xref: /openbmc/linux/arch/arc/mm/cache.c (revision 4c79e98b)
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23 
24 static int l2_line_sz;
25 static int ioc_exists;
26 int slc_enable = 1, ioc_enable = 1;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
28 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
29 
30 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
31 			       unsigned long sz, const int cacheop);
32 
33 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
35 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
36 
37 char *arc_cache_mumbojumbo(int c, char *buf, int len)
38 {
39 	int n = 0;
40 	struct cpuinfo_arc_cache *p;
41 
42 #define PR_CACHE(p, cfg, str)						\
43 	if (!(p)->line_len)						\
44 		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
45 	else								\
46 		n += scnprintf(buf + n, len - n,			\
47 			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
48 			(p)->sz_k, (p)->assoc, (p)->line_len,		\
49 			(p)->vipt ? "VIPT" : "PIPT",			\
50 			(p)->alias ? " aliasing" : "",			\
51 			IS_USED_CFG(cfg));
52 
53 	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
54 	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
55 
56 	p = &cpuinfo_arc700[c].slc;
57 	if (p->line_len)
58 		n += scnprintf(buf + n, len - n,
59 			       "SLC\t\t: %uK, %uB Line%s\n",
60 			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
61 
62 	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
63 		       perip_base,
64 		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
65 
66 	return buf;
67 }
68 
69 /*
70  * Read the Cache Build Confuration Registers, Decode them and save into
71  * the cpuinfo structure for later use.
72  * No Validation done here, simply read/convert the BCRs
73  */
74 static void read_decode_cache_bcr_arcv2(int cpu)
75 {
76 	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
77 	struct bcr_generic sbcr;
78 
79 	struct bcr_slc_cfg {
80 #ifdef CONFIG_CPU_BIG_ENDIAN
81 		unsigned int pad:24, way:2, lsz:2, sz:4;
82 #else
83 		unsigned int sz:4, lsz:2, way:2, pad:24;
84 #endif
85 	} slc_cfg;
86 
87 	struct bcr_clust_cfg {
88 #ifdef CONFIG_CPU_BIG_ENDIAN
89 		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
90 #else
91 		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
92 #endif
93 	} cbcr;
94 
95 	struct bcr_volatile {
96 #ifdef CONFIG_CPU_BIG_ENDIAN
97 		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
98 #else
99 		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
100 #endif
101 	} vol;
102 
103 
104 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
105 	if (sbcr.ver) {
106 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
107 		p_slc->sz_k = 128 << slc_cfg.sz;
108 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
109 	}
110 
111 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
112 	if (cbcr.c)
113 		ioc_exists = 1;
114 	else
115 		ioc_enable = 0;
116 
117 	/* HS 2.0 didn't have AUX_VOL */
118 	if (cpuinfo_arc700[cpu].core.family > 0x51) {
119 		READ_BCR(AUX_VOL, vol);
120 		perip_base = vol.start << 28;
121 		/* HS 3.0 has limit and strict-ordering fields */
122 		if (cpuinfo_arc700[cpu].core.family > 0x52)
123 			perip_end = (vol.limit << 28) - 1;
124 	}
125 }
126 
127 void read_decode_cache_bcr(void)
128 {
129 	struct cpuinfo_arc_cache *p_ic, *p_dc;
130 	unsigned int cpu = smp_processor_id();
131 	struct bcr_cache {
132 #ifdef CONFIG_CPU_BIG_ENDIAN
133 		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
134 #else
135 		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
136 #endif
137 	} ibcr, dbcr;
138 
139 	p_ic = &cpuinfo_arc700[cpu].icache;
140 	READ_BCR(ARC_REG_IC_BCR, ibcr);
141 
142 	if (!ibcr.ver)
143 		goto dc_chk;
144 
145 	if (ibcr.ver <= 3) {
146 		BUG_ON(ibcr.config != 3);
147 		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
148 	} else if (ibcr.ver >= 4) {
149 		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
150 	}
151 
152 	p_ic->line_len = 8 << ibcr.line_len;
153 	p_ic->sz_k = 1 << (ibcr.sz - 1);
154 	p_ic->vipt = 1;
155 	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
156 
157 dc_chk:
158 	p_dc = &cpuinfo_arc700[cpu].dcache;
159 	READ_BCR(ARC_REG_DC_BCR, dbcr);
