1 /* 2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/kprobes.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/kdebug.h> 14 #include <linux/sched.h> 15 #include <linux/uaccess.h> 16 #include <asm/cacheflush.h> 17 #include <asm/current.h> 18 #include <asm/disasm.h> 19 20 #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \ 21 (unsigned long)current_thread_info() + THREAD_SIZE - (addr)) 22 23 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 24 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 25 26 int __kprobes arch_prepare_kprobe(struct kprobe *p) 27 { 28 /* Attempt to probe at unaligned address */ 29 if ((unsigned long)p->addr & 0x01) 30 return -EINVAL; 31 32 /* Address should not be in exception handling code */ 33 34 p->ainsn.is_short = is_short_instr((unsigned long)p->addr); 35 p->opcode = *p->addr; 36 37 return 0; 38 } 39 40 void __kprobes arch_arm_kprobe(struct kprobe *p) 41 { 42 *p->addr = UNIMP_S_INSTRUCTION; 43 44 flush_icache_range((unsigned long)p->addr, 45 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 46 } 47 48 void __kprobes arch_disarm_kprobe(struct kprobe *p) 49 { 50 *p->addr = p->opcode; 51 52 flush_icache_range((unsigned long)p->addr, 53 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 54 } 55 56 void __kprobes arch_remove_kprobe(struct kprobe *p) 57 { 58 arch_disarm_kprobe(p); 59 60 /* Can we remove the kprobe in the middle of kprobe handling? */ 61 if (p->ainsn.t1_addr) { 62 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; 63 64 flush_icache_range((unsigned long)p->ainsn.t1_addr, 65 (unsigned long)p->ainsn.t1_addr + 66 sizeof(kprobe_opcode_t)); 67 68 p->ainsn.t1_addr = NULL; 69 } 70 71 if (p->ainsn.t2_addr) { 72 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; 73 74 flush_icache_range((unsigned long)p->ainsn.t2_addr, 75 (unsigned long)p->ainsn.t2_addr + 76 sizeof(kprobe_opcode_t)); 77 78 p->ainsn.t2_addr = NULL; 79 } 80 } 81 82 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 83 { 84 kcb->prev_kprobe.kp = kprobe_running(); 85 kcb->prev_kprobe.status = kcb->kprobe_status; 86 } 87 88 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 89 { 90 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 91 kcb->kprobe_status = kcb->prev_kprobe.status; 92 } 93 94 static inline void __kprobes set_current_kprobe(struct kprobe *p) 95 { 96 __this_cpu_write(current_kprobe, p); 97 } 98 99 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr, 100 struct pt_regs *regs) 101 { 102 /* Remove the trap instructions inserted for single step and 103 * restore the original instructions 104 */ 105 if (p->ainsn.t1_addr) { 106 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; 107 108 flush_icache_range((unsigned long)p->ainsn.t1_addr, 109 (unsigned long)p->ainsn.t1_addr + 110 sizeof(kprobe_opcode_t)); 111 112 p->ainsn.t1_addr = NULL; 113 } 114 115 if (p->ainsn.t2_addr) { 116 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; 117 118 flush_icache_range((unsigned long)p->ainsn.t2_addr, 119 (unsigned long)p->ainsn.t2_addr + 120 sizeof(kprobe_opcode_t)); 121 122 p->ainsn.t2_addr = NULL; 123 } 124 125 return; 126 } 127 128 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs) 129 { 130 unsigned long next_pc; 131 unsigned long tgt_if_br = 0; 132 int is_branch; 133 unsigned long bta; 134 135 /* Copy the opcode back to the kprobe location and execute the 136 * instruction. Because of this we will not be able to get into the 137 * same kprobe until this kprobe is done 138 */ 139 *(p->addr) = p->opcode; 140 141 flush_icache_range((unsigned long)p->addr, 142 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 143 144 /* Now we insert the trap at the next location after this instruction to 145 * single step. If it is a branch we insert the trap at possible branch 146 * targets 147 */ 148 149 bta = regs->bta; 150 151 if (regs->status32 & 0x40) { 152 /* We are in a delay slot with the branch taken */ 153 154 next_pc = bta & ~0x01; 155 156 if (!p->ainsn.is_short) { 157 if (bta & 0x01) 158 regs->blink += 2; 159 else { 160 /* Branch not taken */ 161 next_pc += 2; 162 163 /* next pc is taken from bta after executing the 164 * delay slot instruction 165 */ 166 regs->bta += 2; 167 } 168 } 169 170 is_branch = 0; 171 } else 172 is_branch = 173 disasm_next_pc((unsigned long)p->addr, regs, 