xref: /openbmc/linux/arch/arc/mm/cache.c (revision 8730046c)
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23 
24 static int l2_line_sz;
25 static int ioc_exists;
26 int slc_enable = 1, ioc_enable = 0;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
28 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
29 
30 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
31 			       unsigned long sz, const int cacheop);
32 
33 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
35 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
36 
37 char *arc_cache_mumbojumbo(int c, char *buf, int len)
38 {
39 	int n = 0;
40 	struct cpuinfo_arc_cache *p;
41 
42 #define PR_CACHE(p, cfg, str)						\
43 	if (!(p)->line_len)						\
44 		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
45 	else								\
46 		n += scnprintf(buf + n, len - n,			\
47 			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
48 			(p)->sz_k, (p)->assoc, (p)->line_len,		\
49 			(p)->vipt ? "VIPT" : "PIPT",			\
50 			(p)->alias ? " aliasing" : "",			\
51 			IS_USED_CFG(cfg));
52 
53 	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
54 	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
55 
56 	p = &cpuinfo_arc700[c].slc;
57 	if (p->line_len)
58 		n += scnprintf(buf + n, len - n,
59 			       "SLC\t\t: %uK, %uB Line%s\n",
60 			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
61 
62 	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
63 		       perip_base,
64 		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
65 
66 	return buf;
67 }
68 
69 /*
70  * Read the Cache Build Confuration Registers, Decode them and save into
71  * the cpuinfo structure for later use.
72  * No Validation done here, simply read/convert the BCRs
73  */
74 static void read_decode_cache_bcr_arcv2(int cpu)
75 {
76 	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
77 	struct bcr_generic sbcr;
78 
79 	struct bcr_slc_cfg {
80 #ifdef CONFIG_CPU_BIG_ENDIAN
81 		unsigned int pad:24, way:2, lsz:2, sz:4;
82 #else
83 		unsigned int sz:4, lsz:2, way:2, pad:24;
84 #endif
85 	} slc_cfg;
86 
87 	struct bcr_clust_cfg {
88 #ifdef CONFIG_CPU_BIG_ENDIAN
89 		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
90 #else
91 		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
92 #endif
93 	} cbcr;
94 
95 	struct bcr_volatile {
96 #ifdef CONFIG_CPU_BIG_ENDIAN
97 		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
98 #else
99 		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
100 #endif
101 	} vol;
102 
103 
104 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
105 	if (sbcr.ver) {
106 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
107 		p_slc->sz_k = 128 << slc_cfg.sz;
108 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
109 	}
110 
111 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
112 	if (cbcr.c)
113 		ioc_exists = 1;
114 	else
115 		ioc_enable = 0;
116 
117 	/* HS 2.0 didn't have AUX_VOL */
118 	if (cpuinfo_arc700[cpu].core.family > 0x51) {
119 		READ_BCR(AUX_VOL, vol);
120 		perip_base = vol.start << 28;
121 		/* HS 3.0 has limit and strict-ordering fields */
122 		if (cpuinfo_arc700[cpu].core.family > 0x52)
123 			perip_end = (vol.limit << 28) - 1;
124 	}
125 }
126 
127 void read_decode_cache_bcr(void)
128 {
129 	struct cpuinfo_arc_cache *p_ic, *p_dc;
130 	unsigned int cpu = smp_processor_id();
131 	struct bcr_cache {
132 #ifdef CONFIG_CPU_BIG_ENDIAN
133 		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
134 #else
135 		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
136 #endif
137 	} ibcr, dbcr;
138 
139 	p_ic = &cpuinfo_arc700[cpu].icache;
140 	READ_BCR(ARC_REG_IC_BCR, ibcr);
141 
142 	if (!ibcr.ver)
143 		goto dc_chk;
144 
145 	if (ibcr.ver <= 3) {
146 		BUG_ON(ibcr.config != 3);
147 		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
148 	} else if (ibcr.ver >= 4) {
149 		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
150 	}
151 
152 	p_ic->line_len = 8 << ibcr.line_len;
153 	p_ic->sz_k = 1 << (ibcr.sz - 1);
154 	p_ic->vipt = 1;
155 	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
156 
157 dc_chk:
158 	p_dc = &cpuinfo_arc700[cpu].dcache;
159 	READ_BCR(ARC_REG_DC_BCR, dbcr);
160 
161 	if (!dbcr.ver)
162 		goto slc_chk;
163 
164 	if (dbcr.ver <= 3) {
165 		BUG_ON(dbcr.config != 2);
166 		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
167 		p_dc->vipt = 1;
168 		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
169 	} else if (dbcr.ver >= 4) {
170 		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
171 		p_dc->vipt = 0;
172 		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
173 	}
174 
175 	p_dc->line_len = 16 << dbcr.line_len;
176 	p_dc->sz_k = 1 << (dbcr.sz - 1);
177 
178 slc_chk:
179 	if (is_isa_arcv2())
180                 read_decode_cache_bcr_arcv2(cpu);
181 }
182 
183 /*
184  * Line Operation on {I,D}-Cache
185  */
186 
187 #define OP_INV		0x1
188 #define OP_FLUSH	0x2
189 #define OP_FLUSH_N_INV	0x3
190 #define OP_INV_IC	0x4
191 
192 /*
193  *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
194  *
195  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
196  * The orig Cache Management Module "CDU" only required paddr to invalidate a
197  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
198  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
199  * the exact same line.
