1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ARC Cache Management 4 * 5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com) 6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 7 */ 8 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/cache.h> 13 #include <linux/mmu_context.h> 14 #include <linux/syscalls.h> 15 #include <linux/uaccess.h> 16 #include <linux/pagemap.h> 17 #include <asm/cacheflush.h> 18 #include <asm/cachectl.h> 19 #include <asm/setup.h> 20 21 #ifdef CONFIG_ISA_ARCV2 22 #define USE_RGN_FLSH 1 23 #endif 24 25 static int l2_line_sz; 26 static int ioc_exists; 27 int slc_enable = 1, ioc_enable = 1; 28 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */ 29 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */ 30 31 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr, 32 unsigned long sz, const int op, const int full_page); 33 34 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz); 35 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz); 36 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz); 37 38 char *arc_cache_mumbojumbo(int c, char *buf, int len) 39 { 40 int n = 0; 41 struct cpuinfo_arc_cache *p; 42 43 #define PR_CACHE(p, cfg, str) \ 44 if (!(p)->line_len) \ 45 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \ 46 else \ 47 n += scnprintf(buf + n, len - n, \ 48 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \ 49 (p)->sz_k, (p)->assoc, (p)->line_len, \ 50 (p)->vipt ? "VIPT" : "PIPT", \ 51 (p)->alias ? " aliasing" : "", \ 52 IS_USED_CFG(cfg)); 53 54 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache"); 55 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache"); 56 57 p = &cpuinfo_arc700[c].slc; 58 if (p->line_len) 59 n += scnprintf(buf + n, len - n, 60 "SLC\t\t: %uK, %uB Line%s\n", 61 p->sz_k, p->line_len, IS_USED_RUN(slc_enable)); 62 63 n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n", 64 perip_base, 65 IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) ")); 66 67 return buf; 68 } 69 70 /* 71 * Read the Cache Build Confuration Registers, Decode them and save into 72 * the cpuinfo structure for later use. 73 * No Validation done here, simply read/convert the BCRs 74 */ 75 static void read_decode_cache_bcr_arcv2(int cpu) 76 { 77 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc; 78 struct bcr_generic sbcr; 79 80 struct bcr_slc_cfg { 81 #ifdef CONFIG_CPU_BIG_ENDIAN 82 unsigned int pad:24, way:2, lsz:2, sz:4; 83 #else 84 unsigned int sz:4, lsz:2, way:2, pad:24; 85 #endif 86 } slc_cfg; 87 88 struct bcr_clust_cfg { 89 #ifdef CONFIG_CPU_BIG_ENDIAN 90 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8; 91 #else 92 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7; 93 #endif 94 } cbcr; 95 96 struct bcr_volatile { 97 #ifdef CONFIG_CPU_BIG_ENDIAN 98 unsigned int start:4, limit:4, pad:22, order:1, disable:1; 99 #else 100 unsigned int disable:1, order:1, pad:22, limit:4, start:4; 101 #endif 102 } vol; 103 104 105 READ_BCR(ARC_REG_SLC_BCR, sbcr); 106 if (sbcr.ver) { 107 READ_BCR(ARC_REG_SLC_CFG, slc_cfg); 108 p_slc->sz_k = 128 << slc_cfg.sz; 109 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64; 110 } 111 112 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr); 113 if (cbcr.c) { 114 ioc_exists = 1; 115 116 /* 117 * As for today we don't support both IOC and ZONE_HIGHMEM enabled 118 * simultaneously. This happens because as of today IOC aperture covers 119 * only ZONE_NORMAL (low mem) and any dma transactions outside this 120 * region won't be HW coherent. 121 * If we want to use both IOC and ZONE_HIGHMEM we can use 122 * bounce_buffer to handle dma transactions to HIGHMEM. 123 * Also it is possible to modify dma_direct cache ops or increase IOC 124 * aperture size if we are planning to use HIGHMEM without PAE. 125 */ 126 if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled()) 127 ioc_enable = 0; 128 } else { 129 ioc_enable = 0; 130 } 131 132 /* HS 2.0 didn't have AUX_VOL */ 133 if (cpuinfo_arc700[cpu].core.family > 0x51) { 134 READ_BCR(AUX_VOL, vol); 135 perip_base = vol.start << 28; 136 /* HS 3.0 has limit and strict-ordering fields */ 137 if (cpuinfo_arc700[cpu].core.family > 0x52) 138 perip_end = (vol.limit << 28) - 1; 139 } 140 } 141 142 void read_decode_cache_bcr(void) 143 { 144 struct cpuinfo_arc_cache *p_ic, *p_dc; 145 unsigned int cpu = smp_processor_id(); 146 struct bcr_cache { 147 #ifdef CONFIG_CPU_BIG_ENDIAN 148 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8; 149 #else 150 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12; 151 #endif 152 } ibcr, dbcr; 153 154 p_ic = &cpuinfo_arc700[cpu].icache; 155 READ_BCR(ARC_REG_IC_BCR, ibcr); 156 157 if (!ibcr.ver) 158 goto dc_chk; 159 160 if (ibcr.ver <= 3) { 161 BUG_ON(ibcr.config != 3); 162 p_ic->assoc = 2; /* Fixed to 2w set assoc */ 163 } else if (ibcr.ver >= 4) { 164 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */ 165 } 166 167 p_ic->line_len = 8 << ibcr.line_len; 168 p_ic->sz_k = 1 << (ibcr.sz - 1); 169 p_ic->vipt = 1; 170 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1; 171 172 