xref: /openbmc/linux/arch/arc/mm/cache.c (revision 110e6f26)
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23 
24 static int l2_line_sz;
25 int ioc_exists;
26 volatile int slc_enable = 1, ioc_enable = 1;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
28 
29 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
30 			       unsigned long sz, const int cacheop);
31 
32 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
33 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
35 
36 char *arc_cache_mumbojumbo(int c, char *buf, int len)
37 {
38 	int n = 0;
39 	struct cpuinfo_arc_cache *p;
40 
41 #define PR_CACHE(p, cfg, str)						\
42 	if (!(p)->ver)							\
43 		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
44 	else								\
45 		n += scnprintf(buf + n, len - n,			\
46 			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
47 			(p)->sz_k, (p)->assoc, (p)->line_len,		\
48 			(p)->vipt ? "VIPT" : "PIPT",			\
49 			(p)->alias ? " aliasing" : "",			\
50 			IS_USED_CFG(cfg));
51 
52 	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
53 	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
54 
55 	if (!is_isa_arcv2())
56                 return buf;
57 
58 	p = &cpuinfo_arc700[c].slc;
59 	if (p->ver)
60 		n += scnprintf(buf + n, len - n,
61 			       "SLC\t\t: %uK, %uB Line%s\n",
62 			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
63 
64 	if (ioc_exists)
65 		n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n",
66 				IS_DISABLED_RUN(ioc_enable));
67 
68 	return buf;
69 }
70 
71 /*
72  * Read the Cache Build Confuration Registers, Decode them and save into
73  * the cpuinfo structure for later use.
74  * No Validation done here, simply read/convert the BCRs
75  */
76 static void read_decode_cache_bcr_arcv2(int cpu)
77 {
78 	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
79 	struct bcr_generic uncached_space;
80 	struct bcr_generic sbcr;
81 
82 	struct bcr_slc_cfg {
83 #ifdef CONFIG_CPU_BIG_ENDIAN
84 		unsigned int pad:24, way:2, lsz:2, sz:4;
85 #else
86 		unsigned int sz:4, lsz:2, way:2, pad:24;
87 #endif
88 	} slc_cfg;
89 
90 	struct bcr_clust_cfg {
91 #ifdef CONFIG_CPU_BIG_ENDIAN
92 		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
93 #else
94 		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
95 #endif
96 	} cbcr;
97 
98 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
99 	if (sbcr.ver) {
100 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
101 		p_slc->ver = sbcr.ver;
102 		p_slc->sz_k = 128 << slc_cfg.sz;
103 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
104 	}
105 
106 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
107 	if (cbcr.c && ioc_enable)
108 		ioc_exists = 1;
109 
110 	/* Legacy Data Uncached BCR is deprecated from v3 onwards */
111 	READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space);
112 	if (uncached_space.ver > 2)
113 		perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000;
114 }
115 
116 void read_decode_cache_bcr(void)
117 {
118 	struct cpuinfo_arc_cache *p_ic, *p_dc;
119 	unsigned int cpu = smp_processor_id();
120 	struct bcr_cache {
121 #ifdef CONFIG_CPU_BIG_ENDIAN
122 		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
123 #else
124 		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
125 #endif
126 	} ibcr, dbcr;
127 
128 	p_ic = &cpuinfo_arc700[cpu].icache;
129 	READ_BCR(ARC_REG_IC_BCR, ibcr);
130 
131 	if (!ibcr.ver)
132 		goto dc_chk;
133 
134 	if (ibcr.ver <= 3) {
135 		BUG_ON(ibcr.config != 3);
136 		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
137 	} else if (ibcr.ver >= 4) {
138 		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
139 	}
140 
141 	p_ic->line_len = 8 << ibcr.line_len;
142 	p_ic->sz_k = 1 << (ibcr.sz - 1);
143 	p_ic->ver = ibcr.ver;
144 	p_ic->vipt = 1;
145 	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
146 
147 dc_chk:
148 	p_dc = &cpuinfo_arc700[cpu].dcache;
149 	READ_BCR(ARC_REG_DC_BCR, dbcr);
150 
151 	if (!dbcr.ver)
152 		goto slc_chk;
153 
154 	if (dbcr.ver <= 3) {
155 		BUG_ON(dbcr.config != 2);
156 		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
157 		p_dc->vipt = 1;
158 		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
159 	} else if (dbcr.ver >= 4) {
160 		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
161 		p_dc->vipt = 0;
162 		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
163 	}
164 
165 	p_dc->line_len = 16 << dbcr.line_len;
166 	p_dc->sz_k = 1 << (dbcr.sz - 1);
167 	p_dc->ver = dbcr.ver;
168 
169 slc_chk:
170 	if (is_isa_arcv2())
171                 read_decode_cache_bcr_arcv2(cpu);
172 }
173 
174 /*
175  * Line Operation on {I,D}-Cache
176  */
177 
178 #define OP_INV		0x1
179 #define OP_FLUSH	0x2
180 #define OP_FLUSH_N_INV	0x3
181 #define OP_INV_IC	0x4
182 
183 /*
184  *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
185  *
186  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
187  * The orig Cache Management Module "CDU" only required paddr to invalidate a
188  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
189  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
190  * the exact same line.
