xref: /openbmc/linux/arch/arc/kernel/perf_event.c (revision 92c005a1)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Linux performance counter support for ARC CPUs.
4 // This code is inspired by the perf support of various other architectures.
5 //
6 // Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com)
7 
8 #include <linux/errno.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/perf_event.h>
13 #include <linux/platform_device.h>
14 #include <asm/arcregs.h>
15 #include <asm/stacktrace.h>
16 
17 /* HW holds 8 symbols + one for null terminator */
18 #define ARCPMU_EVENT_NAME_LEN	9
19 
20 /*
21  * Some ARC pct quirks:
22  *
23  * PERF_COUNT_HW_STALLED_CYCLES_BACKEND
24  * PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
25  *	The ARC 700 can either measure stalls per pipeline stage, or all stalls
26  *	combined; for now we assign all stalls to STALLED_CYCLES_BACKEND
27  *	and all pipeline flushes (e.g. caused by mispredicts, etc.) to
28  *	STALLED_CYCLES_FRONTEND.
29  *
30  *	We could start multiple performance counters and combine everything
31  *	afterwards, but that makes it complicated.
32  *
33  *	Note that I$ cache misses aren't counted by either of the two!
34  */
35 
36 /*
37  * ARC PCT has hardware conditions with fixed "names" but variable "indexes"
38  * (based on a specific RTL build)
39  * Below is the static map between perf generic/arc specific event_id and
40  * h/w condition names.
41  * At the time of probe, we loop thru each index and find it's name to
42  * complete the mapping of perf event_id to h/w index as latter is needed
43  * to program the counter really
44  */
45 static const char * const arc_pmu_ev_hw_map[] = {
46 	/* count cycles */
47 	[PERF_COUNT_HW_CPU_CYCLES] = "crun",
48 	[PERF_COUNT_HW_REF_CPU_CYCLES] = "crun",
49 	[PERF_COUNT_HW_BUS_CYCLES] = "crun",
50 
51 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush",
52 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall",
53 
54 	/* counts condition */
55 	[PERF_COUNT_HW_INSTRUCTIONS] = "iall",
56 	/* All jump instructions that are taken */
57 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak",
58 #ifdef CONFIG_ISA_ARCV2
59 	[PERF_COUNT_HW_BRANCH_MISSES] = "bpmp",
60 #else
61 	[PERF_COUNT_ARC_BPOK]         = "bpok",	  /* NP-NT, PT-T, PNT-NT */
62 	[PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */
63 #endif
64 	[PERF_COUNT_ARC_LDC] = "imemrdc",	/* Instr: mem read cached */
65 	[PERF_COUNT_ARC_STC] = "imemwrc",	/* Instr: mem write cached */
66 
67 	[PERF_COUNT_ARC_DCLM] = "dclm",		/* D-cache Load Miss */
68 	[PERF_COUNT_ARC_DCSM] = "dcsm",		/* D-cache Store Miss */
69 	[PERF_COUNT_ARC_ICM] = "icm",		/* I-cache Miss */
70 	[PERF_COUNT_ARC_EDTLB] = "edtlb",	/* D-TLB Miss */
71 	[PERF_COUNT_ARC_EITLB] = "eitlb",	/* I-TLB Miss */
72 
73 	[PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc",	/* Instr: mem read cached */
74 	[PERF_COUNT_HW_CACHE_MISSES] = "dclm",		/* D-cache Load Miss */
75 };
76 
77 #define C(_x)			PERF_COUNT_HW_CACHE_##_x
78 #define CACHE_OP_UNSUPPORTED	0xffff
79 
80 static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
81 	[C(L1D)] = {
82 		[C(OP_READ)] = {
83 			[C(RESULT_ACCESS)]	= PERF_COUNT_ARC_LDC,
84 			[C(RESULT_MISS)]	= PERF_COUNT_ARC_DCLM,
85 		},
86 		[C(OP_WRITE)] = {
87 			[C(RESULT_ACCESS)]	= PERF_COUNT_ARC_STC,
88 			[C(RESULT_MISS)]	= PERF_COUNT_ARC_DCSM,
89 		},
90 		[C(OP_PREFETCH)] = {
91 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
92 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
93 		},
94 	},
95 	[C(L1I)] = {
96 		[C(OP_READ)] = {
97 			[C(RESULT_ACCESS)]	= PERF_COUNT_HW_INSTRUCTIONS,
98 			[C(RESULT_MISS)]	= PERF_COUNT_ARC_ICM,