160 
161 	if (!dbcr.ver)
162 		goto slc_chk;
163 
164 	if (dbcr.ver <= 3) {
165 		BUG_ON(dbcr.config != 2);
166 		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
167 		p_dc->vipt = 1;
168 		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
169 	} else if (dbcr.ver >= 4) {
170 		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
171 		p_dc->vipt = 0;
172 		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
173 	}
174 
175 	p_dc->line_len = 16 << dbcr.line_len;
176 	p_dc->sz_k = 1 << (dbcr.sz - 1);
177 
178 slc_chk:
179 	if (is_isa_arcv2())
180                 read_decode_cache_bcr_arcv2(cpu);
181 }
182 
183 /*
184  * Line Operation on {I,D}-Cache
185  */
186 
187 #define OP_INV		0x1
188 #define OP_FLUSH	0x2
189 #define OP_FLUSH_N_INV	0x3
190 #define OP_INV_IC	0x4
191 
192 /*
193  *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
194  *
195  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
196  * The orig Cache Management Module "CDU" only required paddr to invalidate a
197  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
198  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
199  * the exact same line.
200  *
201  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
202  * paddr alone could not be used to correctly index the cache.
203  *
204  * ------------------
205  * MMU v1/v2 (Fixed Page Size 8k)
206  * ------------------
207  * The solution was to provide CDU with these additonal vaddr bits. These
208  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
209  * standard page size of 8k.
210  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
211  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
212  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
213  * represent the offset within cache-line. The adv of using this "clumsy"
214  * interface for additional info was no new reg was needed in CDU programming
215  * model.
216  *
217  * 17:13 represented the max num of bits passable, actual bits needed were
218  * fewer, based on the num-of-aliases possible.
219  * -for 2 alias possibility, only bit 13 needed (32K cache)
220  * -for 4 alias possibility, bits 14:13 needed (64K cache)
221  *
222  * ------------------
223  * MMU v3
224  * ------------------
225  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
226  * only support 8k (default), 16k and 4k.
227  * However from hardware perspective, smaller page sizes aggravate aliasing
228  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
229  * the existing scheme of piggybacking won't work for certain configurations.
230  * Two new registers IC_PTAG and DC_PTAG inttoduced.
231  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
232  */
233 
234 static inline
235 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
236 			  unsigned long sz, const int op)
237 {
238 	unsigned int aux_cmd;
239 	int num_lines;
240 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
241 
242 	if (op == OP_INV_IC) {
243 		aux_cmd = ARC_REG_IC_IVIL;
244 	} else {
245 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
246 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
247 	}
248 
249 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
250 	 * and have @paddr - aligned to cache line and integral @num_lines.
251 	 * This however can be avoided for page sized since:
252 	 *  -@paddr will be cache-line aligned already (being page aligned)
253 	 *  -@sz will be integral multiple of line size (being page sized).
254 	 */
255 	if (!full_page) {
256 		sz += paddr & ~CACHE_LINE_MASK;
257 		paddr &= CACHE_LINE_MASK;
258 		vaddr &= CACHE_LINE_MASK;
259 	}
260 
261 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
262 
263 	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
264 	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
265 
266 	while (num_lines-- > 0) {
267 		write_aux_reg(aux_cmd, paddr);
268 		paddr += L1_CACHE_BYTES;
269 	}
270 }
271 
272 /*
273  * For ARC700 MMUv3 I-cache and D-cache flushes
274  *  - ARC700 programming model requires paddr and vaddr be passed in seperate
275  *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
276  *    caches actually alias or not.