dc_chk: 173 p_dc = &cpuinfo_arc700[cpu].dcache; 174 READ_BCR(ARC_REG_DC_BCR, dbcr); 175 176 if (!dbcr.ver) 177 goto slc_chk; 178 179 if (dbcr.ver <= 3) { 180 BUG_ON(dbcr.config != 2); 181 p_dc->assoc = 4; /* Fixed to 4w set assoc */ 182 p_dc->vipt = 1; 183 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1; 184 } else if (dbcr.ver >= 4) { 185 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */ 186 p_dc->vipt = 0; 187 p_dc->alias = 0; /* PIPT so can't VIPT alias */ 188 } 189 190 p_dc->line_len = 16 << dbcr.line_len; 191 p_dc->sz_k = 1 << (dbcr.sz - 1); 192 193 slc_chk: 194 if (is_isa_arcv2()) 195 read_decode_cache_bcr_arcv2(cpu); 196 } 197 198 /* 199 * Line Operation on {I,D}-Cache 200 */ 201 202 #define OP_INV 0x1 203 #define OP_FLUSH 0x2 204 #define OP_FLUSH_N_INV 0x3 205 #define OP_INV_IC 0x4 206 207 /* 208 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3) 209 * 210 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag. 211 * The orig Cache Management Module "CDU" only required paddr to invalidate a 212 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry. 213 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching 214 * the exact same line. 215 * 216 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config, 217 * paddr alone could not be used to correctly index the cache. 218 * 219 * ------------------ 220 * MMU v1/v2 (Fixed Page Size 8k) 221 * ------------------ 222 * The solution was to provide CDU with these additonal vaddr bits. These 223 * would be bits [x:13], x would depend on cache-geometry, 13 comes from 224 * standard page size of 8k. 225 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits 226 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the 227 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they 228 * represent the offset within cache-line. The adv of using this "clumsy" 229 * interface for additional info was no new reg was needed in CDU programming 230 * model. 231 * 232 * 17:13 represented the max num of bits passable, actual bits needed were 233 * fewer, based on the num-of-aliases possible. 234 * -for 2 alias possibility, only bit 13 needed (32K cache) 235 * -for 4 alias possibility, bits 14:13 needed (64K cache) 236 * 237 * ------------------ 238 * MMU v3 239 * ------------------ 240 * This ver of MMU supports variable page sizes (1k-16k): although Linux will 241 * only support 8k (default), 16k and 4k. 242 * However from hardware perspective, smaller page sizes aggravate aliasing 243 * meaning more vaddr bits needed to disambiguate the cache-line-op ; 244 * the existing scheme of piggybacking won't work for certain configurations. 245 * Two new registers IC_PTAG and DC_PTAG inttoduced. 246 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs 247 */ 248 249 static inline 250 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr, 251 unsigned long sz, const int op, const int full_page) 252 { 253 unsigned int aux_cmd; 254 int num_lines; 255 256 if (op == OP_INV_IC) { 257 aux_cmd = ARC_REG_IC_IVIL; 258 } else { 259 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 260 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 261 } 262 263 /* Ensure we properly floor/ceil the non-line aligned/sized requests 264 * and have @paddr - aligned to cache line and integral @num_lines. 265 * This however can be avoided for page sized since: 266 * -@paddr will be cache-line aligned already (being page aligned) 267 * -@sz will be integral multiple of line size (being page sized). 268 */ 269 if (!full_page) { 270 sz += paddr & ~CACHE_LINE_MASK; 271 paddr &= CACHE_LINE_MASK; 272 vaddr &= CACHE_LINE_MASK; 273 } 274 275 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 276 277 /* MMUv2 and before: paddr contains stuffed vaddrs bits */ 278 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F; 279 280 while (num_lines-- > 0) { 281 write_aux_reg(aux_cmd, paddr); 282 paddr += L1_CACHE_BYTES; 283 } 284 } 285 286 /* 287 * For ARC700 MMUv3 I-cache and D-cache flushes 288 * - ARC700 programming model requires paddr and vaddr be passed in seperate 289 * AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the 290 * caches actually alias or not. 291 * - For HS38, only the aliasing I-cache configuration uses the PTAG reg 292 * (non aliasing I-cache version doesn't; while D-cache can't possibly alias) 293 */ 294 static inline 295 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr, 296 unsigned long sz, const int op, const int full_page) 297 { 298 unsigned int aux_cmd, aux_tag; 299 int num_lines; 300 301 if (op == OP_INV_IC) { 302 aux_cmd = ARC_REG_IC_IVIL; 303 aux_tag = ARC_REG_IC_PTAG; 304 } else { 305 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 306 aux_tag = ARC_REG_DC_PTAG; 307 } 308 309 /* Ensure we properly floor/ceil the non-line aligned/sized requests 310 * and have @paddr - aligned to cache line and integral @num_lines. 311 * This however can be avoided for page sized since: 312 * -@paddr will be cache-line aligned already (being page aligned) 313 * -@sz will be integral multiple of line size (being page sized). 