xref: /openbmc/linux/arch/arc/kernel/kprobes.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/kdebug.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 #include <asm/cacheflush.h>
17 #include <asm/current.h>
18 #include <asm/disasm.h>
19 
20 #define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
21 		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
22 
23 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
24 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
25 
26 int __kprobes arch_prepare_kprobe(struct kprobe *p)
27 {
28 	/* Attempt to probe at unaligned address */
29 	if ((unsigned long)p->addr & 0x01)
30 		return -EINVAL;
31 
32 	/* Address should not be in exception handling code */
33 
34 	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
35 	p->opcode = *p->addr;
36 
37 	return 0;
38 }
39 
40 void __kprobes arch_arm_kprobe(struct kprobe *p)
41 {
42 	*p->addr = UNIMP_S_INSTRUCTION;
43 
44 	flush_icache_range((unsigned long)p->addr,
45 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
46 }
47 
48 void __kprobes arch_disarm_kprobe(struct kprobe *p)
49 {
50 	*p->addr = p->opcode;
51 
52 	flush_icache_range((unsigned long)p->addr,
53 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
54 }
55 
56 void __kprobes arch_remove_kprobe(struct kprobe *p)
57 {
58 	arch_disarm_kprobe(p);
59 
60 	/* Can we remove the kprobe in the middle of kprobe handling? */
61 	if (p->ainsn.t1_addr) {
62 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
63 
64 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
65 				   (unsigned long)p->ainsn.t1_addr +
66 				   sizeof(kprobe_opcode_t));
67 
68 		p->ainsn.t1_addr = NULL;
69 	}
70 
71 	if (p->ainsn.t2_addr) {
72 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
73 
74 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
75 				   (unsigned long)p->ainsn.t2_addr +
76 				   sizeof(kprobe_opcode_t));
77 
78 		p->ainsn.t2_addr = NULL;
79 	}
80 }
81 
82 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
83 {
84 	kcb->prev_kprobe.kp = kprobe_running();
85 	kcb->prev_kprobe.status = kcb->kprobe_status;
86 }
87 
88 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
89 {
90 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
91 	kcb->kprobe_status = kcb->prev_kprobe.status;
92 }
93 
94 static inline void __kprobes set_current_kprobe(struct kprobe *p)
95 {
96 	__this_cpu_write(current_kprobe, p);
97 }
98 
99 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
100 				       struct pt_regs *regs)
101 {
102 	/* Remove the trap instructions inserted for single step and
103 	 * restore the original instructions
104 	 */
105 	if (p->ainsn.t1_addr) {
106 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
107 
108 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
109 				   (unsigned long)p->ainsn.t1_addr +
110 				   sizeof(kprobe_opcode_t));
111 
112 		p->ainsn.t1_addr = NULL;
113 	}
114 
115 	if (p->ainsn.t2_addr) {
116 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
117 
118 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
119 				   (unsigned long)p->ainsn.t2_addr +
120 				   sizeof(kprobe_opcode_t));
121 
122 		p->ainsn.t2_addr = NULL;
123 	}
124 
125 	return;
126 }
127 
128 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
129 {
130 	unsigned long next_pc;
131 	unsigned long tgt_if_br = 0;
132 	int is_branch;
133 	unsigned long bta;
134 
135 	/* Copy the opcode back to the kprobe location and execute the
136 	 * instruction. Because of this we will not be able to get into the
137 	 * same kprobe until this kprobe is done
138 	 */
139 	*(p->addr) = p->opcode;
140 
141 	flush_icache_range((unsigned long)p->addr,
142 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
143 
144 	/* Now we insert the trap at the next location after this instruction to
145 	 * single step. If it is a branch we insert the trap at possible branch
146 	 * targets
147 	 */
148 
149 	bta = regs->bta;
150 
151 	if (regs->status32 & 0x40) {
152 		/* We are in a delay slot with the branch taken */
153 
154 		next_pc = bta & ~0x01;
155 
156 		if (!p->ainsn.is_short) {
157 			if (bta & 0x01)
158 				regs->blink += 2;
159 			else {
160 				/* Branch not taken */
161 				next_pc += 2;
162 
163 				/* next pc is taken from bta after executing the
164 				 * delay slot instruction
165 				 */
166 				regs->bta += 2;
167 			}
168 		}
169 
170 		is_branch = 0;
171 	} else
172 		is_branch =
173 		    disasm_next_pc((unsigned long)p->addr, regs,
174 			(struct callee_regs *) current->thread.callee_reg,
175 			&next_pc, &tgt_if_br);
176 
177 	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
178 	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
179 	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
180 
181 	flush_icache_range((unsigned long)p->ainsn.t1_addr,
182 			   (unsigned long)p->ainsn.t1_addr +
183 			   sizeof(kprobe_opcode_t));
184 
185 	if (is_branch) {
186 		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
187 		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
188 		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
189 
190 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
191 				   (unsigned long)p->ainsn.t2_addr +
192 				   sizeof(kprobe_opcode_t));
193 	}
194 }
195 
196 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
197 {
198 	struct kprobe *p;
199 	struct kprobe_ctlblk *kcb;
200 
201 	preempt_disable();
202 
203 	kcb = get_kprobe_ctlblk();
204 	p = get_kprobe((unsigned long *)addr);
205 
206 	if (p) {
207 		/*
208 		 * We have reentered the kprobe_handler, since another kprobe
209 		 * was hit while within the handler, we save the original
210 		 * kprobes and single step on the instruction of the new probe
211 		 * without calling any user handlers to avoid recursive
212 		 * kprobes.