277  * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
278  *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
279  */
280 static inline
281 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
282 			  unsigned long sz, const int op)
283 {
284 	unsigned int aux_cmd, aux_tag;
285 	int num_lines;
286 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
287 
288 	if (op == OP_INV_IC) {
289 		aux_cmd = ARC_REG_IC_IVIL;
290 		aux_tag = ARC_REG_IC_PTAG;
291 	} else {
292 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
293 		aux_tag = ARC_REG_DC_PTAG;
294 	}
295 
296 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
297 	 * and have @paddr - aligned to cache line and integral @num_lines.
298 	 * This however can be avoided for page sized since:
299 	 *  -@paddr will be cache-line aligned already (being page aligned)
300 	 *  -@sz will be integral multiple of line size (being page sized).
301 	 */
302 	if (!full_page) {
303 		sz += paddr & ~CACHE_LINE_MASK;
304 		paddr &= CACHE_LINE_MASK;
305 		vaddr &= CACHE_LINE_MASK;
306 	}
307 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
308 
309 	/*
310 	 * MMUv3, cache ops require paddr in PTAG reg
311 	 * if V-P const for loop, PTAG can be written once outside loop
312 	 */
313 	if (full_page)
314 		write_aux_reg(aux_tag, paddr);
315 
316 	/*
317 	 * This is technically for MMU v4, using the MMU v3 programming model
318 	 * Special work for HS38 aliasing I-cache configuration with PAE40
319 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
320 	 *   - (and needs to be written before the lower 32 bits)
321 	 * Note that PTAG_HI is hoisted outside the line loop
322 	 */
323 	if (is_pae40_enabled() && op == OP_INV_IC)
324 		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
325 
326 	while (num_lines-- > 0) {
327 		if (!full_page) {
328 			write_aux_reg(aux_tag, paddr);
329 			paddr += L1_CACHE_BYTES;
330 		}
331 
332 		write_aux_reg(aux_cmd, vaddr);
333 		vaddr += L1_CACHE_BYTES;
334 	}
335 }
336 
337 /*
338  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
339  * Here's how cache ops are implemented
340  *
341  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
342  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
343  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
344  *    respectively, similar to MMU v3 programming model, hence
345  *    __cache_line_loop_v3() is used)
346  *
347  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
348  * needs to be written into PTAG_HI
349  */
350 static inline
351 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
352 			  unsigned long sz, const int cacheop)
353 {
354 	unsigned int aux_cmd;
355 	int num_lines;
356 	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
357 
358 	if (cacheop == OP_INV_IC) {
359 		aux_cmd = ARC_REG_IC_IVIL;
360 	} else {
361 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
362 		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
363 	}
364 
365 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
366 	 * and have @paddr - aligned to cache line and integral @num_lines.
367 	 * This however can be avoided for page sized since:
368 	 *  -@paddr will be cache-line aligned already (being page aligned)
369 	 *  -@sz will be integral multiple of line size (being page sized).
370 	 */
371 	if (!full_page_op) {
372 		sz += paddr & ~CACHE_LINE_MASK;
373 		paddr &= CACHE_LINE_MASK;
374 	}
375 
376 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
377 
378 	/*
379 	 * For HS38 PAE40 configuration
380 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
381 	 *   - (and needs to be written before the lower 32 bits)
382 	 */
383 	if (is_pae40_enabled()) {
384 		if (cacheop == OP_INV_IC)
385 			/*
386 			 * Non aliasing I-cache in HS38,
387 			 * aliasing I-cache handled in __cache_line_loop_v3()
388 			 */
389 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
390 		else
391 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
392 	}
393 
394 	while (num_lines-- > 0) {
395 		write_aux_reg(aux_cmd, paddr);
396 		paddr += L1_CACHE_BYTES;
397 	}
398 }
399 
400 #if (CONFIG_ARC_MMU_VER < 3)
401 #define __cache_line_loop	__cache_line_loop_v2
402 #elif (CONFIG_ARC_MMU_VER == 3)
403 #define __cache_line_loop	__cache_line_loop_v3