191  *
192  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
193  * paddr alone could not be used to correctly index the cache.
194  *
195  * ------------------
196  * MMU v1/v2 (Fixed Page Size 8k)
197  * ------------------
198  * The solution was to provide CDU with these additonal vaddr bits. These
199  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
200  * standard page size of 8k.
201  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
202  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
203  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
204  * represent the offset within cache-line. The adv of using this "clumsy"
205  * interface for additional info was no new reg was needed in CDU programming
206  * model.
207  *
208  * 17:13 represented the max num of bits passable, actual bits needed were
209  * fewer, based on the num-of-aliases possible.
210  * -for 2 alias possibility, only bit 13 needed (32K cache)
211  * -for 4 alias possibility, bits 14:13 needed (64K cache)
212  *
213  * ------------------
214  * MMU v3
215  * ------------------
216  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
217  * only support 8k (default), 16k and 4k.
218  * However from hardware perspective, smaller page sizes aggrevate aliasing
219  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
220  * the existing scheme of piggybacking won't work for certain configurations.
221  * Two new registers IC_PTAG and DC_PTAG inttoduced.
222  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
223  */
224 
225 static inline
226 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
227 			  unsigned long sz, const int op)
228 {
229 	unsigned int aux_cmd;
230 	int num_lines;
231 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
232 
233 	if (op == OP_INV_IC) {
234 		aux_cmd = ARC_REG_IC_IVIL;
235 	} else {
236 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
237 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
238 	}
239 
240 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
241 	 * and have @paddr - aligned to cache line and integral @num_lines.
242 	 * This however can be avoided for page sized since:
243 	 *  -@paddr will be cache-line aligned already (being page aligned)
244 	 *  -@sz will be integral multiple of line size (being page sized).
245 	 */
246 	if (!full_page) {
247 		sz += paddr & ~CACHE_LINE_MASK;
248 		paddr &= CACHE_LINE_MASK;
249 		vaddr &= CACHE_LINE_MASK;
250 	}
251 
252 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
253 
254 	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
255 	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
256 
257 	while (num_lines-- > 0) {
258 		write_aux_reg(aux_cmd, paddr);
259 		paddr += L1_CACHE_BYTES;
260 	}
261 }
262 
263 /*
264  * For ARC700 MMUv3 I-cache and D-cache flushes
265  * Also reused for HS38 aliasing I-cache configuration
266  */
267 static inline
268 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
269 			  unsigned long sz, const int op)
270 {
271 	unsigned int aux_cmd, aux_tag;
272 	int num_lines;
273 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
274 
275 	if (op == OP_INV_IC) {
276 		aux_cmd = ARC_REG_IC_IVIL;
277 		aux_tag = ARC_REG_IC_PTAG;
278 	} else {
279 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
280 		aux_tag = ARC_REG_DC_PTAG;
281 	}
282 
283 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
284 	 * and have @paddr - aligned to cache line and integral @num_lines.
285 	 * This however can be avoided for page sized since:
286 	 *  -@paddr will be cache-line aligned already (being page aligned)
287 	 *  -@sz will be integral multiple of line size (being page sized).