99 		},
100 		[C(OP_WRITE)] = {
101 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
102 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
103 		},
104 		[C(OP_PREFETCH)] = {
105 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
106 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
107 		},
108 	},
109 	[C(LL)] = {
110 		[C(OP_READ)] = {
111 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
112 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
113 		},
114 		[C(OP_WRITE)] = {
115 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
116 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
117 		},
118 		[C(OP_PREFETCH)] = {
119 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
120 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
121 		},
122 	},
123 	[C(DTLB)] = {
124 		[C(OP_READ)] = {
125 			[C(RESULT_ACCESS)]	= PERF_COUNT_ARC_LDC,
126 			[C(RESULT_MISS)]	= PERF_COUNT_ARC_EDTLB,
127 		},
128 			/* DTLB LD/ST Miss not segregated by h/w*/
129 		[C(OP_WRITE)] = {
130 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
131 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
132 		},
133 		[C(OP_PREFETCH)] = {
134 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
135 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
136 		},
137 	},
138 	[C(ITLB)] = {
139 		[C(OP_READ)] = {
140 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
141 			[C(RESULT_MISS)]	= PERF_COUNT_ARC_EITLB,
142 		},
143 		[C(OP_WRITE)] = {
144 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
145 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
146 		},
147 		[C(OP_PREFETCH)] = {
148 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
149 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
150 		},
151 	},
152 	[C(BPU)] = {
153 		[C(OP_READ)] = {
154 			[C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
155 			[C(RESULT_MISS)]	= PERF_COUNT_HW_BRANCH_MISSES,
156 		},
157 		[C(OP_WRITE)] = {
158 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
159 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
160 		},
161 		[C(OP_PREFETCH)] = {
162 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
163 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
164 		},
165 	},
166 	[C(NODE)] = {
167 		[C(OP_READ)] = {
168 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
169 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
170 		},
171 		[C(OP_WRITE)] = {
172 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
173 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
174 		},
175 		[C(OP_PREFETCH)] = {
176 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
177 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
178 		},
179 	},
180 };
181 
182 enum arc_pmu_attr_groups {
183 	ARCPMU_ATTR_GR_EVENTS,
184 	ARCPMU_ATTR_GR_FORMATS,
185 	ARCPMU_NR_ATTR_GR
186 };
187 
188 struct arc_pmu_raw_event_entry {
189 	char name[ARCPMU_EVENT_NAME_LEN];
190 };
191 
192 struct arc_pmu {
193 	struct pmu	pmu;
194 	unsigned int	irq;
195 	int		n_counters;
196 	int		n_events;
197 	u64		max_period;
198 	int		ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
199 
200 	struct arc_pmu_raw_event_entry	*raw_entry;
201 	struct attribute		**attrs;
202 	struct perf_pmu_events_attr	*attr;
203 	const struct attribute_group	*attr_groups[ARCPMU_NR_ATTR_GR + 1];
204 };
205 
206 struct arc_pmu_cpu {
207 	/*
208 	 * A 1 bit for an index indicates that the counter is being used for
209 	 * an event. A 0 means that the counter can be used.
210 	 */
211 	unsigned long	used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
212 
213 	/*
214 	 * The events that are active on the PMU for the given index.