200  *
201  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
202  * paddr alone could not be used to correctly index the cache.
203  *
204  * ------------------
205  * MMU v1/v2 (Fixed Page Size 8k)
206  * ------------------
207  * The solution was to provide CDU with these additonal vaddr bits. These
208  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
209  * standard page size of 8k.
210  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
211  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
212  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
213  * represent the offset within cache-line. The adv of using this "clumsy"
214  * interface for additional info was no new reg was needed in CDU programming
215  * model.
216  *
217  * 17:13 represented the max num of bits passable, actual bits needed were
218  * fewer, based on the num-of-aliases possible.
219  * -for 2 alias possibility, only bit 13 needed (32K cache)
220  * -for 4 alias possibility, bits 14:13 needed (64K cache)
221  *
222  * ------------------
223  * MMU v3
224  * ------------------
225  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
226  * only support 8k (default), 16k and 4k.
227  * However from hardware perspective, smaller page sizes aggravate aliasing
228  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
229  * the existing scheme of piggybacking won't work for certain configurations.
230  * Two new registers IC_PTAG and DC_PTAG inttoduced.
231  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
232  */
233 
234 static inline
235 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
236 			  unsigned long sz, const int op)
237 {
238 	unsigned int aux_cmd;
239 	int num_lines;
240 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
241 
242 	if (op == OP_INV_IC) {
243 		aux_cmd = ARC_REG_IC_IVIL;
244 	} else {
245 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
246 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
247 	}
248 
249 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
250 	 * and have @paddr - aligned to cache line and integral @num_lines.
251 	 * This however can be avoided for page sized since:
252 	 *  -@paddr will be cache-line aligned already (being page aligned)
253 	 *  -@sz will be integral multiple of line size (being page sized).
254 	 */
255 	if (!full_page) {
256 		sz += paddr & ~CACHE_LINE_MASK;
257 		paddr &= CACHE_LINE_MASK;
258 		vaddr &= CACHE_LINE_MASK;
259 	}
260 
261 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
262 
263 	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
264 	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
265 
266 	while (num_lines-- > 0) {
267 		write_aux_reg(aux_cmd, paddr);
268 		paddr += L1_CACHE_BYTES;
269 	}
270 }
271 
272 /*
273  * For ARC700 MMUv3 I-cache and D-cache flushes
274  * Also reused for HS38 aliasing I-cache configuration
275  */
276 static inline
277 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
278 			  unsigned long sz, const int op)
279 {
280 	unsigned int aux_cmd, aux_tag;
281 	int num_lines;
282 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
283 
284 	if (op == OP_INV_IC) {
285 		aux_cmd = ARC_REG_IC_IVIL;
286 		aux_tag = ARC_REG_IC_PTAG;
287 	} else {
288 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
289 		aux_tag = ARC_REG_DC_PTAG;
290 	}
291 
292 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
293 	 * and have @paddr - aligned to cache line and integral @num_lines.
294 	 * This however can be avoided for page sized since:
295 	 *  -@paddr will be cache-line aligned already (being page aligned)
296 	 *  -@sz will be integral multiple of line size (being page sized).