288 	 */
289 	if (!full_page) {
290 		sz += paddr & ~CACHE_LINE_MASK;
291 		paddr &= CACHE_LINE_MASK;
292 		vaddr &= CACHE_LINE_MASK;
293 	}
294 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
295 
296 	/*
297 	 * MMUv3, cache ops require paddr in PTAG reg
298 	 * if V-P const for loop, PTAG can be written once outside loop
299 	 */
300 	if (full_page)
301 		write_aux_reg(aux_tag, paddr);
302 
303 	/*
304 	 * This is technically for MMU v4, using the MMU v3 programming model
305 	 * Special work for HS38 aliasing I-cache configuratino with PAE40
306 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
307 	 *   - (and needs to be written before the lower 32 bits)
308 	 * Note that PTAG_HI is hoisted outside the line loop
309 	 */
310 	if (is_pae40_enabled() && op == OP_INV_IC)
311 		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
312 
313 	while (num_lines-- > 0) {
314 		if (!full_page) {
315 			write_aux_reg(aux_tag, paddr);
316 			paddr += L1_CACHE_BYTES;
317 		}
318 
319 		write_aux_reg(aux_cmd, vaddr);
320 		vaddr += L1_CACHE_BYTES;
321 	}
322 }
323 
324 /*
325  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
326  * Here's how cache ops are implemented
327  *
328  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
329  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
330  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
331  *    respectively, similar to MMU v3 programming model, hence
332  *    __cache_line_loop_v3() is used)
333  *
334  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
335  * needs to be written into PTAG_HI
336  */
337 static inline
338 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
339 			  unsigned long sz, const int cacheop)
340 {
341 	unsigned int aux_cmd;
342 	int num_lines;
343 	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
344 
345 	if (cacheop == OP_INV_IC) {
346 		aux_cmd = ARC_REG_IC_IVIL;
347 	} else {
348 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
349 		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
350 	}
351 
352 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
353 	 * and have @paddr - aligned to cache line and integral @num_lines.
354 	 * This however can be avoided for page sized since:
355 	 *  -@paddr will be cache-line aligned already (being page aligned)
356 	 *  -@sz will be integral multiple of line size (being page sized).
357 	 */
358 	if (!full_page_op) {
359 		sz += paddr & ~CACHE_LINE_MASK;
360 		paddr &= CACHE_LINE_MASK;
361 	}
362 
363 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
364 
365 	/*
366 	 * For HS38 PAE40 configuration
367 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
368 	 *   - (and needs to be written before the lower 32 bits)
369 	 */
370 	if (is_pae40_enabled()) {
371 		if (cacheop == OP_INV_IC)
372 			/*
373 			 * Non aliasing I-cache in HS38,
374 			 * aliasing I-cache handled in __cache_line_loop_v3()
375 			 */
376 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
377 		else
378 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
379 	}
380 
381 	while (num_lines-- > 0) {
382 		write_aux_reg(aux_cmd, paddr);
383 		paddr += L1_CACHE_BYTES;
384 	}
385 }
386 
387 #if (CONFIG_ARC_MMU_VER < 3)
388 #define __cache_line_loop	__cache_line_loop_v2
389 #elif (CONFIG_ARC_MMU_VER == 3)
390 #define __cache_line_loop	__cache_line_loop_v3
391 #elif (CONFIG_ARC_MMU_VER > 3)
392 #define __cache_line_loop	__cache_line_loop_v4
393 #endif
394 
395 #ifdef CONFIG_ARC_HAS_DCACHE
396 
397 /***************************************************************
398  * Machine specific helpers for Entire D-Cache or Per Line ops
399  */
400 
401 static inline void __before_dc_op(const int op)
402 {
403 	if (op == OP_FLUSH_N_INV) {
404 		/* Dcache provides 2 cmd: FLUSH or INV
405 		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
406 		 * flush-n-inv is achieved by INV cmd but with IM=1
407 		 * So toggle INV sub-mode depending on op request and default
408 		 */
409 		const unsigned int ctl = ARC_REG_DC_CTRL;
410 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
411 	}
412 }
413 
414 static inline void __after_dc_op(const int op)
415 {
416 	if (op & OP_FLUSH) {
417 		const unsigned int ctl = ARC_REG_DC_CTRL;
418 		unsigned int reg;
419 
420 		/* flush / flush-n-inv both wait */
421 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
422 			;
423 
424 		/* Switch back to default Invalidate mode */
425 		if (op == OP_FLUSH_N_INV)
426 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
427 	}
428 }
429 
430 /*
431  * Operation on Entire D-Cache
432  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