215 	 */
216 	struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
217 };
218 
219 struct arc_callchain_trace {
220 	int depth;
221 	void *perf_stuff;
222 };
223 
224 static int callchain_trace(unsigned int addr, void *data)
225 {
226 	struct arc_callchain_trace *ctrl = data;
227 	struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
228 
229 	perf_callchain_store(entry, addr);
230 
231 	if (ctrl->depth++ < 3)
232 		return 0;
233 
234 	return -1;
235 }
236 
237 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
238 			   struct pt_regs *regs)
239 {
240 	struct arc_callchain_trace ctrl = {
241 		.depth = 0,
242 		.perf_stuff = entry,
243 	};
244 
245 	arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
246 }
247 
248 void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
249 			 struct pt_regs *regs)
250 {
251 	/*
252 	 * User stack can't be unwound trivially with kernel dwarf unwinder
253 	 * So for now just record the user PC
254 	 */
255 	perf_callchain_store(entry, instruction_pointer(regs));
256 }
257 
258 static struct arc_pmu *arc_pmu;
259 static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
260 
261 /* read counter #idx; note that counter# != event# on ARC! */
262 static u64 arc_pmu_read_counter(int idx)
263 {
264 	u32 tmp;
265 	u64 result;
266 
267 	/*
268 	 * ARC supports making 'snapshots' of the counters, so we don't
269 	 * need to care about counters wrapping to 0 underneath our feet
270 	 */
271 	write_aux_reg(ARC_REG_PCT_INDEX, idx);
272 	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
273 	write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
274 	result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
275 	result |= read_aux_reg(ARC_REG_PCT_SNAPL);
276 
277 	return result;
278 }
279 
280 static void arc_perf_event_update(struct perf_event *event,
281 				  struct hw_perf_event *hwc, int idx)
282 {
283 	u64 prev_raw_count = local64_read(&hwc->prev_count);
284 	u64 new_raw_count = arc_pmu_read_counter(idx);
285 	s64 delta = new_raw_count - prev_raw_count;
286 
287 	/*
288 	 * We aren't afraid of hwc->prev_count changing beneath our feet
289 	 * because there's no way for us to re-enter this function anytime.
290 	 */
291 	local64_set(&hwc->prev_count, new_raw_count);
292 	local64_add(delta, &event->count);
293 	local64_sub(delta, &hwc->period_left);
294 }
295 
296 static void arc_pmu_read(struct perf_event *event)
297 {
298 	arc_perf_event_update(event, &event->hw, event->hw.idx);
299 }
300 
301 static int arc_pmu_cache_event(u64 config)
302 {
303 	unsigned int cache_type, cache_op, cache_result;
304 	int ret;
305 
306 	cache_type	= (config >>  0) & 0xff;
307 	cache_op	= (config >>  8) & 0xff;
308 	cache_result	= (config >> 16) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312 		return -EINVAL;
313 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
314 		return -EINVAL;
315 
316 	ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
317 
318 	if (ret == CACHE_OP_UNSUPPORTED)
319 		return -ENOENT;
320 
321 	pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
322 		 cache_type, cache_op, cache_result, ret,
323 		 arc_pmu_ev_hw_map[ret]);
324 
325 	return ret;
326 }
327 
328 /* initializes hw_perf_event structure if event is supported */
329 static int arc_pmu_event_init(struct perf_event *event)
330 {
331 	struct hw_perf_event *hwc = &event->hw;
332 	int ret;
333 
334 	if (!is_sampling_event(event)) {
335 		hwc->sample_period = arc_pmu->max_period;
336 		hwc->last_period = hwc->sample_period;
337 		local64_set(&hwc->period_left, hwc->sample_period);
338 	}
339 
340 	hwc->config = 0;
341 
342 	if (is_isa_arcv2()) {
343 		/* "exclude user" means "count only kernel" */
344 		if (event->attr.exclude_user)
345 			hwc->config |= ARC_REG_PCT_CONFIG_KERN;
346 
347 		/* "exclude kernel" means "count only user" */
348 		if (event->attr.exclude_kernel)
349 			hwc->config |= ARC_REG_PCT_CONFIG_USER;
350 	}
351 
352 	switch (event->attr.type) {
353 	case PERF_TYPE_HARDWARE:
354 		if (event->attr.config >= PERF_COUNT_HW_MAX)
355 			return -ENOENT;
356 		if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
357 			return -ENOENT;
358 		hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
359 		pr_debug("init event %d with h/w %08x \'%s\'\n",
360 			 (int)event->attr.config, (int)hwc->config,
361 			 arc_pmu_ev_hw_map[event->attr.config]);
362 		return 0;
363 
364 	case PERF_TYPE_HW_CACHE:
365 		ret = arc_pmu_cache_event(event->attr.config);
366 		if (ret < 0)
367 			return ret;
368 		hwc->config |= arc_pmu->ev_hw_idx[ret];
369 		pr_debug("init cache event with h/w %08x \'%s\'\n",
370 			 (int)hwc->config, arc_pmu_ev_hw_map[ret]);
371 		return 0;
372 
373 	case PERF_TYPE_RAW:
374 		if (event->attr.config >= arc_pmu->n_events)
375 			return -ENOENT;
376 
377 		hwc->config |= event->attr.config;
378 		pr_debug("init raw event with idx %lld \'%s\'\n",
379 			 event->attr.config,
380 			 arc_pmu->raw_entry[event->attr.config].name);
381 
382 		return 0;
383 
384 	default:
385 		return -ENOENT;
386 	}
387 }
388 
389 /* starts all counters */
390 static void arc_pmu_enable(struct pmu *pmu)
391 {
392 	u32 tmp;
393 	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
394 	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
395 }
396 
397 /* stops all counters */
398 static void arc_pmu_disable(struct pmu *pmu)
399 {
400 	u32 tmp;
401 	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
402 	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
403 }
404 
405 static int arc_pmu_event_set_period(struct perf_event *event)
406 {
407 	struct hw_perf_event *hwc = &event->hw;
408 	s64 left = local64_read(&hwc->period_left);
409 	s64 period = hwc->sample_period;
410 	int idx = hwc->idx;
411 	int overflow = 0;
412 	u64 value;
413 
414 	if (unlikely(left <= -period)) {
415 		/* left underflowed by more than period. */
416 		left = period;
417 		local64_set(&hwc->period_left, left);
418 		hwc->last_period = period;
419 		overflow = 1;
420 	} else if (unlikely(left <= 0)) {
421 		/* left underflowed by less than period. */
422 		left += period;
423 		local64_set(&hwc->period_left, left);
424 		hwc->last_period = period;
425 		overflow = 1;
426 	}
427 
428 	if (left > arc_pmu->max_period)
429 		left = arc_pmu->max_period;
430 
431 	value = arc_pmu->max_period - left;
432 	local64_set(&hwc->prev_count, value);
433 
434 	/* Select counter */
435 	write_aux_reg(ARC_REG_PCT_INDEX, idx);
436 
437 	/* Write value */
438 	write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value));
439 	write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value));
440 
441 	perf_event_update_userpage(event);
442 
443 	return overflow;
444 }
445 
446 /*
447  * Assigns hardware counter to hardware condition.
448  * Note that there is no separate start/stop mechanism;
449  * stopping is achieved by assigning the 'never' condition
450  */
451 static void arc_pmu_start(struct perf_event *event, int flags)
452 {
453 	struct hw_perf_event *hwc = &event->hw;
454 	int idx = hwc->idx;
455 
456 	if (WARN_ON_ONCE(idx == -1))
457 		return;
458 
459 	if (flags & PERF_EF_RELOAD)
460 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
461 
462 	hwc->state = 0;
463 
464 	arc_pmu_event_set_period(event);
465 
466 	/* Enable interrupt for this counter */
467 	if (is_sampling_event(event))
468 		write_aux_reg(ARC_REG_PCT_INT_CTRL,
469 			      read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
470 
471 	/* enable ARC pmu here */
472 	write_aux_reg(ARC_REG_PCT_INDEX, idx);		/* counter # */
473 	write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config);	/* condition */
474 }
475 
476 static void arc_pmu_stop(struct perf_event *event, int flags)
477 {
478 	struct hw_perf_event *hwc = &event->hw;
479 	int idx = hwc->idx;
480 
481 	/* Disable interrupt for this counter */
482 	if (is_sampling_event(event)) {
483 		/*
484 		 * Reset interrupt flag by writing of 1. This is required
485 		 * to make sure pending interrupt was not left.