404 #elif (CONFIG_ARC_MMU_VER > 3)
405 #define __cache_line_loop	__cache_line_loop_v4
406 #endif
407 
408 #ifdef CONFIG_ARC_HAS_DCACHE
409 
410 /***************************************************************
411  * Machine specific helpers for Entire D-Cache or Per Line ops
412  */
413 
414 static inline void __before_dc_op(const int op)
415 {
416 	if (op == OP_FLUSH_N_INV) {
417 		/* Dcache provides 2 cmd: FLUSH or INV
418 		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
419 		 * flush-n-inv is achieved by INV cmd but with IM=1
420 		 * So toggle INV sub-mode depending on op request and default
421 		 */
422 		const unsigned int ctl = ARC_REG_DC_CTRL;
423 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
424 	}
425 }
426 
427 static inline void __after_dc_op(const int op)
428 {
429 	if (op & OP_FLUSH) {
430 		const unsigned int ctl = ARC_REG_DC_CTRL;
431 		unsigned int reg;
432 
433 		/* flush / flush-n-inv both wait */
434 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
435 			;
436 
437 		/* Switch back to default Invalidate mode */
438 		if (op == OP_FLUSH_N_INV)
439 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
440 	}
441 }
442 
443 /*
444  * Operation on Entire D-Cache
445  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
446  * Note that constant propagation ensures all the checks are gone
447  * in generated code
448  */
449 static inline void __dc_entire_op(const int op)
450 {
451 	int aux;
452 
453 	__before_dc_op(op);
454 
455 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
456 		aux = ARC_REG_DC_IVDC;
457 	else
458 		aux = ARC_REG_DC_FLSH;
459 
460 	write_aux_reg(aux, 0x1);
461 
462 	__after_dc_op(op);
463 }
464 
465 static inline void __dc_disable(void)
466 {
467 	const int r = ARC_REG_DC_CTRL;
468 
469 	__dc_entire_op(OP_FLUSH_N_INV);
470 	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
471 }
472 
473 static void __dc_enable(void)
474 {
475 	const int r = ARC_REG_DC_CTRL;
476 
477 	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
478 }
479 
480 /* For kernel mappings cache operation: index is same as paddr */
481 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
482 
483 /*
484  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
485  */
486 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
487 				unsigned long sz, const int op)
488 {
489 	unsigned long flags;
490 
491 	local_irq_save(flags);
492 
493 	__before_dc_op(op);
494 
495 	__cache_line_loop(paddr, vaddr, sz, op);
496 
497 	__after_dc_op(op);
498 
499 	local_irq_restore(flags);
500 }
501 
502 #else
503 
504 #define __dc_entire_op(op)
505 #define __dc_disable()
506 #define __dc_enable()
507 #define __dc_line_op(paddr, vaddr, sz, op)
508 #define __dc_line_op_k(paddr, sz, op)
509 
510 #endif /* CONFIG_ARC_HAS_DCACHE */
511 
512 #ifdef CONFIG_ARC_HAS_ICACHE
513 
514 static inline void __ic_entire_inv(void)
515 {
516 	write_aux_reg(ARC_REG_IC_IVIC, 1);
517 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
518 }
519 
520 static inline void
521 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
522 			  unsigned long sz)
523 {
524 	unsigned long flags;
525 
526 	local_irq_save(flags);
527 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
528 	local_irq_restore(flags);
529 }
530 
531 #ifndef CONFIG_SMP
532 
533 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
534 
535 #else
536 
537 struct ic_inv_args {
538 	phys_addr_t paddr, vaddr;
539 	int sz;
540 };
541 
542 static void __ic_line_inv_vaddr_helper(void *info)
543 {
544         struct ic_inv_args *ic_inv = info;
545 
546         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
547 }
548 
549 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
550 				unsigned long sz)
551 {
552 	struct ic_inv_args ic_inv = {
553 		.paddr = paddr,
554 		.vaddr = vaddr,
555 		.sz    = sz
556 	};
557 
558 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
559 }
560 
561 #endif	/* CONFIG_SMP */
562 
563 #else	/* !CONFIG_ARC_HAS_ICACHE */
564 
565 #define __ic_entire_inv()
566 #define __ic_line_inv_vaddr(pstart, vstart, sz)
567 
568 #endif /* CONFIG_ARC_HAS_ICACHE */
569 
570 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
571 {
572 #ifdef CONFIG_ISA_ARCV2