433  * Note that constant propagation ensures all the checks are gone
434  * in generated code
435  */
436 static inline void __dc_entire_op(const int op)
437 {
438 	int aux;
439 
440 	__before_dc_op(op);
441 
442 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
443 		aux = ARC_REG_DC_IVDC;
444 	else
445 		aux = ARC_REG_DC_FLSH;
446 
447 	write_aux_reg(aux, 0x1);
448 
449 	__after_dc_op(op);
450 }
451 
452 /* For kernel mappings cache operation: index is same as paddr */
453 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
454 
455 /*
456  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
457  */
458 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
459 				unsigned long sz, const int op)
460 {
461 	unsigned long flags;
462 
463 	local_irq_save(flags);
464 
465 	__before_dc_op(op);
466 
467 	__cache_line_loop(paddr, vaddr, sz, op);
468 
469 	__after_dc_op(op);
470 
471 	local_irq_restore(flags);
472 }
473 
474 #else
475 
476 #define __dc_entire_op(op)
477 #define __dc_line_op(paddr, vaddr, sz, op)
478 #define __dc_line_op_k(paddr, sz, op)
479 
480 #endif /* CONFIG_ARC_HAS_DCACHE */
481 
482 #ifdef CONFIG_ARC_HAS_ICACHE
483 
484 static inline void __ic_entire_inv(void)
485 {
486 	write_aux_reg(ARC_REG_IC_IVIC, 1);
487 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
488 }
489 
490 static inline void
491 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
492 			  unsigned long sz)
493 {
494 	unsigned long flags;
495 
496 	local_irq_save(flags);
497 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
498 	local_irq_restore(flags);
499 }
500 
501 #ifndef CONFIG_SMP
502 
503 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
504 
505 #else
506 
507 struct ic_inv_args {
508 	phys_addr_t paddr, vaddr;
509 	int sz;
510 };
511 
512 static void __ic_line_inv_vaddr_helper(void *info)
513 {
514         struct ic_inv_args *ic_inv = info;
515 
516         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
517 }
518 
519 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
520 				unsigned long sz)
521 {
522 	struct ic_inv_args ic_inv = {
523 		.paddr = paddr,
524 		.vaddr = vaddr,
525 		.sz    = sz
526 	};
527 
528 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
529 }
530 
531 #endif	/* CONFIG_SMP */
532 
533 #else	/* !CONFIG_ARC_HAS_ICACHE */
534 
535 #define __ic_entire_inv()
536 #define __ic_line_inv_vaddr(pstart, vstart, sz)
537 
538 #endif /* CONFIG_ARC_HAS_ICACHE */
539 
540 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
541 {
542 #ifdef CONFIG_ISA_ARCV2
543 	/*
544 	 * SLC is shared between all cores and concurrent aux operations from
545 	 * multiple cores need to be serialized using a spinlock
546 	 * A concurrent operation can be silently ignored and/or the old/new
547 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
548 	 * below)
549 	 */
550 	static DEFINE_SPINLOCK(lock);
551 	unsigned long flags;
552 	unsigned int ctrl;
553 
554 	spin_lock_irqsave(&lock, flags);
555 
556 	/*
557 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
558 	 *  - b'000 (default) is Flush,
559 	 *  - b'001 is Invalidate if CTRL.IM == 0
560 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
561 	 */
562 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
563 
564 	/* Don't rely on default value of IM bit */
565 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
566 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
567 	else
568 		ctrl |= SLC_CTRL_IM;
569 
570 	if (op & OP_INV)
571 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
572 	else
573 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
574 
575 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
576 
577 	/*
578 	 * Lower bits are ignored, no need to clip
579 	 * END needs to be setup before START (latter triggers the operation)
580 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
581 	 */
582 	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
583 	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
584 
585 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
586 
587 	spin_unlock_irqrestore(&lock, flags);
588 #endif
589 }
590 
591 /***********************************************************
592  * Exported APIs
593  */
594 
595 /*
596  * Handle cache congruency of kernel and userspace mappings of page when kernel
597  * writes-to/reads-from
598  *
599  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
600  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
601  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
602  *  -In SMP, if hardware caches are coherent
603  *
604  * There's a corollary case, where kernel READs from a userspace mapped page.