314 */ 315 if (!full_page) { 316 sz += paddr & ~CACHE_LINE_MASK; 317 paddr &= CACHE_LINE_MASK; 318 vaddr &= CACHE_LINE_MASK; 319 } 320 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 321 322 /* 323 * MMUv3, cache ops require paddr in PTAG reg 324 * if V-P const for loop, PTAG can be written once outside loop 325 */ 326 if (full_page) 327 write_aux_reg(aux_tag, paddr); 328 329 /* 330 * This is technically for MMU v4, using the MMU v3 programming model 331 * Special work for HS38 aliasing I-cache configuration with PAE40 332 * - upper 8 bits of paddr need to be written into PTAG_HI 333 * - (and needs to be written before the lower 32 bits) 334 * Note that PTAG_HI is hoisted outside the line loop 335 */ 336 if (is_pae40_enabled() && op == OP_INV_IC) 337 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 338 339 while (num_lines-- > 0) { 340 if (!full_page) { 341 write_aux_reg(aux_tag, paddr); 342 paddr += L1_CACHE_BYTES; 343 } 344 345 write_aux_reg(aux_cmd, vaddr); 346 vaddr += L1_CACHE_BYTES; 347 } 348 } 349 350 #ifndef USE_RGN_FLSH 351 352 /* 353 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT 354 * Here's how cache ops are implemented 355 * 356 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL) 357 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL) 358 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG 359 * respectively, similar to MMU v3 programming model, hence 360 * __cache_line_loop_v3() is used) 361 * 362 * If PAE40 is enabled, independent of aliasing considerations, the higher bits 363 * needs to be written into PTAG_HI 364 */ 365 static inline 366 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, 367 unsigned long sz, const int op, const int full_page) 368 { 369 unsigned int aux_cmd; 370 int num_lines; 371 372 if (op == OP_INV_IC) { 373 aux_cmd = ARC_REG_IC_IVIL; 374 } else { 375 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 376 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 377 } 378 379 /* Ensure we properly floor/ceil the non-line aligned/sized requests 380 * and have @paddr - aligned to cache line and integral @num_lines. 381 * This however can be avoided for page sized since: 382 * -@paddr will be cache-line aligned already (being page aligned) 383 * -@sz will be integral multiple of line size (being page sized). 384 */ 385 if (!full_page) { 386 sz += paddr & ~CACHE_LINE_MASK; 387 paddr &= CACHE_LINE_MASK; 388 } 389 390 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 391 392 /* 393 * For HS38 PAE40 configuration 394 * - upper 8 bits of paddr need to be written into PTAG_HI 395 * - (and needs to be written before the lower 32 bits) 396 */ 397 if (is_pae40_enabled()) { 398 if (op == OP_INV_IC) 399 /* 400 * Non aliasing I-cache in HS38, 401 * aliasing I-cache handled in __cache_line_loop_v3() 402 */ 403 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 404 else 405 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); 406 } 407 408 while (num_lines-- > 0) { 409 write_aux_reg(aux_cmd, paddr); 410 paddr += L1_CACHE_BYTES; 411 } 412 } 413 414 #else 415 416 /* 417 * optimized flush operation which takes a region as opposed to iterating per line 418 */ 419 static inline 420 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, 421 unsigned long sz, const int op, const int full_page) 422 { 423 unsigned int s, e; 424 425 /* Only for Non aliasing I-cache in HS38 */ 426 if (op == OP_INV_IC) { 427 s = ARC_REG_IC_IVIR; 428 e = ARC_REG_IC_ENDR; 429 } else { 430 s = ARC_REG_DC_STARTR; 431 e = ARC_REG_DC_ENDR; 432 } 433 434 if (!full_page) { 435 /* for any leading gap between @paddr and start of cache line */ 436 sz += paddr & ~CACHE_LINE_MASK; 437 paddr &= CACHE_LINE_MASK; 438 439 /* 440 * account for any trailing gap to end of cache line 441 * this is equivalent to DIV_ROUND_UP() in line ops above 442 */ 443 sz += L1_CACHE_BYTES - 1; 444 } 445 446 if (is_pae40_enabled()) { 447 /* TBD: check if crossing 4TB boundary */ 448 if (op == OP_INV_IC) 449 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 450 else 451 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); 452 } 453 454 /* ENDR needs to be set ahead of START */ 455 write_aux_reg(e, paddr + sz); /* ENDR is exclusive */ 456 write_aux_reg(s, paddr); 457 458 /* caller waits on DC_CTRL.FS */ 459 } 460 461 #endif 462 463 #if (CONFIG_ARC_MMU_VER < 3) 464 #define __cache_line_loop __cache_line_loop_v2 465 #elif (CONFIG_ARC_MMU_VER == 3) 466 #define __cache_line_loop __cache_line_loop_v3 467 #elif (CONFIG_ARC_MMU_VER > 3) 468 #define __cache_line_loop __cache_line_loop_v4 469 #endif 470 471 #ifdef CONFIG_ARC_HAS_DCACHE 472 473 /*************************************************************** 474 * Machine specific helpers for Entire D-Cache or Per Line ops 475 */ 476 477 #ifndef USE_RGN_FLSH 478 /* 479 * this version avoids extra read/write of DC_CTRL for flush or invalid ops 480 * in the non region flush regime (such as for ARCompact) 481 */ 482 static inline void __before_dc_op(const int op) 483 { 484 if (op == OP_FLUSH_N_INV) { 