486 		 */
487 		write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
488 		write_aux_reg(ARC_REG_PCT_INT_CTRL,
489 			      read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx));
490 	}
491 
492 	if (!(event->hw.state & PERF_HES_STOPPED)) {
493 		/* stop hw counter here */
494 		write_aux_reg(ARC_REG_PCT_INDEX, idx);
495 
496 		/* condition code #0 is always "never" */
497 		write_aux_reg(ARC_REG_PCT_CONFIG, 0);
498 
499 		event->hw.state |= PERF_HES_STOPPED;
500 	}
501 
502 	if ((flags & PERF_EF_UPDATE) &&
503 	    !(event->hw.state & PERF_HES_UPTODATE)) {
504 		arc_perf_event_update(event, &event->hw, idx);
505 		event->hw.state |= PERF_HES_UPTODATE;
506 	}
507 }
508 
509 static void arc_pmu_del(struct perf_event *event, int flags)
510 {
511 	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
512 
513 	arc_pmu_stop(event, PERF_EF_UPDATE);
514 	__clear_bit(event->hw.idx, pmu_cpu->used_mask);
515 
516 	pmu_cpu->act_counter[event->hw.idx] = 0;
517 
518 	perf_event_update_userpage(event);
519 }
520 
521 /* allocate hardware counter and optionally start counting */
522 static int arc_pmu_add(struct perf_event *event, int flags)
523 {
524 	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
525 	struct hw_perf_event *hwc = &event->hw;
526 	int idx;
527 
528 	idx = ffz(pmu_cpu->used_mask[0]);
529 	if (idx == arc_pmu->n_counters)
530 		return -EAGAIN;
531 
532 	__set_bit(idx, pmu_cpu->used_mask);
533 	hwc->idx = idx;
534 
535 	write_aux_reg(ARC_REG_PCT_INDEX, idx);
536 
537 	pmu_cpu->act_counter[idx] = event;
538 
539 	if (is_sampling_event(event)) {
540 		/* Mimic full counter overflow as other arches do */
541 		write_aux_reg(ARC_REG_PCT_INT_CNTL,
542 			      lower_32_bits(arc_pmu->max_period));
543 		write_aux_reg(ARC_REG_PCT_INT_CNTH,
544 			      upper_32_bits(arc_pmu->max_period));
545 	}
546 
547 	write_aux_reg(ARC_REG_PCT_CONFIG, 0);
548 	write_aux_reg(ARC_REG_PCT_COUNTL, 0);
549 	write_aux_reg(ARC_REG_PCT_COUNTH, 0);
550 	local64_set(&hwc->prev_count, 0);
551 
552 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
553 	if (flags & PERF_EF_START)
554 		arc_pmu_start(event, PERF_EF_RELOAD);
555 
556 	perf_event_update_userpage(event);
557 
558 	return 0;
559 }
560 
561 #ifdef CONFIG_ISA_ARCV2
562 static irqreturn_t arc_pmu_intr(int irq, void *dev)
563 {
564 	struct perf_sample_data data;
565 	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
566 	struct pt_regs *regs;
567 	unsigned int active_ints;
568 	int idx;
569 
570 	arc_pmu_disable(&arc_pmu->pmu);
571 
572 	active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
573 	if (!active_ints)
574 		goto done;
575 
576 	regs = get_irq_regs();
577 
578 	do {
579 		struct perf_event *event;
580 		struct hw_perf_event *hwc;
581 
582 		idx = __ffs(active_ints);
583 
584 		/* Reset interrupt flag by writing of 1 */
585 		write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
586 
587 		/*
588 		 * On reset of "interrupt active" bit corresponding
589 		 * "interrupt enable" bit gets automatically reset as well.
