1 /* 2 * ARC Cache Management 3 * 4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com) 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/sched.h> 15 #include <linux/cache.h> 16 #include <linux/mmu_context.h> 17 #include <linux/syscalls.h> 18 #include <linux/uaccess.h> 19 #include <linux/pagemap.h> 20 #include <asm/cacheflush.h> 21 #include <asm/cachectl.h> 22 #include <asm/setup.h> 23 24 static int l2_line_sz; 25 static int ioc_exists; 26 int slc_enable = 1, ioc_enable = 0; 27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */ 28 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */ 29 30 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr, 31 unsigned long sz, const int cacheop); 32 33 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz); 34 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz); 35 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz); 36 37 char *arc_cache_mumbojumbo(int c, char *buf, int len) 38 { 39 int n = 0; 40 struct cpuinfo_arc_cache *p; 41 42 #define PR_CACHE(p, cfg, str) \ 43 if (!(p)->line_len) \ 44 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \ 45 else \ 46 n += scnprintf(buf + n, len - n, \ 47 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \ 48 (p)->sz_k, (p)->assoc, (p)->line_len, \ 49 (p)->vipt ? "VIPT" : "PIPT", \ 50 (p)->alias ? " aliasing" : "", \ 51 IS_USED_CFG(cfg)); 52 53 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache"); 54 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache"); 55 56 p = &cpuinfo_arc700[c].slc; 57 if (p->line_len) 58 n += scnprintf(buf + n, len - n, 59 "SLC\t\t: %uK, %uB Line%s\n", 60 p->sz_k, p->line_len, IS_USED_RUN(slc_enable)); 61 62 n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n", 63 perip_base, 64 IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency ")); 65 66 return buf; 67 } 68 69 /* 70 * Read the Cache Build Confuration Registers, Decode them and save into 71 * the cpuinfo structure for later use. 72 * No Validation done here, simply read/convert the BCRs 73 */ 74 static void read_decode_cache_bcr_arcv2(int cpu) 75 { 76 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc; 77 struct bcr_generic sbcr; 78 79 struct bcr_slc_cfg { 80 #ifdef CONFIG_CPU_BIG_ENDIAN 81 unsigned int pad:24, way:2, lsz:2, sz:4; 82 #else 83 unsigned int sz:4, lsz:2, way:2, pad:24; 84 #endif 85 } slc_cfg; 86 87 struct bcr_clust_cfg { 88 #ifdef CONFIG_CPU_BIG_ENDIAN 89 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8; 90 #else 91 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7; 92 #endif 93 } cbcr; 94 95 struct bcr_volatile { 96 #ifdef CONFIG_CPU_BIG_ENDIAN 97 unsigned int start:4, limit:4, pad:22, order:1, disable:1; 98 #else 99 unsigned int disable:1, order:1, pad:22, limit:4, start:4; 100 #endif 101 } vol; 102 103 104 READ_BCR(ARC_REG_SLC_BCR, sbcr); 105 if (sbcr.ver) { 106 READ_BCR(ARC_REG_SLC_CFG, slc_cfg); 107 p_slc->sz_k = 128 << slc_cfg.sz; 108 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64; 109 } 110 111 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr); 112 if (cbcr.c) 113 ioc_exists = 1; 114 else 115 ioc_enable = 0; 116 117 /* HS 2.0 didn't have AUX_VOL */ 118 if (cpuinfo_arc700[cpu].core.family > 0x51) { 119 READ_BCR(AUX_VOL, vol); 120 perip_base = vol.start << 28; 121 /* HS 3.0 has limit and strict-ordering fields */ 122 if (cpuinfo_arc700[cpu].core.family > 0x52) 123 perip_end = (vol.limit << 28) - 1; 124 } 125 } 126 127 void read_decode_cache_bcr(void) 128 { 129 struct cpuinfo_arc_cache *p_ic, *p_dc; 130 unsigned int cpu = smp_processor_id(); 131 struct bcr_cache { 132 #ifdef CONFIG_CPU_BIG_ENDIAN 133 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8; 134 #else 135 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12; 136 #endif 137 } ibcr, dbcr; 138 139 p_ic = &cpuinfo_arc700[cpu].icache; 140 READ_BCR(ARC_REG_IC_BCR, ibcr); 141 