485 /* Dcache provides 2 cmd: FLUSH or INV 486 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE 487 * flush-n-inv is achieved by INV cmd but with IM=1 488 * So toggle INV sub-mode depending on op request and default 489 */ 490 const unsigned int ctl = ARC_REG_DC_CTRL; 491 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH); 492 } 493 } 494 495 #else 496 497 static inline void __before_dc_op(const int op) 498 { 499 const unsigned int ctl = ARC_REG_DC_CTRL; 500 unsigned int val = read_aux_reg(ctl); 501 502 if (op == OP_FLUSH_N_INV) { 503 val |= DC_CTRL_INV_MODE_FLUSH; 504 } 505 506 if (op != OP_INV_IC) { 507 /* 508 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1 509 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above 510 */ 511 val &= ~DC_CTRL_RGN_OP_MSK; 512 if (op & OP_INV) 513 val |= DC_CTRL_RGN_OP_INV; 514 } 515 write_aux_reg(ctl, val); 516 } 517 518 #endif 519 520 521 static inline void __after_dc_op(const int op) 522 { 523 if (op & OP_FLUSH) { 524 const unsigned int ctl = ARC_REG_DC_CTRL; 525 unsigned int reg; 526 527 /* flush / flush-n-inv both wait */ 528 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS) 529 ; 530 531 /* Switch back to default Invalidate mode */ 532 if (op == OP_FLUSH_N_INV) 533 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH); 534 } 535 } 536 537 /* 538 * Operation on Entire D-Cache 539 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV} 540 * Note that constant propagation ensures all the checks are gone 541 * in generated code 542 */ 543 static inline void __dc_entire_op(const int op) 544 { 545 int aux; 546 547 __before_dc_op(op); 548 549 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */ 550 aux = ARC_REG_DC_IVDC; 551 else 552 aux = ARC_REG_DC_FLSH; 553 554 write_aux_reg(aux, 0x1); 555 556 __after_dc_op(op); 557 } 558 559 static inline void __dc_disable(void) 560 { 561 const int r = ARC_REG_DC_CTRL; 562 563 __dc_entire_op(OP_FLUSH_N_INV); 564 write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS); 565 } 566 567 static void __dc_enable(void) 568 { 569 const int r = ARC_REG_DC_CTRL; 570 571 write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS); 572 } 573 574 /* For kernel mappings cache operation: index is same as paddr */ 575 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op) 576 577 /* 578 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback) 579 */ 580 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr, 581 unsigned long sz, const int op) 582 { 583 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 584 unsigned long flags; 585 586 local_irq_save(flags); 587 588 __before_dc_op(op); 589 590 __cache_line_loop(paddr, vaddr, sz, op, full_page); 591 592 __after_dc_op(op); 593 594 local_irq_restore(flags); 595 } 596 597 #else 598 599 #define __dc_entire_op(op) 600 #define __dc_disable() 601 #define __dc_enable() 602 #define __dc_line_op(paddr, vaddr, sz, op) 603 #define __dc_line_op_k(paddr, sz, op) 604 605 #endif /* CONFIG_ARC_HAS_DCACHE */ 606 607 #ifdef CONFIG_ARC_HAS_ICACHE 608 609 static inline void __ic_entire_inv(void) 610 { 611 write_aux_reg(ARC_REG_IC_IVIC, 1); 612 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */ 613 } 614 615 static inline void 616 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr, 617 unsigned long sz) 618 { 619 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 620 unsigned long flags; 621 622 local_irq_save(flags); 623 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page); 624 local_irq_restore(flags); 625 } 626 627 #ifndef CONFIG_SMP 628 629 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s) 630 631 #else 632 633 struct ic_inv_args { 634 phys_addr_t paddr, vaddr; 635 int sz; 636 }; 637 638 static void __ic_line_inv_vaddr_helper(void *info) 639 { 640 struct ic_inv_args *ic_inv = info; 641 642 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz); 643 } 644 645 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr, 646 unsigned long sz) 647 { 648 struct ic_inv_args ic_inv = { 649 .paddr = paddr, 650 .vaddr = vaddr, 651 .sz = sz 652 }; 653 654 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1); 655 } 656 657 #endif /* CONFIG_SMP */ 658 659 #else /* !CONFIG_ARC_HAS_ICACHE */ 660 661 #define __ic_entire_inv() 662 #define __ic_line_inv_vaddr(pstart, vstart, sz) 663 664 #endif /* CONFIG_ARC_HAS_ICACHE */ 665 666 noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op) 667 { 668 #ifdef CONFIG_ISA_ARCV2 669 /* 670 * SLC is shared between all cores and concurrent aux operations from 671 * multiple cores need to be serialized using a spinlock 672 * A concurrent operation can be silently ignored and/or the old/new 673 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop 674 * below) 675 */ 676 static DEFINE_SPINLOCK(lock); 677 unsigned long flags; 678 unsigned int ctrl; 679 phys_addr_t end; 680 681 spin_lock_irqsave(&lock, flags); 682 683 /* 684 * The Region Flush operation is specified by CTRL.RGN_OP[11..9] 685 * - b'000 (default) is Flush, 686 * - b'001 is Invalidate if CTRL.IM == 0 687 