590 		 * Now we need to re-enable interrupt for the counter.
591 		 */
592 		write_aux_reg(ARC_REG_PCT_INT_CTRL,
593 			read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
594 
595 		event = pmu_cpu->act_counter[idx];
596 		hwc = &event->hw;
597 
598 		WARN_ON_ONCE(hwc->idx != idx);
599 
600 		arc_perf_event_update(event, &event->hw, event->hw.idx);
601 		perf_sample_data_init(&data, 0, hwc->last_period);
602 		if (arc_pmu_event_set_period(event)) {
603 			if (perf_event_overflow(event, &data, regs))
604 				arc_pmu_stop(event, 0);
605 		}
606 
607 		active_ints &= ~BIT(idx);
608 	} while (active_ints);
609 
610 done:
611 	arc_pmu_enable(&arc_pmu->pmu);
612 
613 	return IRQ_HANDLED;
614 }
615 #else
616 
617 static irqreturn_t arc_pmu_intr(int irq, void *dev)
618 {
619 	return IRQ_NONE;
620 }
621 
622 #endif /* CONFIG_ISA_ARCV2 */
623 
624 static void arc_cpu_pmu_irq_init(void *data)
625 {
626 	int irq = *(int *)data;
627 
628 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
629 
630 	/* Clear all pending interrupt flags */
631 	write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
632 }
633 
634 /* Event field occupies the bottom 15 bits of our config field */
635 PMU_FORMAT_ATTR(event, "config:0-14");
636 static struct attribute *arc_pmu_format_attrs[] = {
637 	&format_attr_event.attr,
638 	NULL,
639 };
640 
641 static struct attribute_group arc_pmu_format_attr_gr = {
642 	.name = "format",
643 	.attrs = arc_pmu_format_attrs,
644 };
645 
646 static ssize_t arc_pmu_events_sysfs_show(struct device *dev,
647 					 struct device_attribute *attr,
648 					 char *page)
649 {
650 	struct perf_pmu_events_attr *pmu_attr;
651 
652 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
653 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
654 }
655 
656 /*
657  * We don't add attrs here as we don't have pre-defined list of perf events.
658  * We will generate and add attrs dynamically in probe() after we read HW
659  * configuration.
660  */
661 static struct attribute_group arc_pmu_events_attr_gr = {
662 	.name = "events",
663 };
664 
665 static void arc_pmu_add_raw_event_attr(int j, char *str)
666 {
667 	memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1);
668 	arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name;
669 	arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444);
670 	arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show;
671 	arc_pmu->attr[j].id = j;
672 	arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr);
673 }
674 
675 static int arc_pmu_raw_alloc(struct device *dev)
676 {
677 	arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
678 		sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO);
679 	if (!arc_pmu->attr)
680 		return -ENOMEM;
681 
682 	arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
683 		sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO);
684 	if (!arc_pmu->attrs)
685 		return -ENOMEM;
686 
687 	arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events,
688 		sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO);
689 	if (!arc_pmu->raw_entry)
690 		return -ENOMEM;
691 
692 	return 0;
693 }
694 
695 static inline bool event_in_hw_event_map(int i, char *name)
696 {
697 	if (!arc_pmu_ev_hw_map[i])
698 		return false;
699 
700 	if (!strlen(arc_pmu_ev_hw_map[i]))
701 		return false;
702 
703 	if (strcmp(arc_pmu_ev_hw_map[i], name))
704 		return false;
705 
706 	return true;
707 }
708 
709 static void arc_pmu_map_hw_event(int j, char *str)
710 {
711 	int i;
712 
713 	/* See if HW condition has been mapped to a perf event_id */
714 	for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
715 		if (event_in_hw_event_map(i, str)) {
716 			pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
717 				 i, str, j);
718 			arc_pmu->ev_hw_idx[i] = j;
719 		}
720 	}
721 }
722 
723 static int arc_pmu_device_probe(struct platform_device *pdev)
724 {
725 	struct arc_reg_pct_build pct_bcr;
726 	struct arc_reg_cc_build cc_bcr;
727 	int i, has_interrupts, irq = -1;
728 	int counter_size;	/* in bits */
729 
730 	union cc_name {
731 		struct {
732 			u32 word0, word1;
733 			char sentinel;
734 		} indiv;
735 		char str[ARCPMU_EVENT_NAME_LEN];
736 	} cc_name;
737 
738 
739 	READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
740 	if (!pct_bcr.v) {
741 		pr_err("This core does not have performance counters!\n");
742 		return -ENODEV;
743 	}
744 	BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32);
745 	if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS))
746 		return -EINVAL;
747 
748 	READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
749 	if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?"))