297 	 */
298 	if (!full_page) {
299 		sz += paddr & ~CACHE_LINE_MASK;
300 		paddr &= CACHE_LINE_MASK;
301 		vaddr &= CACHE_LINE_MASK;
302 	}
303 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
304 
305 	/*
306 	 * MMUv3, cache ops require paddr in PTAG reg
307 	 * if V-P const for loop, PTAG can be written once outside loop
308 	 */
309 	if (full_page)
310 		write_aux_reg(aux_tag, paddr);
311 
312 	/*
313 	 * This is technically for MMU v4, using the MMU v3 programming model
314 	 * Special work for HS38 aliasing I-cache configuration with PAE40
315 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
316 	 *   - (and needs to be written before the lower 32 bits)
317 	 * Note that PTAG_HI is hoisted outside the line loop
318 	 */
319 	if (is_pae40_enabled() && op == OP_INV_IC)
320 		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
321 
322 	while (num_lines-- > 0) {
323 		if (!full_page) {
324 			write_aux_reg(aux_tag, paddr);
325 			paddr += L1_CACHE_BYTES;
326 		}
327 
328 		write_aux_reg(aux_cmd, vaddr);
329 		vaddr += L1_CACHE_BYTES;
330 	}
331 }
332 
333 /*
334  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
335  * Here's how cache ops are implemented
336  *
337  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
338  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
339  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
340  *    respectively, similar to MMU v3 programming model, hence
341  *    __cache_line_loop_v3() is used)
342  *
343  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
344  * needs to be written into PTAG_HI
345  */
346 static inline
347 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
348 			  unsigned long sz, const int cacheop)
349 {
350 	unsigned int aux_cmd;
351 	int num_lines;
352 	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
353 
354 	if (cacheop == OP_INV_IC) {
355 		aux_cmd = ARC_REG_IC_IVIL;
356 	} else {
357 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
358 		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
359 	}
360 
361 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
362 	 * and have @paddr - aligned to cache line and integral @num_lines.
363 	 * This however can be avoided for page sized since:
364 	 *  -@paddr will be cache-line aligned already (being page aligned)
365 	 *  -@sz will be integral multiple of line size (being page sized).
366 	 */
367 	if (!full_page_op) {
368 		sz += paddr & ~CACHE_LINE_MASK;
369 		paddr &= CACHE_LINE_MASK;
370 	}
371 
372 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
373 
374 	/*
375 	 * For HS38 PAE40 configuration
376 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
377 	 *   - (and needs to be written before the lower 32 bits)
378 	 */
379 	if (is_pae40_enabled()) {
380 		if (cacheop == OP_INV_IC)
381 			/*
382 			 * Non aliasing I-cache in HS38,
383 			 * aliasing I-cache handled in __cache_line_loop_v3()
384 			 */
385 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
386 		else
387 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
388 	}
389 
390 	while (num_lines-- > 0) {
391 		write_aux_reg(aux_cmd, paddr);
392 		paddr += L1_CACHE_BYTES;
393 	}
394 }
395 
396 #if (CONFIG_ARC_MMU_VER < 3)
397 #define __cache_line_loop	__cache_line_loop_v2
398 #elif (CONFIG_ARC_MMU_VER == 3)
399 #define __cache_line_loop	__cache_line_loop_v3
400 #elif (CONFIG_ARC_MMU_VER > 3)
401 #define __cache_line_loop	__cache_line_loop_v4
402 #endif
403 
404 #ifdef CONFIG_ARC_HAS_DCACHE
405 
406 /***************************************************************
407  * Machine specific helpers for Entire D-Cache or Per Line ops
408  */
409 
410 static inline void __before_dc_op(const int op)
411 {
412 	if (op == OP_FLUSH_N_INV) {
413 		/* Dcache provides 2 cmd: FLUSH or INV
414 		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
415 		 * flush-n-inv is achieved by INV cmd but with IM=1
416 		 * So toggle INV sub-mode depending on op request and default
417 		 */
418 		const unsigned int ctl = ARC_REG_DC_CTRL;
419 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
420 	}
421 }
422 
423 static inline void __after_dc_op(const int op)
424 {
425 	if (op & OP_FLUSH) {
426 		const unsigned int ctl = ARC_REG_DC_CTRL;
427 		unsigned int reg;
428 
429 		/* flush / flush-n-inv both wait */
430 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
431 			;
432 
433 		/* Switch back to default Invalidate mode */
434 		if (op == OP_FLUSH_N_INV)
435 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
436 	}
437 }
438 
439 /*
440  * Operation on Entire D-Cache
441  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