573 	/*
574 	 * SLC is shared between all cores and concurrent aux operations from
575 	 * multiple cores need to be serialized using a spinlock
576 	 * A concurrent operation can be silently ignored and/or the old/new
577 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
578 	 * below)
579 	 */
580 	static DEFINE_SPINLOCK(lock);
581 	unsigned long flags;
582 	unsigned int ctrl;
583 
584 	spin_lock_irqsave(&lock, flags);
585 
586 	/*
587 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
588 	 *  - b'000 (default) is Flush,
589 	 *  - b'001 is Invalidate if CTRL.IM == 0
590 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
591 	 */
592 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
593 
594 	/* Don't rely on default value of IM bit */
595 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
596 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
597 	else
598 		ctrl |= SLC_CTRL_IM;
599 
600 	if (op & OP_INV)
601 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
602 	else
603 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
604 
605 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
606 
607 	/*
608 	 * Lower bits are ignored, no need to clip
609 	 * END needs to be setup before START (latter triggers the operation)
610 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
611 	 */
612 	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
613 	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
614 
615 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
616 
617 	spin_unlock_irqrestore(&lock, flags);
618 #endif
619 }
620 
621 noinline static void slc_entire_op(const int op)
622 {
623 	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
624 
625 	ctrl = read_aux_reg(r);
626 
627 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
628 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
629 	else
630 		ctrl |= SLC_CTRL_IM;
631 
632 	write_aux_reg(r, ctrl);
633 
634 	write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
635 
636 	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
637 	read_aux_reg(r);
638 
639 	/* Important to wait for flush to complete */
640 	while (read_aux_reg(r) & SLC_CTRL_BUSY);
641 }
642 
643 static inline void arc_slc_disable(void)
644 {
645 	const int r = ARC_REG_SLC_CTRL;
646 
647 	slc_entire_op(OP_FLUSH_N_INV);
648 	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
649 }
650 
651 static inline void arc_slc_enable(void)
652 {
653 	const int r = ARC_REG_SLC_CTRL;
654 
655 	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
656 }
657 
658 /***********************************************************
659  * Exported APIs
660  */
661 
662 /*
663  * Handle cache congruency of kernel and userspace mappings of page when kernel
664  * writes-to/reads-from
665  *
666  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
667  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
668  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
669  *  -In SMP, if hardware caches are coherent
670  *
671  * There's a corollary case, where kernel READs from a userspace mapped page.
672  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
673  */
674 void flush_dcache_page(struct page *page)
675 {
676 	struct address_space *mapping;
677 
678 	if (!cache_is_vipt_aliasing()) {
679 		clear_bit(PG_dc_clean, &page->flags);
680 		return;
681 	}
682 
683 	/* don't handle anon pages here */
684 	mapping = page_mapping(page);
685 	if (!mapping)
686 		return;
687 
688 	/*
689 	 * pagecache page, file not yet mapped to userspace
690 	 * Make a note that K-mapping is dirty
691 	 */
692 	if (!mapping_mapped(mapping)) {
693 		clear_bit(PG_dc_clean, &page->flags);
694 	} else if (page_mapcount(page)) {
695 
696 		/* kernel reading from page with U-mapping */
697 		phys_addr_t paddr = (unsigned long)page_address(page);
698 		unsigned long vaddr = page->index << PAGE_SHIFT;
699 
700 		if (addr_not_cache_congruent(paddr, vaddr))
701 			__flush_dcache_page(paddr, vaddr);
702 	}
703 }
704 EXPORT_SYMBOL(flush_dcache_page);
705 
706 /*
707  * DMA ops for systems with L1 cache only
708  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
709  */
710 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
711 {