142 if (!ibcr.ver) 143 goto dc_chk; 144 145 if (ibcr.ver <= 3) { 146 BUG_ON(ibcr.config != 3); 147 p_ic->assoc = 2; /* Fixed to 2w set assoc */ 148 } else if (ibcr.ver >= 4) { 149 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */ 150 } 151 152 p_ic->line_len = 8 << ibcr.line_len; 153 p_ic->sz_k = 1 << (ibcr.sz - 1); 154 p_ic->vipt = 1; 155 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1; 156 157 dc_chk: 158 p_dc = &cpuinfo_arc700[cpu].dcache; 159 READ_BCR(ARC_REG_DC_BCR, dbcr); 160 161 if (!dbcr.ver) 162 goto slc_chk; 163 164 if (dbcr.ver <= 3) { 165 BUG_ON(dbcr.config != 2); 166 p_dc->assoc = 4; /* Fixed to 4w set assoc */ 167 p_dc->vipt = 1; 168 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1; 169 } else if (dbcr.ver >= 4) { 170 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */ 171 p_dc->vipt = 0; 172 p_dc->alias = 0; /* PIPT so can't VIPT alias */ 173 } 174 175 p_dc->line_len = 16 << dbcr.line_len; 176 p_dc->sz_k = 1 << (dbcr.sz - 1); 177 178 slc_chk: 179 if (is_isa_arcv2()) 180 read_decode_cache_bcr_arcv2(cpu); 181 } 182 183 /* 184 * Line Operation on {I,D}-Cache 185 */ 186 187 #define OP_INV 0x1 188 #define OP_FLUSH 0x2 189 #define OP_FLUSH_N_INV 0x3 190 #define OP_INV_IC 0x4 191 192 /* 193 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3) 194 * 195 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag. 196 * The orig Cache Management Module "CDU" only required paddr to invalidate a 197 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry. 198 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching 199 * the exact same line. 200 * 201 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config, 202 * paddr alone could not be used to correctly index the cache. 203 * 204 * ------------------ 205 * MMU v1/v2 (Fixed Page Size 8k) 206 * ------------------ 207 * The solution was to provide CDU with these additonal vaddr bits. These 208 * would be bits [x:13], x would depend on cache-geometry, 13 comes from 209 * standard page size of 8k. 210 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits 211 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the 212 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they 213 * represent the offset within cache-line. The adv of using this "clumsy" 214 * interface for additional info was no new reg was needed in CDU programming 215 * model. 216 * 217 * 17:13 represented the max num of bits passable, actual bits needed were 218 * fewer, based on the num-of-aliases possible. 219 * -for 2 alias possibility, only bit 13 needed (32K cache) 220 * -for 4 alias possibility, bits 14:13 needed (64K cache) 221 * 222 * ------------------ 223 * MMU v3 224 * ------------------ 225 * This ver of MMU supports variable page sizes (1k-16k): although Linux will 226 * only support 8k (default), 16k and 4k. 227 * However from hardware perspective, smaller page sizes aggravate aliasing 228 * meaning more vaddr bits needed to disambiguate the cache-line-op ; 229 * the existing scheme of piggybacking won't work for certain configurations. 230 * Two new registers IC_PTAG and DC_PTAG inttoduced. 231 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs 232 */ 233 234 static inline 235 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr, 236 unsigned long sz, const int op) 237 { 238 unsigned int aux_cmd; 239 int num_lines; 240 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 241 242 if (op == OP_INV_IC) { 243 aux_cmd = ARC_REG_IC_IVIL; 244 } else { 245 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 246 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 247 } 248 249 /* Ensure we properly floor/ceil the non-line aligned/sized requests 250 * and have @paddr - aligned to cache line and integral @num_lines. 251 * This however can be avoided for page sized since: 252 * -@paddr will be cache-line aligned already (being page aligned) 253 * -@sz will be integral multiple of line size (being page sized). 