442  * Note that constant propagation ensures all the checks are gone
443  * in generated code
444  */
445 static inline void __dc_entire_op(const int op)
446 {
447 	int aux;
448 
449 	__before_dc_op(op);
450 
451 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
452 		aux = ARC_REG_DC_IVDC;
453 	else
454 		aux = ARC_REG_DC_FLSH;
455 
456 	write_aux_reg(aux, 0x1);
457 
458 	__after_dc_op(op);
459 }
460 
461 /* For kernel mappings cache operation: index is same as paddr */
462 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
463 
464 /*
465  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
466  */
467 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
468 				unsigned long sz, const int op)
469 {
470 	unsigned long flags;
471 
472 	local_irq_save(flags);
473 
474 	__before_dc_op(op);
475 
476 	__cache_line_loop(paddr, vaddr, sz, op);
477 
478 	__after_dc_op(op);
479 
480 	local_irq_restore(flags);
481 }
482 
483 #else
484 
485 #define __dc_entire_op(op)
486 #define __dc_line_op(paddr, vaddr, sz, op)
487 #define __dc_line_op_k(paddr, sz, op)
488 
489 #endif /* CONFIG_ARC_HAS_DCACHE */
490 
491 #ifdef CONFIG_ARC_HAS_ICACHE
492 
493 static inline void __ic_entire_inv(void)
494 {
495 	write_aux_reg(ARC_REG_IC_IVIC, 1);
496 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
497 }
498 
499 static inline void
500 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
501 			  unsigned long sz)
502 {
503 	unsigned long flags;
504 
505 	local_irq_save(flags);
506 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
507 	local_irq_restore(flags);
508 }
509 
510 #ifndef CONFIG_SMP
511 
512 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
513 
514 #else
515 
516 struct ic_inv_args {
517 	phys_addr_t paddr, vaddr;
518 	int sz;
519 };
520 
521 static void __ic_line_inv_vaddr_helper(void *info)
522 {
523         struct ic_inv_args *ic_inv = info;
524 
525         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
526 }
527 
528 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
529 				unsigned long sz)
530 {
531 	struct ic_inv_args ic_inv = {
532 		.paddr = paddr,
533 		.vaddr = vaddr,
534 		.sz    = sz
535 	};
536 
537 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
538 }
539 
540 #endif	/* CONFIG_SMP */
541 
542 #else	/* !CONFIG_ARC_HAS_ICACHE */
543 
544 #define __ic_entire_inv()
545 #define __ic_line_inv_vaddr(pstart, vstart, sz)
546 
547 #endif /* CONFIG_ARC_HAS_ICACHE */
548 
549 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
550 {
551 #ifdef CONFIG_ISA_ARCV2
552 	/*
553 	 * SLC is shared between all cores and concurrent aux operations from
554 	 * multiple cores need to be serialized using a spinlock
555 	 * A concurrent operation can be silently ignored and/or the old/new
556 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
557 	 * below)
558 	 */
559 	static DEFINE_SPINLOCK(lock);
560 	unsigned long flags;
561 	unsigned int ctrl;
562 
563 	spin_lock_irqsave(&lock, flags);
564 
565 	/*
566 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
567 	 *  - b'000 (default) is Flush,
568 	 *  - b'001 is Invalidate if CTRL.IM == 0
569 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
570 	 */
571 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
572 
573 	/* Don't rely on default value of IM bit */
574 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
575 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
576 	else
577 		ctrl |= SLC_CTRL_IM;
578 
579 	if (op & OP_INV)
580 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
581 	else
582 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
583 
584 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
585 
586 	/*
587 	 * Lower bits are ignored, no need to clip
588 	 * END needs to be setup before START (latter triggers the operation)
589 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
590 	 */
591 	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
592 	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
593 
594 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
595 
596 	spin_unlock_irqrestore(&lock, flags);
597 #endif
598 }
599 
600 /***********************************************************
601  * Exported APIs
602  */
603 
604 /*
605  * Handle cache congruency of kernel and userspace mappings of page when kernel
606  * writes-to/reads-from
607  *
608  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
609  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
610  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
611  *  -In SMP, if hardware caches are coherent
612  *
613  * There's a corollary case, where kernel READs from a userspace mapped page.