605  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
606  */
607 void flush_dcache_page(struct page *page)
608 {
609 	struct address_space *mapping;
610 
611 	if (!cache_is_vipt_aliasing()) {
612 		clear_bit(PG_dc_clean, &page->flags);
613 		return;
614 	}
615 
616 	/* don't handle anon pages here */
617 	mapping = page_mapping(page);
618 	if (!mapping)
619 		return;
620 
621 	/*
622 	 * pagecache page, file not yet mapped to userspace
623 	 * Make a note that K-mapping is dirty
624 	 */
625 	if (!mapping_mapped(mapping)) {
626 		clear_bit(PG_dc_clean, &page->flags);
627 	} else if (page_mapcount(page)) {
628 
629 		/* kernel reading from page with U-mapping */
630 		phys_addr_t paddr = (unsigned long)page_address(page);
631 		unsigned long vaddr = page->index << PAGE_SHIFT;
632 
633 		if (addr_not_cache_congruent(paddr, vaddr))
634 			__flush_dcache_page(paddr, vaddr);
635 	}
636 }
637 EXPORT_SYMBOL(flush_dcache_page);
638 
639 /*
640  * DMA ops for systems with L1 cache only
641  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
642  */
643 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
644 {
645 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
646 }
647 
648 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
649 {
650 	__dc_line_op_k(start, sz, OP_INV);
651 }
652 
653 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
654 {
655 	__dc_line_op_k(start, sz, OP_FLUSH);
656 }
657 
658 /*
659  * DMA ops for systems with both L1 and L2 caches, but without IOC
660  * Both L1 and L2 lines need to be explicitly flushed/invalidated
661  */
662 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
663 {
664 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
665 	slc_op(start, sz, OP_FLUSH_N_INV);
666 }
667 
668 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
669 {
670 	__dc_line_op_k(start, sz, OP_INV);
671 	slc_op(start, sz, OP_INV);
672 }
673 
674 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
675 {
676 	__dc_line_op_k(start, sz, OP_FLUSH);
677 	slc_op(start, sz, OP_FLUSH);
678 }
679 
680 /*
681  * DMA ops for systems with IOC
682  * IOC hardware snoops all DMA traffic keeping the caches consistent with
683  * memory - eliding need for any explicit cache maintenance of DMA buffers
684  */
685 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
686 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
687 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
688 
689 /*
690  * Exported DMA API
691  */
692 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
693 {
694 	__dma_cache_wback_inv(start, sz);
695 }
696 EXPORT_SYMBOL(dma_cache_wback_inv);
697 
698 void dma_cache_inv(phys_addr_t start, unsigned long sz)
699 {
700 	__dma_cache_inv(start, sz);
701 }
702 EXPORT_SYMBOL(dma_cache_inv);
703 
704 void dma_cache_wback(phys_addr_t start, unsigned long sz)
705 {
706 	__dma_cache_wback(start, sz);
707 }
708 EXPORT_SYMBOL(dma_cache_wback);
709 
710 /*
711  * This is API for making I/D Caches consistent when modifying
712  * kernel code (loadable modules, kprobes, kgdb...)
713  * This is called on insmod, with kernel virtual address for CODE of
714  * the module. ARC cache maintenance ops require PHY address thus we
715  * need to convert vmalloc addr to PHY addr
716  */
717 void flush_icache_range(unsigned long kstart, unsigned long kend)
718 {
719 	unsigned int tot_sz;
720 
721 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
722 
723 	/* Shortcut for bigger flush ranges.