750 		return -EINVAL;
751 
752 	arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
753 	if (!arc_pmu)
754 		return -ENOMEM;
755 
756 	arc_pmu->n_events = cc_bcr.c;
757 
758 	if (arc_pmu_raw_alloc(&pdev->dev))
759 		return -ENOMEM;
760 
761 	has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
762 
763 	arc_pmu->n_counters = pct_bcr.c;
764 	counter_size = 32 + (pct_bcr.s << 4);
765 
766 	arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
767 
768 	pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
769 		arc_pmu->n_counters, counter_size, cc_bcr.c,
770 		has_interrupts ? ", [overflow IRQ support]" : "");
771 
772 	cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0;
773 	for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
774 		arc_pmu->ev_hw_idx[i] = -1;
775 
776 	/* loop thru all available h/w condition indexes */
777 	for (i = 0; i < cc_bcr.c; i++) {
778 		write_aux_reg(ARC_REG_CC_INDEX, i);
779 		cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0));
780 		cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1));
781 
782 		arc_pmu_map_hw_event(i, cc_name.str);
783 		arc_pmu_add_raw_event_attr(i, cc_name.str);
784 	}
785 
786 	arc_pmu_events_attr_gr.attrs = arc_pmu->attrs;
787 	arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr;
788 	arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr;
789 
790 	arc_pmu->pmu = (struct pmu) {
791 		.pmu_enable	= arc_pmu_enable,
792 		.pmu_disable	= arc_pmu_disable,
793 		.event_init	= arc_pmu_event_init,
794 		.add		= arc_pmu_add,
795 		.del		= arc_pmu_del,
796 		.start		= arc_pmu_start,
797 		.stop		= arc_pmu_stop,
798 		.read		= arc_pmu_read,
799 		.attr_groups	= arc_pmu->attr_groups,
800 	};
801 
802 	if (has_interrupts) {
803 		irq = platform_get_irq(pdev, 0);
804 		if (irq >= 0) {
805 			int ret;
806 
807 			arc_pmu->irq = irq;
808 
809 			/* intc map function ensures irq_set_percpu_devid() called */
810 			ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
811 						 this_cpu_ptr(&arc_pmu_cpu));
812 
813 			if (!ret)
814 				on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
815 			else
816 				irq = -1;
817 		}
818 
819 	}
820 
821 	if (irq == -1)
822 		arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
823 
824 	/*
825 	 * perf parser doesn't really like '-' symbol in events name, so let's
826 	 * use '_' in arc pct name as it goes to kernel PMU event prefix.
827 	 */
828 	return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW);
829 }
830 
831 static const struct of_device_id arc_pmu_match[] = {
832 	{ .compatible = "snps,arc700-pct" },
833 	{ .compatible = "snps,archs-pct" },
834 	{},
835 };
836 MODULE_DEVICE_TABLE(of, arc_pmu_match);
837 
838 static struct platform_driver arc_pmu_driver = {
839 	.driver	= {
840 		.name		= "arc-pct",
841 		.of_match_table = of_match_ptr(arc_pmu_match),
842 	},
843 	.probe		= arc_pmu_device_probe,
844 };
845 
846 module_platform_driver(arc_pmu_driver);
847 
848 MODULE_LICENSE("GPL");
849 MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
850 MODULE_DESCRIPTION("ARC PMU driver");
851