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1 688 */ 689 ctrl = read_aux_reg(ARC_REG_SLC_CTRL); 690 691 /* Don't rely on default value of IM bit */ 692 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 693 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 694 else 695 ctrl |= SLC_CTRL_IM; 696 697 if (op & OP_INV) 698 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */ 699 else 700 ctrl &= ~SLC_CTRL_RGN_OP_INV; 701 702 write_aux_reg(ARC_REG_SLC_CTRL, ctrl); 703 704 /* 705 * Lower bits are ignored, no need to clip 706 * END needs to be setup before START (latter triggers the operation) 707 * END can't be same as START, so add (l2_line_sz - 1) to sz 708 */ 709 end = paddr + sz + l2_line_sz - 1; 710 if (is_pae40_enabled()) 711 write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end)); 712 713 write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end)); 714 715 if (is_pae40_enabled()) 716 write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr)); 717 718 write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr)); 719 720 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */ 721 read_aux_reg(ARC_REG_SLC_CTRL); 722 723 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 724 725 spin_unlock_irqrestore(&lock, flags); 726 #endif 727 } 728 729 noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op) 730 { 731 #ifdef CONFIG_ISA_ARCV2 732 /* 733 * SLC is shared between all cores and concurrent aux operations from 734 * multiple cores need to be serialized using a spinlock 735 * A concurrent operation can be silently ignored and/or the old/new 736 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop 737 * below) 738 */ 739 static DEFINE_SPINLOCK(lock); 740 741 const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1); 742 unsigned int ctrl, cmd; 743 unsigned long flags; 744 int num_lines; 745 746 spin_lock_irqsave(&lock, flags); 747 748 ctrl = read_aux_reg(ARC_REG_SLC_CTRL); 749 750 /* Don't rely on default value of IM bit */ 751 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 752 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 753 else 754 ctrl |= SLC_CTRL_IM; 755 756 write_aux_reg(ARC_REG_SLC_CTRL, ctrl); 757 758 cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL; 759 760 sz += paddr & ~SLC_LINE_MASK; 761 paddr &= SLC_LINE_MASK; 762 763 num_lines = DIV_ROUND_UP(sz, l2_line_sz); 764 765 while (num_lines-- > 0) { 766 write_aux_reg(cmd, paddr); 767 paddr += l2_line_sz; 768 } 769 770 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */ 771 read_aux_reg(ARC_REG_SLC_CTRL); 772 773 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 774 775 spin_unlock_irqrestore(&lock, flags); 776 #endif 777 } 778 779 #define slc_op(paddr, sz, op) slc_op_rgn(paddr, sz, op) 780 781 noinline static void slc_entire_op(const int op) 782 { 783 unsigned int ctrl, r = ARC_REG_SLC_CTRL; 784 785 ctrl = read_aux_reg(r); 786 787 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 788 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 789 else 790 ctrl |= SLC_CTRL_IM; 791 792 write_aux_reg(r, ctrl); 793 794 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */ 795 write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1); 796 else 797 write_aux_reg(ARC_REG_SLC_FLUSH, 0x1); 798 799 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */ 800 read_aux_reg(r); 801 802 /* Important to wait for flush to complete */ 803 while (read_aux_reg(r) & SLC_CTRL_BUSY); 804 } 805 806 static inline void arc_slc_disable(void) 807 { 808 const int r = ARC_REG_SLC_CTRL; 809 810 slc_entire_op(OP_FLUSH_N_INV); 811 write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS); 812 } 813 814 static inline void arc_slc_enable(void) 815 { 816 const int r = ARC_REG_SLC_CTRL; 817 818 write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS); 819 } 820 821 /*********************************************************** 822 * Exported APIs 823 */ 824 825 /* 826 * Handle cache congruency of kernel and userspace mappings of page when kernel 827 * writes-to/reads-from 828 * 829 * The idea is to defer flushing of kernel mapping after a WRITE, possible if: 830 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent 831 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache) 832 * -In SMP, if hardware caches are coherent 833 * 834 * There's a corollary case, where kernel READs from a userspace mapped page. 835 * If the U-mapping is not congruent to to K-mapping, former needs flushing. 