712 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
713 }
714 
715 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
716 {
717 	__dc_line_op_k(start, sz, OP_INV);
718 }
719 
720 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
721 {
722 	__dc_line_op_k(start, sz, OP_FLUSH);
723 }
724 
725 /*
726  * DMA ops for systems with both L1 and L2 caches, but without IOC
727  * Both L1 and L2 lines need to be explicitly flushed/invalidated
728  */
729 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
730 {
731 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
732 	slc_op(start, sz, OP_FLUSH_N_INV);
733 }
734 
735 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
736 {
737 	__dc_line_op_k(start, sz, OP_INV);
738 	slc_op(start, sz, OP_INV);
739 }
740 
741 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
742 {
743 	__dc_line_op_k(start, sz, OP_FLUSH);
744 	slc_op(start, sz, OP_FLUSH);
745 }
746 
747 /*
748  * DMA ops for systems with IOC
749  * IOC hardware snoops all DMA traffic keeping the caches consistent with
750  * memory - eliding need for any explicit cache maintenance of DMA buffers
751  */
752 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
753 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
754 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
755 
756 /*
757  * Exported DMA API
758  */
759 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
760 {
761 	__dma_cache_wback_inv(start, sz);
762 }
763 EXPORT_SYMBOL(dma_cache_wback_inv);
764 
765 void dma_cache_inv(phys_addr_t start, unsigned long sz)
766 {
767 	__dma_cache_inv(start, sz);
768 }
769 EXPORT_SYMBOL(dma_cache_inv);
770 
771 void dma_cache_wback(phys_addr_t start, unsigned long sz)
772 {
773 	__dma_cache_wback(start, sz);
774 }
775 EXPORT_SYMBOL(dma_cache_wback);
776 
777 /*
778  * This is API for making I/D Caches consistent when modifying
779  * kernel code (loadable modules, kprobes, kgdb...)
780  * This is called on insmod, with kernel virtual address for CODE of
781  * the module. ARC cache maintenance ops require PHY address thus we
782  * need to convert vmalloc addr to PHY addr
783  */
784 void flush_icache_range(unsigned long kstart, unsigned long kend)
785 {
786 	unsigned int tot_sz;
787 
788 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
789 
790 	/* Shortcut for bigger flush ranges.
791 	 * Here we don't care if this was kernel virtual or phy addr
792 	 */
793 	tot_sz = kend - kstart;
794 	if (tot_sz > PAGE_SIZE) {
795 		flush_cache_all();
796 		return;
797 	}
798 
799 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
800 	if (likely(kstart > PAGE_OFFSET)) {
801 		/*
802 		 * The 2nd arg despite being paddr will be used to index icache
803 		 * This is OK since no alternate virtual mappings will exist
804 		 * given the callers for this case: kprobe/kgdb in built-in
805 		 * kernel code only.
806 		 */
807 		__sync_icache_dcache(kstart, kstart, kend - kstart);
808 		return;
809 	}
810 
811 	/*
812 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
813 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
814 	 *     handling of kernel vaddr.
815 	 *
816 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
817 	 *     it still needs to handle  a 2 page scenario, where the range
818 	 *     straddles across 2 virtual pages and hence need for loop
819 	 */
820 	while (tot_sz > 0) {
821 		unsigned int off, sz;
822 		unsigned long phy, pfn;
823 
824 		off = kstart % PAGE_SIZE;
825 		pfn = vmalloc_to_pfn((void *)kstart);
826 		phy = (pfn << PAGE_SHIFT) + off;
827 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
828 		__sync_icache_dcache(phy, kstart, sz);
829 		kstart += sz;
830 		tot_sz -= sz;
831 	}
832 }
833 EXPORT_SYMBOL(flush_icache_range);
834 
835 /*
836  * General purpose helper to make I and D cache lines consistent.
837  * @paddr is phy addr of region
838  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
839  *    However in one instance, when called by kprobe (for a breakpt in
840  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
841  *    use a paddr to index the cache (despite VIPT). This is fine since since a
842  *    builtin kernel page will not have any virtual mappings.
843  *    kprobe on loadable module will be kernel vaddr.