254 */ 255 if (!full_page) { 256 sz += paddr & ~CACHE_LINE_MASK; 257 paddr &= CACHE_LINE_MASK; 258 vaddr &= CACHE_LINE_MASK; 259 } 260 261 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 262 263 /* MMUv2 and before: paddr contains stuffed vaddrs bits */ 264 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F; 265 266 while (num_lines-- > 0) { 267 write_aux_reg(aux_cmd, paddr); 268 paddr += L1_CACHE_BYTES; 269 } 270 } 271 272 /* 273 * For ARC700 MMUv3 I-cache and D-cache flushes 274 * Also reused for HS38 aliasing I-cache configuration 275 */ 276 static inline 277 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr, 278 unsigned long sz, const int op) 279 { 280 unsigned int aux_cmd, aux_tag; 281 int num_lines; 282 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 283 284 if (op == OP_INV_IC) { 285 aux_cmd = ARC_REG_IC_IVIL; 286 aux_tag = ARC_REG_IC_PTAG; 287 } else { 288 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 289 aux_tag = ARC_REG_DC_PTAG; 290 } 291 292 /* Ensure we properly floor/ceil the non-line aligned/sized requests 293 * and have @paddr - aligned to cache line and integral @num_lines. 294 * This however can be avoided for page sized since: 295 * -@paddr will be cache-line aligned already (being page aligned) 296 * -@sz will be integral multiple of line size (being page sized). 297 */ 298 if (!full_page) { 299 sz += paddr & ~CACHE_LINE_MASK; 300 paddr &= CACHE_LINE_MASK; 301 vaddr &= CACHE_LINE_MASK; 302 } 303 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 304 305 /* 306 * MMUv3, cache ops require paddr in PTAG reg 307 * if V-P const for loop, PTAG can be written once outside loop 308 */ 309 if (full_page) 310 write_aux_reg(aux_tag, paddr); 311 312 /* 313 * This is technically for MMU v4, using the MMU v3 programming model 314 * Special work for HS38 aliasing I-cache configuration with PAE40 315 * - upper 8 bits of paddr need to be written into PTAG_HI 316 * - (and needs to be written before the lower 32 bits) 317 * Note that PTAG_HI is hoisted outside the line loop 318 */ 319 if (is_pae40_enabled() && op == OP_INV_IC) 320 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 321 322 while (num_lines-- > 0) { 323 if (!full_page) { 324 write_aux_reg(aux_tag, paddr); 325 paddr += L1_CACHE_BYTES; 326 } 327 328 write_aux_reg(aux_cmd, vaddr); 329 vaddr += L1_CACHE_BYTES; 330 } 331 } 332 333 /* 334 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT 335 * Here's how cache ops are implemented 336 * 337 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL) 338 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL) 339 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG 340 * respectively, similar to MMU v3 programming model, hence 341 * __cache_line_loop_v3() is used) 342 * 343 * If PAE40 is enabled, independent of aliasing considerations, the higher bits 344 * needs to be written into PTAG_HI 345 */ 346 static inline 347 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, 348 unsigned long sz, const int cacheop) 349 { 350 unsigned int aux_cmd; 351 int num_lines; 352 const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE; 353 354 if (cacheop == OP_INV_IC) { 355 aux_cmd = ARC_REG_IC_IVIL; 356 } else { 357 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 358 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 359 } 360 361 /* Ensure we properly floor/ceil the non-line aligned/sized requests 362 * and have @paddr - aligned to cache line and integral @num_lines. 363 * This however can be avoided for page sized since: 364 * -@paddr will be cache-line aligned already (being page aligned) 365 * -@sz will be integral multiple of line size (being page sized). 