614  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
615  */
616 void flush_dcache_page(struct page *page)
617 {
618 	struct address_space *mapping;
619 
620 	if (!cache_is_vipt_aliasing()) {
621 		clear_bit(PG_dc_clean, &page->flags);
622 		return;
623 	}
624 
625 	/* don't handle anon pages here */
626 	mapping = page_mapping(page);
627 	if (!mapping)
628 		return;
629 
630 	/*
631 	 * pagecache page, file not yet mapped to userspace
632 	 * Make a note that K-mapping is dirty
633 	 */
634 	if (!mapping_mapped(mapping)) {
635 		clear_bit(PG_dc_clean, &page->flags);
636 	} else if (page_mapcount(page)) {
637 
638 		/* kernel reading from page with U-mapping */
639 		phys_addr_t paddr = (unsigned long)page_address(page);
640 		unsigned long vaddr = page->index << PAGE_SHIFT;
641 
642 		if (addr_not_cache_congruent(paddr, vaddr))
643 			__flush_dcache_page(paddr, vaddr);
644 	}
645 }
646 EXPORT_SYMBOL(flush_dcache_page);
647 
648 /*
649  * DMA ops for systems with L1 cache only
650  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
651  */
652 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
653 {
654 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
655 }
656 
657 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
658 {
659 	__dc_line_op_k(start, sz, OP_INV);
660 }
661 
662 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
663 {
664 	__dc_line_op_k(start, sz, OP_FLUSH);
665 }
666 
667 /*
668  * DMA ops for systems with both L1 and L2 caches, but without IOC
669  * Both L1 and L2 lines need to be explicitly flushed/invalidated
670  */
671 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
672 {
673 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
674 	slc_op(start, sz, OP_FLUSH_N_INV);
675 }
676 
677 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
678 {
679 	__dc_line_op_k(start, sz, OP_INV);
680 	slc_op(start, sz, OP_INV);
681 }
682 
683 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
684 {
685 	__dc_line_op_k(start, sz, OP_FLUSH);
686 	slc_op(start, sz, OP_FLUSH);
687 }
688 
689 /*
690  * DMA ops for systems with IOC
691  * IOC hardware snoops all DMA traffic keeping the caches consistent with
692  * memory - eliding need for any explicit cache maintenance of DMA buffers
693  */
694 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
695 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
696 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
697 
698 /*
699  * Exported DMA API
700  */
701 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
702 {
703 	__dma_cache_wback_inv(start, sz);
704 }
705 EXPORT_SYMBOL(dma_cache_wback_inv);
706 
707 void dma_cache_inv(phys_addr_t start, unsigned long sz)
708 {
709 	__dma_cache_inv(start, sz);
710 }
711 EXPORT_SYMBOL(dma_cache_inv);
712 
713 void dma_cache_wback(phys_addr_t start, unsigned long sz)
714 {
715 	__dma_cache_wback(start, sz);
716 }
717 EXPORT_SYMBOL(dma_cache_wback);
718 
719 /*
720  * This is API for making I/D Caches consistent when modifying
721  * kernel code (loadable modules, kprobes, kgdb...)
722  * This is called on insmod, with kernel virtual address for CODE of
723  * the module. ARC cache maintenance ops require PHY address thus we
724  * need to convert vmalloc addr to PHY addr
725  */
726 void flush_icache_range(unsigned long kstart, unsigned long kend)
727 {
728 	unsigned int tot_sz;
729 
730 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
731 
732 	/* Shortcut for bigger flush ranges.
733 	 * Here we don't care if this was kernel virtual or phy addr
734 	 */
735 	tot_sz = kend - kstart;
736 	if (tot_sz > PAGE_SIZE) {
737 		flush_cache_all();
738 		return;
739 	}
740 
741 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
742 	if (likely(kstart > PAGE_OFFSET)) {
743 		/*
744 		 * The 2nd arg despite being paddr will be used to index icache
745 		 * This is OK since no alternate virtual mappings will exist
746 		 * given the callers for this case: kprobe/kgdb in built-in
747 		 * kernel code only.