844  */
845 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
846 {
847 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
848 	__ic_line_inv_vaddr(paddr, vaddr, len);
849 }
850 
851 /* wrapper to compile time eliminate alignment checks in flush loop */
852 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
853 {
854 	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
855 }
856 
857 /*
858  * wrapper to clearout kernel or userspace mappings of a page
859  * For kernel mappings @vaddr == @paddr
860  */
861 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
862 {
863 	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
864 }
865 
866 noinline void flush_cache_all(void)
867 {
868 	unsigned long flags;
869 
870 	local_irq_save(flags);
871 
872 	__ic_entire_inv();
873 	__dc_entire_op(OP_FLUSH_N_INV);
874 
875 	local_irq_restore(flags);
876 
877 }
878 
879 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
880 
881 void flush_cache_mm(struct mm_struct *mm)
882 {
883 	flush_cache_all();
884 }
885 
886 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
887 		      unsigned long pfn)
888 {
889 	unsigned int paddr = pfn << PAGE_SHIFT;
890 
891 	u_vaddr &= PAGE_MASK;
892 
893 	__flush_dcache_page(paddr, u_vaddr);
894 
895 	if (vma->vm_flags & VM_EXEC)
896 		__inv_icache_page(paddr, u_vaddr);
897 }
898 
899 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
900 		       unsigned long end)
901 {
902 	flush_cache_all();
903 }
904 
905 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
906 		     unsigned long u_vaddr)
907 {
908 	/* TBD: do we really need to clear the kernel mapping */
909 	__flush_dcache_page(page_address(page), u_vaddr);
910 	__flush_dcache_page(page_address(page), page_address(page));
911 
912 }
913 
914 #endif
915 
916 void copy_user_highpage(struct page *to, struct page *from,
917 	unsigned long u_vaddr, struct vm_area_struct *vma)
918 {
919 	void *kfrom = kmap_atomic(from);
920 	void *kto = kmap_atomic(to);
921 	int clean_src_k_mappings = 0;
922 
923 	/*
924 	 * If SRC page was already mapped in userspace AND it's U-mapping is
925 	 * not congruent with K-mapping, sync former to physical page so that
926 	 * K-mapping in memcpy below, sees the right data
927 	 *
928 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
929 	 * equally valid for SRC page as well
930 	 *
931 	 * For !VIPT cache, all of this gets compiled out as
932 	 * addr_not_cache_congruent() is 0
933 	 */
934 	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
935 		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
936 		clean_src_k_mappings = 1;
937 	}
938 
939 	copy_page(kto, kfrom);
940 
941 	/*
942 	 * Mark DST page K-mapping as dirty for a later finalization by
943 	 * update_mmu_cache(). Although the finalization could have been done
944 	 * here as well (given that both vaddr/paddr are available).
945 	 * But update_mmu_cache() already has code to do that for other
946 	 * non copied user pages (e.g. read faults which wire in pagecache page
947 	 * directly).
948 	 */
949 	clear_bit(PG_dc_clean, &to->flags);
950 
951 	/*
952 	 * if SRC was already usermapped and non-congruent to kernel mapping
953 	 * sync the kernel mapping back to physical page
954 	 */
955 	if (clean_src_k_mappings) {
956 		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
957 		set_bit(PG_dc_clean, &from->flags);
958 	} else {
959 		clear_bit(PG_dc_clean, &from->flags);
960 	}
961 
962 	kunmap_atomic(kto);
963 	kunmap_atomic(kfrom);
964 }
965 
966 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
967 {
968 	clear_page(to);
969 	clear_bit(PG_dc_clean, &page->flags);
970 }
971 
972 
973 /**********************************************************************
974  * Explicit Cache flush request from user space via syscall
975  * Needed for JITs which generate code on the fly
976  */
977 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
978 {
979 	/* TBD: optimize this */
980 	flush_cache_all();
981 	return 0;
982 }
983 
984 /*
985  * IO-Coherency (IOC) setup rules:
986  *
987  * 1. Needs to be at system level, so only once by Master core
988  *    Non-Masters need not be accessing caches at that time
989  *    - They are either HALT_ON_RESET and kick started much later or
990  *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