366 */ 367 if (!full_page_op) { 368 sz += paddr & ~CACHE_LINE_MASK; 369 paddr &= CACHE_LINE_MASK; 370 } 371 372 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 373 374 /* 375 * For HS38 PAE40 configuration 376 * - upper 8 bits of paddr need to be written into PTAG_HI 377 * - (and needs to be written before the lower 32 bits) 378 */ 379 if (is_pae40_enabled()) { 380 if (cacheop == OP_INV_IC) 381 /* 382 * Non aliasing I-cache in HS38, 383 * aliasing I-cache handled in __cache_line_loop_v3() 384 */ 385 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 386 else 387 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); 388 } 389 390 while (num_lines-- > 0) { 391 write_aux_reg(aux_cmd, paddr); 392 paddr += L1_CACHE_BYTES; 393 } 394 } 395 396 #if (CONFIG_ARC_MMU_VER < 3) 397 #define __cache_line_loop __cache_line_loop_v2 398 #elif (CONFIG_ARC_MMU_VER == 3) 399 #define __cache_line_loop __cache_line_loop_v3 400 #elif (CONFIG_ARC_MMU_VER > 3) 401 #define __cache_line_loop __cache_line_loop_v4 402 #endif 403 404 #ifdef CONFIG_ARC_HAS_DCACHE 405 406 /*************************************************************** 407 * Machine specific helpers for Entire D-Cache or Per Line ops 408 */ 409 410 static inline void __before_dc_op(const int op) 411 { 412 if (op == OP_FLUSH_N_INV) { 413 /* Dcache provides 2 cmd: FLUSH or INV 414 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE 415 * flush-n-inv is achieved by INV cmd but with IM=1 416 * So toggle INV sub-mode depending on op request and default 417 */ 418 const unsigned int ctl = ARC_REG_DC_CTRL; 419 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH); 420 } 421 } 422 423 static inline void __after_dc_op(const int op) 424 { 425 if (op & OP_FLUSH) { 426 const unsigned int ctl = ARC_REG_DC_CTRL; 427 unsigned int reg; 428 429 /* flush / flush-n-inv both wait */ 430 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS) 431 ; 432 433 /* Switch back to default Invalidate mode */ 434 if (op == OP_FLUSH_N_INV) 435 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH); 436 } 437 } 438 439 /* 440 * Operation on Entire D-Cache 441 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV} 442 * Note that constant propagation ensures all the checks are gone 443 * in generated code 444 */ 445 static inline void __dc_entire_op(const int op) 446 { 447 int aux; 448 449 __before_dc_op(op); 450 451 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */ 452 aux = ARC_REG_DC_IVDC; 453 else 454 aux = ARC_REG_DC_FLSH; 455 456 write_aux_reg(aux, 0x1); 457 458 __after_dc_op(op); 459 } 460 461 /* For kernel mappings cache operation: index is same as paddr */ 462 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op) 463 464 /* 465 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback) 466 */ 467 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr, 468 unsigned long sz, const int op) 469 { 470 unsigned long flags; 471 472 local_irq_save(flags); 473 474 __before_dc_op(op); 475 476 __cache_line_loop(paddr, vaddr, sz, op); 477 478 __after_dc_op(op); 479 480 local_irq_restore(flags); 481 } 482 483 #else 484 485 #define __dc_entire_op(op) 486 #define __dc_line_op(paddr, vaddr, sz, op) 487 #define __dc_line_op_k(paddr, sz, op) 488 489 #endif /* CONFIG_ARC_HAS_DCACHE */ 490 491 #ifdef CONFIG_ARC_HAS_ICACHE 492 493 static inline void __ic_entire_inv(void) 494 { 495 write_aux_reg(ARC_REG_IC_IVIC, 1); 496 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */ 497 } 498 499 static inline void 500 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr, 501 unsigned long sz) 502 { 503 unsigned long flags; 504 505 local_irq_save(flags); 506 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC); 507 local_irq_restore(flags); 508 } 509 510 #ifndef CONFIG_SMP 511 512 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s) 513 514 #else 515 516 struct ic_inv_args { 517 phys_addr_t paddr, vaddr; 518 int sz; 519 }; 520 521 static void __ic_line_inv_vaddr_helper(void *info) 522 { 523 struct ic_inv_args *ic_inv = info; 524 525 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz); 526 } 527 528 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr, 529 unsigned long sz) 530 { 531 struct ic_inv_args ic_inv = { 532 .paddr = paddr, 533 .vaddr = vaddr, 534 .sz = sz 535 }; 536 537 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1); 538 } 539 540 #endif /* CONFIG_SMP */ 541 542 #else /* !CONFIG_ARC_HAS_ICACHE */ 543 544 #define __ic_entire_inv() 545 #define __ic_line_inv_vaddr(pstart, vstart, sz) 546 547 #endif /* CONFIG_ARC_HAS_ICACHE */ 548 549 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op) 550 { 551 #ifdef CONFIG_ISA_ARCV2 552 /* 553 * SLC is shared between all cores and concurrent aux operations from 554 * multiple cores need to be serialized using a spinlock 555 * A concurrent operation can be silently ignored and/or the old/new 556 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop 557 * below) 558 */ 559 static DEFINE_SPINLOCK(lock); 560 unsigned long flags; 561 unsigned int ctrl; 562 563 spin_lock_irqsave(&lock, flags); 564 565 /* 566 * The Region Flush operation is specified by CTRL.RGN_OP[11..9] 567 * - b'000 (default) is Flush, 568 * - b'001 is Invalidate if CTRL.IM == 0 569 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1 570 */ 571 ctrl = read_aux_reg(ARC_REG_SLC_CTRL); 572 573 /* Don't rely on default value of IM bit */ 574 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 575 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 576 else 577 ctrl |= SLC_CTRL_IM; 578 579 if (op & OP_INV) 580 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */ 581 else 582 ctrl &= ~SLC_CTRL_RGN_OP_INV; 583 584 write_aux_reg(ARC_REG_SLC_CTRL, ctrl); 585 586 /* 587 * Lower bits are ignored, no need to clip 588 * END needs to be setup before START (latter triggers the operation) 589 * END can't be same as START, so add (l2_line_sz - 1) to sz 590 */ 591 write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1)); 592 write_aux_reg(ARC_REG_SLC_RGN_START, paddr); 593 594 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 595 596 spin_unlock_irqrestore(&lock, flags); 597 #endif 598 } 599 600 /*********************************************************** 601 * Exported APIs 602 */ 603 604 /* 605 * Handle cache congruency of kernel and userspace mappings of page when kernel 606 * writes-to/reads-from 607 * 608 * The idea is to defer flushing of kernel mapping after a WRITE, possible if: 609 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent 610 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache) 611 * -In SMP, if hardware caches are coherent 612 * 613 * There's a corollary case, where kernel READs from a userspace mapped page. 614 * If the U-mapping is not congruent to to K-mapping, former needs flushing. 615 */ 616 void flush_dcache_page(struct page *page) 617 { 618 struct address_space *mapping; 619 620 if (!cache_is_vipt_aliasing()) { 621 clear_bit(PG_dc_clean, &page->flags); 622 return; 623 } 624 625 /* don't handle anon pages here */ 626 mapping = page_mapping(page); 627 if (!mapping) 628 return; 629 630 /* 631 * pagecache page, file not yet mapped to userspace 632 * Make a note that K-mapping is dirty 633 */ 634 if (!mapping_mapped(mapping)) { 635 clear_bit(PG_dc_clean, &page->flags); 636 } else if (page_mapcount(page)) { 637 638 /* kernel reading from page with U-mapping */ 639 phys_addr_t paddr = (unsigned long)page_address(page); 640 unsigned long vaddr = page->index << PAGE_SHIFT; 641 642 if (addr_not_cache_congruent(paddr, vaddr)) 643 __flush_dcache_page(paddr, vaddr); 644 } 645 } 646 EXPORT_SYMBOL(flush_dcache_page); 647 648 /* 649 * DMA ops for systems with L1 cache only 650 * Make memory coherent with L1 cache by flushing/invalidating L1 lines 651 */ 652 