836 */ 837 void flush_dcache_page(struct page *page) 838 { 839 struct address_space *mapping; 840 841 if (!cache_is_vipt_aliasing()) { 842 clear_bit(PG_dc_clean, &page->flags); 843 return; 844 } 845 846 /* don't handle anon pages here */ 847 mapping = page_mapping_file(page); 848 if (!mapping) 849 return; 850 851 /* 852 * pagecache page, file not yet mapped to userspace 853 * Make a note that K-mapping is dirty 854 */ 855 if (!mapping_mapped(mapping)) { 856 clear_bit(PG_dc_clean, &page->flags); 857 } else if (page_mapcount(page)) { 858 859 /* kernel reading from page with U-mapping */ 860 phys_addr_t paddr = (unsigned long)page_address(page); 861 unsigned long vaddr = page->index << PAGE_SHIFT; 862 863 if (addr_not_cache_congruent(paddr, vaddr)) 864 __flush_dcache_page(paddr, vaddr); 865 } 866 } 867 EXPORT_SYMBOL(flush_dcache_page); 868 869 /* 870 * DMA ops for systems with L1 cache only 871 * Make memory coherent with L1 cache by flushing/invalidating L1 lines 872 */ 873 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz) 874 { 875 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 876 } 877 878 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz) 879 { 880 __dc_line_op_k(start, sz, OP_INV); 881 } 882 883 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz) 884 { 885 __dc_line_op_k(start, sz, OP_FLUSH); 886 } 887 888 /* 889 * DMA ops for systems with both L1 and L2 caches, but without IOC 890 * Both L1 and L2 lines need to be explicitly flushed/invalidated 891 */ 892 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz) 893 { 894 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 895 slc_op(start, sz, OP_FLUSH_N_INV); 896 } 897 898 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz) 899 { 900 __dc_line_op_k(start, sz, OP_INV); 901 slc_op(start, sz, OP_INV); 902 } 903 904 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz) 905 { 906 __dc_line_op_k(start, sz, OP_FLUSH); 907 slc_op(start, sz, OP_FLUSH); 908 } 909 910 /* 911 * Exported DMA API 912 */ 913 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz) 914 { 915 __dma_cache_wback_inv(start, sz); 916 } 917 EXPORT_SYMBOL(dma_cache_wback_inv); 918 919 void dma_cache_inv(phys_addr_t start, unsigned long sz) 920 { 921 __dma_cache_inv(start, sz); 922 } 923 EXPORT_SYMBOL(dma_cache_inv); 924 925 void dma_cache_wback(phys_addr_t start, unsigned long sz) 926 { 927 __dma_cache_wback(start, sz); 928 } 929 EXPORT_SYMBOL(dma_cache_wback); 930 931 /* 932 * This is API for making I/D Caches consistent when modifying 933 * kernel code (loadable modules, kprobes, kgdb...) 934 * This is called on insmod, with kernel virtual address for CODE of 935 * the module. ARC cache maintenance ops require PHY address thus we 936 * need to convert vmalloc addr to PHY addr 937 */ 938 void flush_icache_range(unsigned long kstart, unsigned long kend) 939 { 940 unsigned int tot_sz; 941 942 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__); 943 944 /* Shortcut for bigger flush ranges. 945 * Here we don't care if this was kernel virtual or phy addr 946 */ 947 tot_sz = kend - kstart; 948 if (tot_sz > PAGE_SIZE) { 949 flush_cache_all(); 950 return; 951 } 952 953 /* Case: Kernel Phy addr (0x8000_0000 onwards) */ 954 if (likely(kstart > PAGE_OFFSET)) { 955 /* 956 * The 2nd arg despite being paddr will be used to index icache 957 * This is OK since no alternate virtual mappings will exist 958 * given the callers for this case: kprobe/kgdb in built-in 959 * kernel code only. 960 */ 961 __sync_icache_dcache(kstart, kstart, kend - kstart); 962 return; 963 } 964 965 /* 966 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff) 967 * (1) ARC Cache Maintenance ops only take Phy addr, hence special 968 * handling of kernel vaddr. 969 * 970 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already), 971 * it still needs to handle a 2 page scenario, where the range 972 * straddles across 2 virtual pages and hence need for loop 973 */ 974 while (tot_sz > 0) { 975 unsigned int off, sz; 976 unsigned long phy, pfn; 977 978 off = kstart % PAGE_SIZE; 979 pfn = vmalloc_to_pfn((void *)kstart); 980 phy = (pfn << PAGE_SHIFT) + off; 981 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off); 982 __sync_icache_dcache(phy, kstart, sz); 983 kstart += sz; 984 tot_sz -= sz; 985 } 986 } 987 EXPORT_SYMBOL(flush_icache_range); 988 989 /* 990 * General purpose helper to make I and D cache lines consistent. 991 * @paddr is phy addr of region 992 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc) 993 * However in one instance, when called by kprobe (for a breakpt in 994 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will 995 * use a paddr to index the cache (despite VIPT). This is fine since since a 996 * builtin kernel page will not have any virtual mappings. 997 * kprobe on loadable module will be kernel vaddr. 998 */ 999 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len) 1000 { 1001 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV); 1002 __ic_line_inv_vaddr(paddr, vaddr, len); 1003 } 1004 1005 /* wrapper to compile time eliminate alignment checks in flush loop */ 1006 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr) 1007 { 1008 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE); 1009 } 1010 1011 /* 1012 * wrapper to clearout kernel or userspace mappings of a page 1013 * For kernel mappings @vaddr == @paddr 1014 */ 1015 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr) 1016 { 1017 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV); 1018 } 1019 1020 noinline void flush_cache_all(void) 1021 { 1022 unsigned long flags; 1023 1024 local_irq_save(flags); 1025 1026 __ic_entire_inv(); 1027 __dc_entire_op(OP_FLUSH_N_INV); 1028 1029 local_irq_restore(flags); 1030 1031 } 1032 1033 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING 1034 1035 void flush_cache_mm(struct mm_struct *mm) 1036 { 1037 flush_cache_all(); 1038 } 1039 1040 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr, 1041 unsigned long pfn) 1042 { 1043 phys_addr_t paddr = pfn << PAGE_SHIFT; 1044 1045 u_vaddr &= PAGE_MASK; 1046 1047 __flush_dcache_page(paddr, u_vaddr); 1048 1049 if (vma->vm_flags & VM_EXEC) 1050 __inv_icache_page(paddr, u_vaddr); 1051 } 1052 1053 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 1054 unsigned long end) 1055 { 1056 flush_cache_all(); 1057 } 1058 1059 void flush_anon_page(struct vm_area_struct *vma, struct page *page, 1060 unsigned long u_vaddr) 1061 { 1062 /* TBD: do we really need to clear the kernel mapping */ 1063 __flush_dcache_page((phys_addr_t)page_address(page), u_vaddr); 1064 __flush_dcache_page((phys_addr_t)page_address(page), 1065 (phys_addr_t)page_address(page)); 1066 1067 } 1068 1069 #endif 1070 1071 void copy_user_highpage(struct page *to, struct page *from, 1072 unsigned long u_vaddr, struct vm_area_struct *vma) 1073 { 1074 void *kfrom = kmap_atomic(from); 1075 void *kto = kmap_atomic(to); 1076 int clean_src_k_mappings = 0; 1077 1078 /* 1079 * If SRC page was already mapped in userspace AND it's U-mapping is 1080 * not congruent with K-mapping, sync former to physical page so that 1081 * K-mapping in memcpy below, sees the right data 1082 * 1083 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is 1084 * equally valid for SRC page as well 1085 * 1086 * For !VIPT cache, all of this gets compiled out as 1087 * addr_not_cache_congruent() is 0 1088 */ 1089 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) { 1090 __flush_dcache_page((unsigned long)kfrom, u_vaddr); 1091 clean_src_k_mappings = 1; 1092 } 1093 1094 copy_page(kto, kfrom); 1095 1096 /* 1097 * Mark DST page K-mapping as dirty for a later finalization by 1098 * update_mmu_cache(). Although the finalization could have been done 1099 * here as well (given that both vaddr/paddr are available). 1100 * But update_mmu_cache() already has code to do that for other 1101 * non copied user pages (e.g. read faults which wire in pagecache page 1102 * directly). 1103 */ 1104 clear_bit(PG_dc_clean, &to->flags); 1105 1106 /* 1107 * if SRC was already usermapped and non-congruent to kernel mapping 1108 * sync the kernel mapping back to physical page 1109 */ 1110 if (clean_src_k_mappings) { 1111 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom); 1112 set_bit(PG_dc_clean, &from->flags); 1113 } else { 1114 clear_bit(PG_dc_clean, &from->flags); 1115 } 1116 1117 kunmap_atomic(kto); 1118 kunmap_atomic(kfrom); 1119 } 1120 1121 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page) 1122 { 1123 clear_page(to); 1124 clear_bit(PG_dc_clean, &page->flags); 1125 } 1126 1127 1128 /********************************************************************** 1129 * Explicit Cache flush request from user space via syscall 1130 * Needed for JITs which generate code on the fly 1131 */ 1132 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags) 1133 { 1134 /* TBD: optimize this */ 1135 flush_cache_all(); 1136 return 0; 1137 } 1138 1139 /* 1140 * IO-Coherency (IOC) setup rules: 1141 * 1142 * 1. Needs to be at system level, so only once by Master core 1143 * Non-Masters need not be accessing caches at that time 1144 * - They are either HALT_ON_RESET and kick started much later or 1145 * - if run on reset, need to ensure that arc_platform_smp_wait_to_boot() 1146 * doesn't perturb caches or coherency unit 1147 * 1148 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC, 1149 * otherwise any straggler data might behave strangely post IOC enabling 1150 * 1151 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight 1152 * Coherency transactions 1153 */ 1154 noinline void __init arc_ioc_setup(void) 1155 { 1156 unsigned int ioc_base, mem_sz; 1157 1158 /* 1159 * If IOC was already enabled (due to bootloader) it technically needs to 1160 * be reconfigured with aperture base,size corresponding to Linux memory map 1161 * which will certainly be different than uboot's. But disabling and 1162 * reenabling IOC when DMA might be potentially active is tricky business. 1163 * To avoid random memory issues later, just panic here and ask user to 1164 * upgrade bootloader to one which doesn't enable IOC 1165 */ 1166 if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT) 1167 panic("IOC already enabled, please upgrade bootloader!