724 	 * Here we don't care if this was kernel virtual or phy addr
725 	 */
726 	tot_sz = kend - kstart;
727 	if (tot_sz > PAGE_SIZE) {
728 		flush_cache_all();
729 		return;
730 	}
731 
732 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
733 	if (likely(kstart > PAGE_OFFSET)) {
734 		/*
735 		 * The 2nd arg despite being paddr will be used to index icache
736 		 * This is OK since no alternate virtual mappings will exist
737 		 * given the callers for this case: kprobe/kgdb in built-in
738 		 * kernel code only.
739 		 */
740 		__sync_icache_dcache(kstart, kstart, kend - kstart);
741 		return;
742 	}
743 
744 	/*
745 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
746 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
747 	 *     handling of kernel vaddr.
748 	 *
749 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
750 	 *     it still needs to handle  a 2 page scenario, where the range
751 	 *     straddles across 2 virtual pages and hence need for loop
752 	 */
753 	while (tot_sz > 0) {
754 		unsigned int off, sz;
755 		unsigned long phy, pfn;
756 
757 		off = kstart % PAGE_SIZE;
758 		pfn = vmalloc_to_pfn((void *)kstart);
759 		phy = (pfn << PAGE_SHIFT) + off;
760 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
761 		__sync_icache_dcache(phy, kstart, sz);
762 		kstart += sz;
763 		tot_sz -= sz;
764 	}
765 }
766 EXPORT_SYMBOL(flush_icache_range);
767 
768 /*
769  * General purpose helper to make I and D cache lines consistent.
770  * @paddr is phy addr of region
771  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
772  *    However in one instance, when called by kprobe (for a breakpt in
773  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
774  *    use a paddr to index the cache (despite VIPT). This is fine since since a
775  *    builtin kernel page will not have any virtual mappings.
776  *    kprobe on loadable module will be kernel vaddr.
777  */
778 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
779 {
780 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
781 	__ic_line_inv_vaddr(paddr, vaddr, len);
782 }
783 
784 /* wrapper to compile time eliminate alignment checks in flush loop */
785 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
786 {
787 	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
788 }
789 
790 /*
791  * wrapper to clearout kernel or userspace mappings of a page
792  * For kernel mappings @vaddr == @paddr
793  */
794 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
795 {
796 	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
797 }
798 
799 noinline void flush_cache_all(void)
800 {
801 	unsigned long flags;
802 
803 	local_irq_save(flags);
804 
805 	__ic_entire_inv();
806 	__dc_entire_op(OP_FLUSH_N_INV);
807 
808 	local_irq_restore(flags);
809 
810 }
811 
812 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
813 
814 void flush_cache_mm(struct mm_struct *mm)
815 {
816 	flush_cache_all();
817 }
818 
819 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
820 		      unsigned long pfn)
821 {
822 	unsigned int paddr = pfn << PAGE_SHIFT;
823 
824 	u_vaddr &= PAGE_MASK;
825 
826 	__flush_dcache_page(paddr, u_vaddr);
827 
828 	if (vma->vm_flags & VM_EXEC)
829 		__inv_icache_page(paddr, u_vaddr);
830 }
831 
832 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
833 		       unsigned long end)
834 {
835 	flush_cache_all();
836 }
837 
838 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
839 		     unsigned long u_vaddr)
840 {
841 	/* TBD: do we really need to clear the kernel mapping */
842 	__flush_dcache_page(page_address(page), u_vaddr);
843 	__flush_dcache_page(page_address(page), page_address(page));
844 
845 }
846 
847 #endif
848 
849 void copy_user_highpage(struct page *to, struct page *from,
850 	unsigned long u_vaddr, struct vm_area_struct *vma)
851 {
852 	void *kfrom = kmap_atomic(from);
853 	void *kto = kmap_atomic(to);
854 	int clean_src_k_mappings = 0;
855 
856 	/*
857 	 * If SRC page was already mapped in userspace AND it's U-mapping is
858 	 * not congruent with K-mapping, sync former to physical page so that
859 	 * K-mapping in memcpy below, sees the right data
860 	 *
861 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
862 	 * equally valid for SRC page as well
863 	 *
864 	 * For !VIPT cache, all of this gets compiled out as
865 	 * addr_not_cache_congruent() is 0
866 	 */
867 	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
868 		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
869 		clean_src_k_mappings = 1;
870 	}
871 
872 	copy_page(kto, kfrom);
873 
874 	/*
875 	 * Mark DST page K-mapping as dirty for a later finalization by
876 	 * update_mmu_cache(). Although the finalization could have been done
877 	 * here as well (given that both vaddr/paddr are available).