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz) 653 { 654 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 655 } 656 657 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz) 658 { 659 __dc_line_op_k(start, sz, OP_INV); 660 } 661 662 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz) 663 { 664 __dc_line_op_k(start, sz, OP_FLUSH); 665 } 666 667 /* 668 * DMA ops for systems with both L1 and L2 caches, but without IOC 669 * Both L1 and L2 lines need to be explicitly flushed/invalidated 670 */ 671 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz) 672 { 673 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 674 slc_op(start, sz, OP_FLUSH_N_INV); 675 } 676 677 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz) 678 { 679 __dc_line_op_k(start, sz, OP_INV); 680 slc_op(start, sz, OP_INV); 681 } 682 683 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz) 684 { 685 __dc_line_op_k(start, sz, OP_FLUSH); 686 slc_op(start, sz, OP_FLUSH); 687 } 688 689 /* 690 * DMA ops for systems with IOC 691 * IOC hardware snoops all DMA traffic keeping the caches consistent with 692 * memory - eliding need for any explicit cache maintenance of DMA buffers 693 */ 694 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {} 695 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {} 696 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {} 697 698 /* 699 * Exported DMA API 700 */ 701 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz) 702 { 703 __dma_cache_wback_inv(start, sz); 704 } 705 EXPORT_SYMBOL(dma_cache_wback_inv); 706 707 void dma_cache_inv(phys_addr_t start, unsigned long sz) 708 { 709 __dma_cache_inv(start, sz); 710 } 711 EXPORT_SYMBOL(dma_cache_inv); 712 713 void dma_cache_wback(phys_addr_t start, unsigned long sz) 714 { 715 __dma_cache_wback(start, sz); 716 } 717 EXPORT_SYMBOL(dma_cache_wback); 718 719 /* 720 * This is API for making I/D Caches consistent when modifying 721 * kernel code (loadable modules, kprobes, kgdb...) 722 * This is called on insmod, with kernel virtual address for CODE of 723 * the module. ARC cache maintenance ops require PHY address thus we 724 * need to convert vmalloc addr to PHY addr 725 */ 726 void flush_icache_range(unsigned long kstart, unsigned long kend) 727 { 728 unsigned int tot_sz; 729 730 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__); 731 732 /* Shortcut for bigger flush ranges. 733 * Here we don't care if this was kernel virtual or phy addr 734 */ 735 tot_sz = kend - kstart; 736 if (tot_sz > PAGE_SIZE) { 737 flush_cache_all(); 738 return; 739 } 740 741 /* Case: Kernel Phy addr (0x8000_0000 onwards) */ 742 if (likely(kstart > PAGE_OFFSET)) { 743 /* 744 * The 2nd arg despite being paddr will be used to index icache 745 * This is OK since no alternate virtual mappings will exist 746 * given the callers for this case: kprobe/kgdb in built-in 747 * kernel code only. 748 */ 749 __sync_icache_dcache(kstart, kstart, kend - kstart); 750 return; 751 } 752 753 /* 754 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff) 755 * (1) ARC Cache Maintenance ops only take Phy addr, hence special 756 * handling of kernel vaddr. 757 * 758 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already), 759 * it still needs to handle a 2 page scenario, where the range 760 * straddles across 2 virtual pages and hence need for loop 761 */ 762 while (tot_sz > 0) { 763 unsigned int off, sz; 764 unsigned long phy, pfn; 765 766 off = kstart % PAGE_SIZE; 767 pfn = vmalloc_to_pfn((void *)kstart); 768 phy = (pfn << PAGE_SHIFT) + off; 769 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off); 770 __sync_icache_dcache(phy, kstart, sz); 771 kstart += sz; 772 tot_sz -= sz; 773 } 774 } 775 EXPORT_SYMBOL(flush_icache_range); 776 777 /* 778 * General purpose helper to make I and D cache lines consistent. 