174 (struct callee_regs *) current->thread.callee_reg, 175 &next_pc, &tgt_if_br); 176 177 p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc; 178 p->ainsn.t1_opcode = *(p->ainsn.t1_addr); 179 *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION; 180 181 flush_icache_range((unsigned long)p->ainsn.t1_addr, 182 (unsigned long)p->ainsn.t1_addr + 183 sizeof(kprobe_opcode_t)); 184 185 if (is_branch) { 186 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br; 187 p->ainsn.t2_opcode = *(p->ainsn.t2_addr); 188 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION; 189 190 flush_icache_range((unsigned long)p->ainsn.t2_addr, 191 (unsigned long)p->ainsn.t2_addr + 192 sizeof(kprobe_opcode_t)); 193 } 194 } 195 196 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs) 197 { 198 struct kprobe *p; 199 struct kprobe_ctlblk *kcb; 200 201 preempt_disable(); 202 203 kcb = get_kprobe_ctlblk(); 204 p = get_kprobe((unsigned long *)addr); 205 206 if (p) { 207 /* 208 * We have reentered the kprobe_handler, since another kprobe 209 * was hit while within the handler, we save the original 210 * kprobes and single step on the instruction of the new probe 211 * without calling any user handlers to avoid recursive 212 * kprobes. 213 */ 214 if (kprobe_running()) { 215 save_previous_kprobe(kcb); 216 set_current_kprobe(p); 217 kprobes_inc_nmissed_count(p); 218 setup_singlestep(p, regs); 219 kcb->kprobe_status = KPROBE_REENTER; 220 return 1; 221 } 222 223 set_current_kprobe(p); 224 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 225 226 /* If we have no pre-handler or it returned 0, we continue with 227 * normal processing. If we have a pre-handler and it returned 228 * non-zero - which means user handler setup registers to exit 229 * to another instruction, we must skip the single stepping. 230 */ 231 if (!p->pre_handler || !p->pre_handler(p, regs)) { 232 setup_singlestep(p, regs); 233 kcb->kprobe_status = KPROBE_HIT_SS; 234 } else { 235 reset_current_kprobe(); 236 preempt_enable_no_resched(); 237 } 238 239 return 1; 240 } 241 242 /* no_kprobe: */ 243 preempt_enable_no_resched(); 244 return 0; 245 } 246 247 static int __kprobes arc_post_kprobe_handler(unsigned long addr, 248 struct pt_regs *regs) 249 { 250 struct kprobe *cur = kprobe_running(); 251 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 252 253 if (!cur) 254 return 0; 255 256 resume_execution(cur, addr, regs); 257 258 /* Rearm the kprobe */ 259 arch_arm_kprobe(cur); 260 261 /* 262 * When we return from trap instruction we go to the next instruction 263 * We restored the actual instruction in resume_exectuiont and we to 264 * return to the same address and execute it 265 */ 266 regs->ret = addr; 267 268 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 269 kcb->kprobe_status = KPROBE_HIT_SSDONE; 270 cur->post_handler(cur, regs, 0); 271 } 272 273 if (kcb->kprobe_status == KPROBE_REENTER) { 274 restore_previous_kprobe(kcb); 275 goto out; 276 } 277 278 reset_current_kprobe(); 279 280 out: 281 preempt_enable_no_resched(); 282 return 1; 283 } 284 285 /* 286 * Fault can be for the instruction being single stepped or for the 287 * pre/post handlers in the module. 288 * This is applicable for applications like user probes, where we have the 289 * probe in user space and the handlers in the kernel 290 */ 291 292 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr) 293 { 294 struct kprobe *cur = kprobe_running(); 295 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 296 297 switch (kcb->kprobe_status) { 298 case KPROBE_HIT_SS: 299 case KPROBE_REENTER: 300 /* 301 * We are here because the instruction being single stepped 302 * caused the fault. We reset the current kprobe and allow the 303 * exception handler as if it is regular exception. In our 304 * case it doesn't matter because the system will be halted 305 */ 306 resume_execution(cur, (unsigned long)cur->addr, regs); 307 308 if (kcb->kprobe_status == KPROBE_REENTER) 309 restore_previous_kprobe(kcb); 310 else 311 reset_current_kprobe(); 312 313 preempt_enable_no_resched(); 314 break; 315 316 case KPROBE_HIT_ACTIVE: 317 case KPROBE_HIT_SSDONE: 318 /* 319 * We are here because the instructions in the pre/post handler 320 * caused the fault. 321 */ 322 323 /* We increment the nmissed count for accounting, 324 * we can also use npre/npostfault count for accounting 325 * these specific fault cases. 