878 	 * But update_mmu_cache() already has code to do that for other
879 	 * non copied user pages (e.g. read faults which wire in pagecache page
880 	 * directly).
881 	 */
882 	clear_bit(PG_dc_clean, &to->flags);
883 
884 	/*
885 	 * if SRC was already usermapped and non-congruent to kernel mapping
886 	 * sync the kernel mapping back to physical page
887 	 */
888 	if (clean_src_k_mappings) {
889 		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
890 		set_bit(PG_dc_clean, &from->flags);
891 	} else {
892 		clear_bit(PG_dc_clean, &from->flags);
893 	}
894 
895 	kunmap_atomic(kto);
896 	kunmap_atomic(kfrom);
897 }
898 
899 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
900 {
901 	clear_page(to);
902 	clear_bit(PG_dc_clean, &page->flags);
903 }
904 
905 
906 /**********************************************************************
907  * Explicit Cache flush request from user space via syscall
908  * Needed for JITs which generate code on the fly
909  */
910 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
911 {
912 	/* TBD: optimize this */
913 	flush_cache_all();
914 	return 0;
915 }
916 
917 void arc_cache_init(void)
918 {
919 	unsigned int __maybe_unused cpu = smp_processor_id();
920 	char str[256];
921 
922 	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
923 
924 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
925 		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
926 
927 		if (!ic->ver)
928 			panic("cache support enabled but non-existent cache\n");
929 
930 		if (ic->line_len != L1_CACHE_BYTES)
931 			panic("ICache line [%d] != kernel Config [%d]",
932 			      ic->line_len, L1_CACHE_BYTES);
933 
934 		if (ic->ver != CONFIG_ARC_MMU_VER)
935 			panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
936 			      ic->ver, CONFIG_ARC_MMU_VER);
937 
938 		/*
939 		 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
940 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
941 		 */
942 		if (is_isa_arcv2() && ic->alias)
943 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
944 		else
945 			_cache_line_loop_ic_fn = __cache_line_loop;
946 	}
947 
948 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
949 		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
950 
951 		if (!dc->ver)
952 			panic("cache support enabled but non-existent cache\n");
953 
954 		if (dc->line_len != L1_CACHE_BYTES)
955 			panic("DCache line [%d] != kernel Config [%d]",
956 			      dc->line_len, L1_CACHE_BYTES);
957 
958 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
959 		if (is_isa_arcompact()) {
960 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
961 
962 			if (dc->alias && !handled)
963 				panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
964 			else if (!dc->alias && handled)
965 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
966 		}
967 	}
968 
969 	if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
970 
971 		/* IM set : flush before invalidate */
972 		write_aux_reg(ARC_REG_SLC_CTRL,
973 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
974 
975 		write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
976 
977 		/* Important to wait for flush to complete */
978 		while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
979 		write_aux_reg(ARC_REG_SLC_CTRL,
980 			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
981 	}
982 
983 	if (is_isa_arcv2() && ioc_exists) {
984 		/* IO coherency base - 0x8z */
985 		write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
986 		/* IO coherency aperture size - 512Mb: 0x8z-0xAz */
987 		write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
988 		/* Enable partial writes */
989 		write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
990 		/* Enable IO coherency */
991 		write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
992 
993 		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
994 		__dma_cache_inv = __dma_cache_inv_ioc;
995 		__dma_cache_wback = __dma_cache_wback_ioc;
996 	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
997 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
998 		__dma_cache_inv = __dma_cache_inv_slc;
999 		__dma_cache_wback = __dma_cache_wback_slc;
1000 	} else {
1001 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1002 		__dma_cache_inv = __dma_cache_inv_l1;
1003 		__dma_cache_wback = __dma_cache_wback_l1;
1004 	}
1005 }
1006