991  *      doesn't perturb caches or coherency unit
992  *
993  * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
994  *    otherwise any straggler data might behave strangely post IOC enabling
995  *
996  * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
997  *    Coherency transactions
998  */
999 noinline void __init arc_ioc_setup(void)
1000 {
1001 	unsigned int ap_sz;
1002 
1003 	/* Flush + invalidate + disable L1 dcache */
1004 	__dc_disable();
1005 
1006 	/* Flush + invalidate SLC */
1007 	if (read_aux_reg(ARC_REG_SLC_BCR))
1008 		slc_entire_op(OP_FLUSH_N_INV);
1009 
1010 	/* IOC Aperture start: TDB: handle non default CONFIG_LINUX_LINK_BASE */
1011 	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
1012 
1013 	/*
1014 	 * IOC Aperture size:
1015 	 *   decoded as 2 ^ (SIZE + 2) KB: so setting 0x11 implies 512M
1016 	 * TBD: fix for PGU + 1GB of low mem
1017 	 * TBD: fix for PAE
1018 	 */
1019 	ap_sz = order_base_2(arc_get_mem_sz()/1024) - 2;
1020 	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, ap_sz);
1021 
1022 	write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1023 	write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1024 
1025 	/* Re-enable L1 dcache */
1026 	__dc_enable();
1027 }
1028 
1029 void __init arc_cache_init_master(void)
1030 {
1031 	unsigned int __maybe_unused cpu = smp_processor_id();
1032 
1033 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1034 		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1035 
1036 		if (!ic->line_len)
1037 			panic("cache support enabled but non-existent cache\n");
1038 
1039 		if (ic->line_len != L1_CACHE_BYTES)
1040 			panic("ICache line [%d] != kernel Config [%d]",
1041 			      ic->line_len, L1_CACHE_BYTES);
1042 
1043 		/*
1044 		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1045 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1046 		 */
1047 		if (is_isa_arcv2() && ic->alias)
1048 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1049 		else
1050 			_cache_line_loop_ic_fn = __cache_line_loop;
1051 	}
1052 
1053 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1054 		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1055 
1056 		if (!dc->line_len)
1057 			panic("cache support enabled but non-existent cache\n");
1058 
1059 		if (dc->line_len != L1_CACHE_BYTES)
1060 			panic("DCache line [%d] != kernel Config [%d]",
1061 			      dc->line_len, L1_CACHE_BYTES);
1062 
1063 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1064 		if (is_isa_arcompact()) {
1065 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1066 			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1067 
1068 			if (dc->alias) {
1069 				if (!handled)
1070 					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1071 				if (CACHE_COLORS_NUM != num_colors)
1072 					panic("CACHE_COLORS_NUM not optimized for config\n");
1073 			} else if (!dc->alias && handled) {
1074 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1075 			}
1076 		}
1077 	}
1078 
1079 	/* Note that SLC disable not formally supported till HS 3.0 */
1080 	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1081 		arc_slc_disable();
1082 
1083 	if (is_isa_arcv2() && ioc_enable)
1084 		arc_ioc_setup();
1085 
1086 	if (is_isa_arcv2() && ioc_enable) {
1087 		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1088 		__dma_cache_inv = __dma_cache_inv_ioc;
1089 		__dma_cache_wback = __dma_cache_wback_ioc;
1090 	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1091 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1092 		__dma_cache_inv = __dma_cache_inv_slc;
1093 		__dma_cache_wback = __dma_cache_wback_slc;
1094 	} else {
1095 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1096 		__dma_cache_inv = __dma_cache_inv_l1;
1097 		__dma_cache_wback = __dma_cache_wback_l1;
1098 	}
1099 }
1100 
1101 void __ref arc_cache_init(void)
1102 {
1103 	unsigned int __maybe_unused cpu = smp_processor_id();
1104 	char str[256];
1105 
1106 	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
1107 
1108 	/*
1109 	 * Only master CPU needs to execute rest of function:
1110 	 *  - Assume SMP so all cores will have same cache config so
1111 	 *    any geomtry checks will be same for all
1112 	 *  - IOC setup / dma callbacks only need to be setup once
1113 	 */
1114 	if (!cpu)
1115 		arc_cache_init_master();
1116 }
1117