to make I and D cache lines consistent.
763  * @paddr is phy addr of region
764  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
765  *    However in one instance, when called by kprobe (for a breakpt in
766  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
767  *    use a paddr to index the cache (despite VIPT). This is fine since since a
768  *    builtin kernel page will not have any virtual mappings.
769  *    kprobe on loadable module will be kernel vaddr.
770  */
771 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
772 {
773 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
774 	__ic_line_inv_vaddr(paddr, vaddr, len);
775 }
776 
777 /* wrapper to compile time eliminate alignment checks in flush loop */
778 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
779 {
780 	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
781 }
782 
783 /*
784  * wrapper to clearout kernel or userspace mappings of a page
785  * For kernel mappings @vaddr == @paddr
786  */
787 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
788 {
789 	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
790 }
791 
792 noinline void flush_cache_all(void)
793 {
794 	unsigned long flags;
795 
796 	local_irq_save(flags);
797 
798 	__ic_entire_inv();
799 	__dc_entire_op(OP_FLUSH_N_INV);
800 
801 	local_irq_restore(flags);
802 
803 }
804 
805 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
806 
807 void flush_cache_mm(struct mm_struct *mm)
808 {
809 	flush_cache_all();
810 }
811 
812 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
813 		      unsigned long pfn)
814 {
815 	unsigned int paddr = pfn << PAGE_SHIFT;
816 
817 	u_vaddr &= PAGE_MASK;
818 
819 	__flush_dcache_page(paddr, u_vaddr);
820 
821 	if (vma->vm_flags & VM_EXEC)
822 		__inv_icache_page(paddr, u_vaddr);
823 }
824 
825 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
826 		       unsigned long end)
827 {
828 	flush_cache_all();
829 }
830 
831 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
832 		     unsigned long u_vaddr)
833 {
834 	/* TBD: do we really need to clear the kernel mapping */
835 	__flush_dcache_page(page_address(page), u_vaddr);
836 	__flush_dcache_page(page_address(page), page_address(page));
837 
838 }
839 
840 #endif
841 
842 void copy_user_highpage(struct page *to, struct page *from,
843 	unsigned long u_vaddr, struct vm_area_struct *vma)
844 {
845 	void *kfrom = kmap_atomic(from);
846 	void *kto = kmap_atomic(to);
847 	int clean_src_k_mappings = 0;
848 
849 	/*
850 	 * If SRC page was already mapped in userspace AND it's U-mapping is
851 	 * not congruent with K-mapping, sync former to physical page so that
852 	 * K-mapping in memcpy below, sees the right data
853 	 *
854 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
855 	 * equally valid for SRC page as well
856 	 *
857 	 * For !VIPT cache, all of this gets compiled out as
858 	 * addr_not_cache_congruent() is 0
859 	 */
860 	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
861 		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
862 		clean_src_k_mappings = 1;
863 	}
864 
865 	copy_page(kto, kfrom);
866 
867 	/*
868 	 * Mark DST page K-mapping as dirty for a later finalization by
869 	 * update_mmu_cache(). Although the finalization could have been done
870 	 * here as well (given that both vaddr/paddr are available).
871 	 * But update_mmu_cache() already has code to do that for other
872 	 * non copied user pages (e.g. read faults which wire in pagecache page
873 	 * directly).
874 	 */
875 	clear_bit(PG_dc_clean, &to->flags);
876 
877 	/*
878 	 * if SRC was already usermapped and non-congruent to kernel mapping
879 	 * sync the kernel mapping back to physical page
880 	 */
881 	if (clean_src_k_mappings) {
882 		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
883 		set_bit(PG_dc_clean, &from->flags);
884 	} else {
885 		clear_bit(PG_dc_clean, &from->flags);
886 	}
887 
888 	kunmap_atomic(kto);
889 	kunmap_atomic(kfrom);
890 }
891 
892 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
893 {
894 	clear_page(to);
895 	clear_bit(PG_dc_clean, &page->flags);
896 }
897 
898 
899 /**********************************************************************
900  * Explicit Cache flush request from user space via syscall
901  * Needed for JITs which generate code on the fly
902  */
903 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
904 {
905 	/* TBD: optimize this */
906 	flush_cache_all();
907 	return 0;
908 }
909 
910 void arc_cache_init(void)
911 {
912 	unsigned int __maybe_unused cpu = smp_processor_id();
913 	char str[256];
914 
915 	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
916 
917 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
918 		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
919 
920 		if (!ic->ver)
921 			panic("cache support enabled but non-existent cache\n");
922 
923 		if (ic->line_len != L1_CACHE_BYTES)
924 			panic("ICache line [%d] != kernel Config [%d]",
925 			      ic->line_len, L1_CACHE_BYTES);
926 
927 		if (ic->ver != CONFIG_ARC_MMU_VER)
928 			panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
929 			      ic->ver, CONFIG_ARC_MMU_VER);
930 
931 		/*
932 		 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
933 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
934 		 */
935 		if (is_isa_arcv2() && ic->alias)
936 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
937 		else
938 			_cache_line_loop_ic_fn = __cache_line_loop;
939 	}
940 
941 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
942 		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
943 
944 		if (!dc->ver)
945 			panic("cache support enabled but non-existent cache\n");
946 
947 		if (dc->line_len != L1_CACHE_BYTES)
948 			panic("DCache line [%d] != kernel Config [%d]",
949 			      dc->line_len, L1_CACHE_BYTES);
950 
951 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
952 		if (is_isa_arcompact()) {
953 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
954 
955 			if (dc->alias && !handled)
956 				panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
957 			else if (!dc->alias && handled)
958 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
959 		}
960 	}
961 
962 	if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
963 
964 		/* IM set : flush before invalidate */
965 		write_aux_reg(ARC_REG_SLC_CTRL,
966 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
967 
968 		write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
969 
970 		/* Important to wait for flush to complete */
971 		while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
972 		write_aux_reg(ARC_REG_SLC_CTRL,
973 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
974 	}
975 
976 	if (is_isa_arcv2() && ioc_exists) {
977 		/* IO coherency base - 0x8z */
978 		write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
979 		/* IO coherency aperture size - 512Mb: 0x8z-0xAz */
980 		write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
981 		/* Enable partial writes */
982 		write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
983 		/* Enable IO coherency */
984 		write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
985 
986 		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
987 		__dma_cache_inv = __dma_cache_inv_ioc;
988 		__dma_cache_wback = __dma_cache_wback_ioc;
989 	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
990 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
991 		__dma_cache_inv = __dma_cache_inv_slc;
992 		__dma_cache_wback = __dma_cache_wback_slc;
993 	} else {
994 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
995 		__dma_cache_inv = __dma_cache_inv_l1;
996 		__dma_cache_wback = __dma_cache_wback_l1;
997 	}
998 }
999