326 */ 327 kprobes_inc_nmissed_count(cur); 328 329 /* 330 * We come here because instructions in the pre/post 331 * handler caused the page_fault, this could happen 332 * if handler tries to access user space by 333 * copy_from_user(), get_user() etc. Let the 334 * user-specified handler try to fix it first. 335 */ 336 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 337 return 1; 338 339 /* 340 * In case the user-specified fault handler returned zero, 341 * try to fix up. 342 */ 343 if (fixup_exception(regs)) 344 return 1; 345 346 /* 347 * fixup_exception() could not handle it, 348 * Let do_page_fault() fix it. 349 */ 350 break; 351 352 default: 353 break; 354 } 355 return 0; 356 } 357 358 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 359 unsigned long val, void *data) 360 { 361 struct die_args *args = data; 362 unsigned long addr = args->err; 363 int ret = NOTIFY_DONE; 364 365 switch (val) { 366 case DIE_IERR: 367 if (arc_kprobe_handler(addr, args->regs)) 368 return NOTIFY_STOP; 369 break; 370 371 case DIE_TRAP: 372 if (arc_post_kprobe_handler(addr, args->regs)) 373 return NOTIFY_STOP; 374 break; 375 376 default: 377 break; 378 } 379 380 return ret; 381 } 382 383 static void __used kretprobe_trampoline_holder(void) 384 { 385 __asm__ __volatile__(".global kretprobe_trampoline\n" 386 "kretprobe_trampoline:\n" "nop\n"); 387 } 388 389 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 390 struct pt_regs *regs) 391 { 392 393 ri->ret_addr = (kprobe_opcode_t *) regs->blink; 394 395 /* Replace the return addr with trampoline addr */ 396 regs->blink = (unsigned long)&kretprobe_trampoline; 397 } 398 399 static int __kprobes trampoline_probe_handler(struct kprobe *p, 400 struct pt_regs *regs) 401 { 402 struct kretprobe_instance *ri = NULL; 403 struct hlist_head *head, empty_rp; 404 struct hlist_node *tmp; 405 unsigned long flags, orig_ret_address = 0; 406 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 407 408 INIT_HLIST_HEAD(&empty_rp); 409 kretprobe_hash_lock(current, &head, &flags); 410 411 /* 412 * It is possible to have multiple instances associated with a given 413 * task either because an multiple functions in the call path 414 * have a return probe installed on them, and/or more than one return 415 * return probe was registered for a target function. 416 * 417 * We can handle this because: 418 * - instances are always inserted at the head of the list 419 * - when multiple return probes are registered for the same 420 * function, the first instance's ret_addr will point to the 421 * real return address, and all the rest will point to 422 * kretprobe_trampoline 423 */ 424 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 425 if (ri->task != current) 426 /* another task is sharing our hash bucket */ 427 continue; 428 429 if (ri->rp && ri->rp->handler) 430 ri->rp->handler(ri, regs); 431 432 orig_ret_address = (unsigned long)ri->ret_addr; 433 recycle_rp_inst(ri, &empty_rp); 434 435 if (orig_ret_address != trampoline_address) { 436 /* 437 * This is the real return address. Any other 438 * instances associated with this task are for 439 * other calls deeper on the call stack 440 */ 441 break; 442 } 443 } 444 445 kretprobe_assert(ri, orig_ret_address, trampoline_address); 446 regs->ret = orig_ret_address; 447 448 kretprobe_hash_unlock(current, &flags); 449 450 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 451 hlist_del(&ri->hlist); 452 kfree(ri); 453 } 454 455 /* By returning a non zero value, we are telling the kprobe handler 456 * that we don't want the post_handler to run 457 */ 458 return 1; 459 } 460 461 static struct kprobe trampoline_p = { 462 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 463 .pre_handler = trampoline_probe_handler 464 }; 465 466 int __init arch_init_kprobes(void) 467 { 468 /* Registering the trampoline code for the kret probe */ 469 return register_kprobe(&trampoline_p); 470 } 471 472 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 473 { 474 if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline) 475 return 1; 476 477 return 0; 478 } 479 480 void trap_is_kprobe(unsigned long address, struct pt_regs *regs) 481 { 482 notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP); 483 } 484