779 * @paddr is phy addr of region 780 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc) 781 * However in one instance, when called by kprobe (for a breakpt in 782 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will 783 * use a paddr to index the cache (despite VIPT). This is fine since since a 784 * builtin kernel page will not have any virtual mappings. 785 * kprobe on loadable module will be kernel vaddr. 786 */ 787 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len) 788 { 789 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV); 790 __ic_line_inv_vaddr(paddr, vaddr, len); 791 } 792 793 /* wrapper to compile time eliminate alignment checks in flush loop */ 794 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr) 795 { 796 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE); 797 } 798 799 /* 800 * wrapper to clearout kernel or userspace mappings of a page 801 * For kernel mappings @vaddr == @paddr 802 */ 803 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr) 804 { 805 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV); 806 } 807 808 noinline void flush_cache_all(void) 809 { 810 unsigned long flags; 811 812 local_irq_save(flags); 813 814 __ic_entire_inv(); 815 __dc_entire_op(OP_FLUSH_N_INV); 816 817 local_irq_restore(flags); 818 819 } 820 821 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING 822 823 void flush_cache_mm(struct mm_struct *mm) 824 { 825 flush_cache_all(); 826 } 827 828 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr, 829 unsigned long pfn) 830 { 831 unsigned int paddr = pfn << PAGE_SHIFT; 832 833 u_vaddr &= PAGE_MASK; 834 835 __flush_dcache_page(paddr, u_vaddr); 836 837 if (vma->vm_flags & VM_EXEC) 838 __inv_icache_page(paddr, u_vaddr); 839 } 840 841 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 842 unsigned long end) 843 { 844 flush_cache_all(); 845 } 846 847 void flush_anon_page(struct vm_area_struct *vma, struct page *page, 848 unsigned long u_vaddr) 849 { 850 /* TBD: do we really need to clear the kernel mapping */ 851 __flush_dcache_page(page_address(page), u_vaddr); 852 __flush_dcache_page(page_address(page), page_address(page)); 853 854 } 855 856 #endif 857 858 void copy_user_highpage(struct page *to, struct page *from, 859 unsigned long u_vaddr, struct vm_area_struct *vma) 860 { 861 void *kfrom = kmap_atomic(from); 862 void *kto = kmap_atomic(to); 863 int clean_src_k_mappings = 0; 864 865 /* 866 * If SRC page was already mapped in userspace AND it's U-mapping is 867 * not congruent with K-mapping, sync former to physical page so that 868 * K-mapping in memcpy below, sees the right data 869 * 870 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is 871 * equally valid for SRC page as well 872 * 873 * For !VIPT cache, all of this gets compiled out as 874 * addr_not_cache_congruent() is 0 875 */ 876 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) { 877 __flush_dcache_page((unsigned long)kfrom, u_vaddr); 878 clean_src_k_mappings = 1; 879 } 880 881 copy_page(kto, kfrom); 882 883 /* 884 * Mark DST page K-mapping as dirty for a later finalization by 885 * update_mmu_cache(). Although the finalization could have been done 886 * here as well (given that both vaddr/paddr are available). 887 * But update_mmu_cache() already has code to do that for other 888 * non copied user pages (e.g. read faults which wire in pagecache page 889 * directly). 