748 		 */
749 		__sync_icache_dcache(kstart, kstart, kend - kstart);
750 		return;
751 	}
752 
753 	/*
754 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
755 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
756 	 *     handling of kernel vaddr.
757 	 *
758 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
759 	 *     it still needs to handle  a 2 page scenario, where the range
760 	 *     straddles across 2 virtual pages and hence need for loop
761 	 */
762 	while (tot_sz > 0) {
763 		unsigned int off, sz;
764 		unsigned long phy, pfn;
765 
766 		off = kstart % PAGE_SIZE;
767 		pfn = vmalloc_to_pfn((void *)kstart);
768 		phy = (pfn << PAGE_SHIFT) + off;
769 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
770 		__sync_icache_dcache(phy, kstart, sz);
771 		kstart += sz;
772 		tot_sz -= sz;
773 	}
774 }
775 EXPORT_SYMBOL(flush_icache_range);
776 
777 /*
778  * General purpose helper to make I and D cache lines consistent.
779  * @paddr is phy addr of region
780  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
781  *    However in one instance, when called by kprobe (for a breakpt in
782  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
783  *    use a paddr to index the cache (despite VIPT). This is fine since since a
784  *    builtin kernel page will not have any virtual mappings.
785  *    kprobe on loadable module will be kernel vaddr.
786  */
787 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
788 {
789 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
790 	__ic_line_inv_vaddr(paddr, vaddr, len);
791 }
792 
793 /* wrapper to compile time eliminate alignment checks in flush loop */
794 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
795 {
796 	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
797 }
798 
799 /*
800  * wrapper to clearout kernel or userspace mappings of a page
801  * For kernel mappings @vaddr == @paddr
802  */
803 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
804 {
805 	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
806 }
807 
808 noinline void flush_cache_all(void)
809 {
810 	unsigned long flags;
811 
812 	local_irq_save(flags);
813 
814 	__ic_entire_inv();
815 	__dc_entire_op(OP_FLUSH_N_INV);
816 
817 	local_irq_restore(flags);
818 
819 }
820 
821 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
822 
823 void flush_cache_mm(struct mm_struct *mm)
824 {
825 	flush_cache_all();
826 }
827 
828 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
829 		      unsigned long pfn)
830 {
831 	unsigned int paddr = pfn << PAGE_SHIFT;
832 
833 	u_vaddr &= PAGE_MASK;
834 
835 	__flush_dcache_page(paddr, u_vaddr);
836 
837 	if (vma->vm_flags & VM_EXEC)
838 		__inv_icache_page(paddr, u_vaddr);
839 }
840 
841 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
842 		       unsigned long end)
843 {
844 	flush_cache_all();
845 }
846 
847 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
848 		     unsigned long u_vaddr)
849 {
850 	/* TBD: do we really need to clear the kernel mapping */
851 	__flush_dcache_page(page_address(page), u_vaddr);
852 	__flush_dcache_page(page_address(page), page_address(page));
853 
854 }
855 
856 #endif
857 
858 void copy_user_highpage(struct page *to, struct page *from,
859 	unsigned long u_vaddr, struct vm_area_struct *vma)
860 {
861 	void *kfrom = kmap_atomic(from);
862 	void *kto = kmap_atomic(to);
863 	int clean_src_k_mappings = 0;
864 
865 	/*
866 	 * If SRC page was already mapped in userspace AND it's U-mapping is
867 	 * not congruent with K-mapping, sync former to physical page so that
868 	 * K-mapping in memcpy below, sees the right data
869 	 *
870 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
871 	 * equally valid for SRC page as well
872 	 *
873 	 * For !VIPT cache, all of this gets compiled out as
874 	 * addr_not_cache_congruent() is 0
875 	 */
876 	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
877 		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
878 		clean_src_k_mappings = 1;
879 	}
880 
881 	copy_page(kto, kfrom);
882 
883 	/*
884 	 * Mark DST page K-mapping as dirty for a later finalization by
885 	 * update_mmu_cache(). Although the finalization could have been done
886 	 * here as well (given that both vaddr/paddr are available).