\n"); 1168 1169 if (!ioc_enable) 1170 return; 1171 1172 /* Flush + invalidate + disable L1 dcache */ 1173 __dc_disable(); 1174 1175 /* Flush + invalidate SLC */ 1176 if (read_aux_reg(ARC_REG_SLC_BCR)) 1177 slc_entire_op(OP_FLUSH_N_INV); 1178 1179 /* 1180 * currently IOC Aperture covers entire DDR 1181 * TBD: fix for PGU + 1GB of low mem 1182 * TBD: fix for PAE 1183 */ 1184 mem_sz = arc_get_mem_sz(); 1185 1186 if (!is_power_of_2(mem_sz) || mem_sz < 4096) 1187 panic("IOC Aperture size must be power of 2 larger than 4KB"); 1188 1189 /* 1190 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB, 1191 * so setting 0x11 implies 512MB, 0x12 implies 1GB... 1192 */ 1193 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2); 1194 1195 /* for now assume kernel base is start of IOC aperture */ 1196 ioc_base = CONFIG_LINUX_RAM_BASE; 1197 1198 if (ioc_base % mem_sz != 0) 1199 panic("IOC Aperture start must be aligned to the size of the aperture"); 1200 1201 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12); 1202 write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT); 1203 write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT); 1204 1205 /* Re-enable L1 dcache */ 1206 __dc_enable(); 1207 } 1208 1209 /* 1210 * Cache related boot time checks/setups only needed on master CPU: 1211 * - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES) 1212 * Assume SMP only, so all cores will have same cache config. A check on 1213 * one core suffices for all 1214 * - IOC setup / dma callbacks only need to be done once 1215 */ 1216 void __init arc_cache_init_master(void) 1217 { 1218 unsigned int __maybe_unused cpu = smp_processor_id(); 1219 1220 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) { 1221 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache; 1222 1223 if (!ic->line_len) 1224 panic("cache support enabled but non-existent cache\n"); 1225 1226 if (ic->line_len != L1_CACHE_BYTES) 1227 panic("ICache line [%d] != kernel Config [%d]", 1228 ic->line_len, L1_CACHE_BYTES); 1229 1230 /* 1231 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG 1232 * pair to provide vaddr/paddr respectively, just as in MMU v3 1233 */ 1234 if (is_isa_arcv2() && ic->alias) 1235 _cache_line_loop_ic_fn = __cache_line_loop_v3; 1236 else 1237 _cache_line_loop_ic_fn = __cache_line_loop; 1238 } 1239 1240 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) { 1241 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache; 1242 1243 if (!dc->line_len) 1244 panic("cache support enabled but non-existent cache\n"); 1245 1246 if (dc->line_len != L1_CACHE_BYTES) 1247 panic("DCache line [%d] != kernel Config [%d]", 1248 dc->line_len, L1_CACHE_BYTES); 1249 1250 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */ 1251 if (is_isa_arcompact()) { 1252 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING); 1253 int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE); 1254 1255 if (dc->alias) { 1256 if (!handled) 1257 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 1258 if (CACHE_COLORS_NUM != num_colors) 1259 panic("CACHE_COLORS_NUM not optimized for config\n"); 1260 } else if (!dc->alias && handled) { 1261 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 1262 } 1263 } 1264 } 1265 1266 /* 1267 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger 1268 * or equal to any cache line length. 1269 */ 1270 BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES, 1271 "SMP_CACHE_BYTES must be >= any cache line length"); 1272 if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES)) 1273 panic("L2 Cache line [%d] > kernel Config [%d]\n", 1274 l2_line_sz, SMP_CACHE_BYTES); 1275 1276 /* Note that SLC disable not formally supported till HS 3.0 */ 1277 if (is_isa_arcv2() && l2_line_sz && !slc_enable) 1278 arc_slc_disable(); 1279 1280 if (is_isa_arcv2() && ioc_exists) 1281 arc_ioc_setup(); 1282 1283 if (is_isa_arcv2() && l2_line_sz && slc_enable) { 1284 __dma_cache_wback_inv = __dma_cache_wback_inv_slc; 1285 __dma_cache_inv = __dma_cache_inv_slc; 1286 __dma_cache_wback = __dma_cache_wback_slc; 1287 } else { 1288 __dma_cache_wback_inv = __dma_cache_wback_inv_l1; 1289 __dma_cache_inv = __dma_cache_inv_l1; 1290 __dma_cache_wback = __dma_cache_wback_l1; 1291 } 1292 /* 1293 * In case of IOC (say IOC+SLC case), pointers above could still be set 1294 * but end up not being relevant as the first function in chain is not 1295 * called at all for devices using coherent DMA. 1296 * arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*() 1297 */ 1298 } 1299 1300 void __ref arc_cache_init(void) 1301 { 1302 unsigned int __maybe_unused cpu = smp_processor_id(); 1303 char str[256]; 1304 1305 pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str))); 1306 1307 if (!cpu) 1308 arc_cache_init_master(); 1309 1310 /* 1311 * In PAE regime, TLB and cache maintenance ops take wider addresses 1312 * And even if PAE is not enabled in kernel, the upper 32-bits still need 1313 * to be zeroed to keep the ops sane. 1314 * As an optimization for more common !PAE enabled case, zero them out 1315 * once at init, rather than checking/setting to 0 for every runtime op 1316 */ 1317 if (is_isa_arcv2() && pae40_exist_but_not_enab()) { 1318 1319 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) 1320 write_aux_reg(ARC_REG_IC_PTAG_HI, 0); 1321 1322 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) 1323 write_aux_reg(ARC_REG_DC_PTAG_HI, 0); 1324 1325 if (l2_line_sz) { 1326 write_aux_reg(ARC_REG_SLC_RGN_END1, 0); 1327 write_aux_reg(ARC_REG_SLC_RGN_START1, 0); 1328 } 1329 } 1330 } 1331