890 */ 891 clear_bit(PG_dc_clean, &to->flags); 892 893 /* 894 * if SRC was already usermapped and non-congruent to kernel mapping 895 * sync the kernel mapping back to physical page 896 */ 897 if (clean_src_k_mappings) { 898 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom); 899 set_bit(PG_dc_clean, &from->flags); 900 } else { 901 clear_bit(PG_dc_clean, &from->flags); 902 } 903 904 kunmap_atomic(kto); 905 kunmap_atomic(kfrom); 906 } 907 908 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page) 909 { 910 clear_page(to); 911 clear_bit(PG_dc_clean, &page->flags); 912 } 913 914 915 /********************************************************************** 916 * Explicit Cache flush request from user space via syscall 917 * Needed for JITs which generate code on the fly 918 */ 919 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags) 920 { 921 /* TBD: optimize this */ 922 flush_cache_all(); 923 return 0; 924 } 925 926 void arc_cache_init(void) 927 { 928 unsigned int __maybe_unused cpu = smp_processor_id(); 929 char str[256]; 930 931 printk(arc_cache_mumbojumbo(0, str, sizeof(str))); 932 933 /* 934 * Only master CPU needs to execute rest of function: 935 * - Assume SMP so all cores will have same cache config so 936 * any geomtry checks will be same for all 937 * - IOC setup / dma callbacks only need to be setup once 938 */ 939 if (cpu) 940 return; 941 942 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) { 943 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache; 944 945 if (!ic->line_len) 946 panic("cache support enabled but non-existent cache\n"); 947 948 if (ic->line_len != L1_CACHE_BYTES) 949 panic("ICache line [%d] != kernel Config [%d]", 950 ic->line_len, L1_CACHE_BYTES); 951 952 /* 953 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG 954 * pair to provide vaddr/paddr respectively, just as in MMU v3 955 */ 956 if (is_isa_arcv2() && ic->alias) 957 _cache_line_loop_ic_fn = __cache_line_loop_v3; 958 else 959 _cache_line_loop_ic_fn = __cache_line_loop; 960 } 961 962 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) { 963 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache; 964 965 if (!dc->line_len) 966 panic("cache support enabled but non-existent cache\n"); 967 968 if (dc->line_len != L1_CACHE_BYTES) 969 panic("DCache line [%d] != kernel Config [%d]", 970 dc->line_len, L1_CACHE_BYTES); 971 972 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */ 973 if (is_isa_arcompact()) { 974 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING); 975 int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE); 976 977 if (dc->alias) { 978 if (!handled) 979 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 980 if (CACHE_COLORS_NUM != num_colors) 981 panic("CACHE_COLORS_NUM not optimized for config\n"); 982 } else if (!dc->alias && handled) { 983 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 984 } 985 } 986 } 987 988 if (is_isa_arcv2() && l2_line_sz && !slc_enable) { 989 990 /* IM set : flush before invalidate */ 991 write_aux_reg(ARC_REG_SLC_CTRL, 992 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM); 993 994 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1); 995 996 /* Important to wait for flush to complete */ 997 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 998 write_aux_reg(ARC_REG_SLC_CTRL, 999 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE); 1000 } 1001 1002 if (is_isa_arcv2() && ioc_enable) { 1003 /* IO coherency base - 0x8z */ 1004 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000); 1005 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */ 1006 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11); 1007 /* Enable partial writes */ 1008 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1); 1009 /* Enable IO coherency */ 1010 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1); 1011 1012 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc; 1013 __dma_cache_inv = __dma_cache_inv_ioc; 1014 __dma_cache_wback = __dma_cache_wback_ioc; 1015 } else if (is_isa_arcv2() && l2_line_sz && slc_enable) { 1016 __dma_cache_wback_inv = __dma_cache_wback_inv_slc; 1017 __dma_cache_inv = __dma_cache_inv_slc; 1018 __dma_cache_wback = __dma_cache_wback_slc; 1019 } else { 1020 __dma_cache_wback_inv = __dma_cache_wback_inv_l1; 1021 __dma_cache_inv = __dma_cache_inv_l1; 1022 __dma_cache_wback = __dma_cache_wback_l1; 1023 } 1024 } 1025