887 	 * But update_mmu_cache() already has code to do that for other
888 	 * non copied user pages (e.g. read faults which wire in pagecache page
889 	 * directly).
890 	 */
891 	clear_bit(PG_dc_clean, &to->flags);
892 
893 	/*
894 	 * if SRC was already usermapped and non-congruent to kernel mapping
895 	 * sync the kernel mapping back to physical page
896 	 */
897 	if (clean_src_k_mappings) {
898 		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
899 		set_bit(PG_dc_clean, &from->flags);
900 	} else {
901 		clear_bit(PG_dc_clean, &from->flags);
902 	}
903 
904 	kunmap_atomic(kto);
905 	kunmap_atomic(kfrom);
906 }
907 
908 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
909 {
910 	clear_page(to);
911 	clear_bit(PG_dc_clean, &page->flags);
912 }
913 
914 
915 /**********************************************************************
916  * Explicit Cache flush request from user space via syscall
917  * Needed for JITs which generate code on the fly
918  */
919 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
920 {
921 	/* TBD: optimize this */
922 	flush_cache_all();
923 	return 0;
924 }
925 
926 void arc_cache_init(void)
927 {
928 	unsigned int __maybe_unused cpu = smp_processor_id();
929 	char str[256];
930 
931 	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
932 
933 	/*
934 	 * Only master CPU needs to execute rest of function:
935 	 *  - Assume SMP so all cores will have same cache config so
936 	 *    any geomtry checks will be same for all
937 	 *  - IOC setup / dma callbacks only need to be setup once
938 	 */
939 	if (cpu)
940 		return;
941 
942 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
943 		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
944 
945 		if (!ic->line_len)
946 			panic("cache support enabled but non-existent cache\n");
947 
948 		if (ic->line_len != L1_CACHE_BYTES)
949 			panic("ICache line [%d] != kernel Config [%d]",
950 			      ic->line_len, L1_CACHE_BYTES);
951 
952 		/*
953 		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
954 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
955 		 */
956 		if (is_isa_arcv2() && ic->alias)
957 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
958 		else
959 			_cache_line_loop_ic_fn = __cache_line_loop;
960 	}
961 
962 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
963 		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
964 
965 		if (!dc->line_len)
966 			panic("cache support enabled but non-existent cache\n");
967 
968 		if (dc->line_len != L1_CACHE_BYTES)
969 			panic("DCache line [%d] != kernel Config [%d]",
970 			      dc->line_len, L1_CACHE_BYTES);
971 
972 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
973 		if (is_isa_arcompact()) {
974 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
975 			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
976 
977 			if (dc->alias) {
978 				if (!handled)
979 					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
980 				if (CACHE_COLORS_NUM != num_colors)
981 					panic("CACHE_COLORS_NUM not optimized for config\n");
982 			} else if (!dc->alias && handled) {
983 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
984 			}
985 		}
986 	}
987 
988 	if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
989 
990 		/* IM set : flush before invalidate */
991 		write_aux_reg(ARC_REG_SLC_CTRL,
992 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
993 
994 		write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
995 
996 		/* Important to wait for flush to complete */
997 		while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
998 		write_aux_reg(ARC_REG_SLC_CTRL,
999 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
1000 	}
1001 
1002 	if (is_isa_arcv2() && ioc_enable) {
1003 		/* IO coherency base - 0x8z */
1004 		write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
1005 		/* IO coherency aperture size - 512Mb: 0x8z-0xAz */
1006 		write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
1007 		/* Enable partial writes */
1008 		write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1009 		/* Enable IO coherency */
1010 		write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1011 
1012 		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1013 		__dma_cache_inv = __dma_cache_inv_ioc;
1014 		__dma_cache_wback = __dma_cache_wback_ioc;
1015 	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1016 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1017 		__dma_cache_inv = __dma_cache_inv_slc;
1018 		__dma_cache_wback = __dma_cache_wback_slc;
1019 	} else {
1020 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1021 		__dma_cache_inv = __dma_cache_inv_l1;
1022 		__dma_cache_wback = __dma_cache_wback_l1;
1023 	}
1024 }
1025