213 		 */
214 		if (kprobe_running()) {
215 			save_previous_kprobe(kcb);
216 			set_current_kprobe(p);
217 			kprobes_inc_nmissed_count(p);
218 			setup_singlestep(p, regs);
219 			kcb->kprobe_status = KPROBE_REENTER;
220 			return 1;
221 		}
222 
223 		set_current_kprobe(p);
224 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
225 
226 		/* If we have no pre-handler or it returned 0, we continue with
227 		 * normal processing. If we have a pre-handler and it returned
228 		 * non-zero - which is expected from setjmp_pre_handler for
229 		 * jprobe, we return without single stepping and leave that to
230 		 * the break-handler which is invoked by a kprobe from
231 		 * jprobe_return
232 		 */
233 		if (!p->pre_handler || !p->pre_handler(p, regs)) {
234 			setup_singlestep(p, regs);
235 			kcb->kprobe_status = KPROBE_HIT_SS;
236 		}
237 
238 		return 1;
239 	} else if (kprobe_running()) {
240 		p = __this_cpu_read(current_kprobe);
241 		if (p->break_handler && p->break_handler(p, regs)) {
242 			setup_singlestep(p, regs);
243 			kcb->kprobe_status = KPROBE_HIT_SS;
244 			return 1;
245 		}
246 	}
247 
248 	/* no_kprobe: */
249 	preempt_enable_no_resched();
250 	return 0;
251 }
252 
253 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
254 					 struct pt_regs *regs)
255 {
256 	struct kprobe *cur = kprobe_running();
257 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
258 
259 	if (!cur)
260 		return 0;
261 
262 	resume_execution(cur, addr, regs);
263 
264 	/* Rearm the kprobe */
265 	arch_arm_kprobe(cur);
266 
267 	/*
268 	 * When we return from trap instruction we go to the next instruction
269 	 * We restored the actual instruction in resume_exectuiont and we to
270 	 * return to the same address and execute it
271 	 */
272 	regs->ret = addr;
273 
274 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
275 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
276 		cur->post_handler(cur, regs, 0);
277 	}
278 
279 	if (kcb->kprobe_status == KPROBE_REENTER) {
280 		restore_previous_kprobe(kcb);
281 		goto out;
282 	}
283 
284 	reset_current_kprobe();
285 
286 out:
287 	preempt_enable_no_resched();
288 	return 1;
289 }
290 
291 /*
292  * Fault can be for the instruction being single stepped or for the
293  * pre/post handlers in the module.
294  * This is applicable for applications like user probes, where we have the
295  * probe in user space and the handlers in the kernel
296  */
297 
298 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
299 {
300 	struct kprobe *cur = kprobe_running();
301 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
302 
303 	switch (kcb->kprobe_status) {
304 	case KPROBE_HIT_SS:
305 	case KPROBE_REENTER:
306 		/*
307 		 * We are here because the instruction being single stepped
308 		 * caused the fault. We reset the current kprobe and allow the
309 		 * exception handler as if it is regular exception. In our
310 		 * case it doesn't matter because the system will be halted
311 		 */
312 		resume_execution(cur, (unsigned long)cur->addr, regs);
313 
314 		if (kcb->kprobe_status == KPROBE_REENTER)
315 			restore_previous_kprobe(kcb);
316 		else
317 			reset_current_kprobe();
318 
319 		preempt_enable_no_resched();
320 		break;
321 
322 	case KPROBE_HIT_ACTIVE:
323 	case KPROBE_HIT_SSDONE:
324 		/*
325 		 * We are here because the instructions in the pre/post handler
326 		 * caused the fault.
327 		 */
328 
329 		/* We increment the nmissed count for accounting,
330 		 * we can also use npre/npostfault count for accounting
331 		 * these specific fault cases.
332 		 */
333 		kprobes_inc_nmissed_count(cur);
334 
335 		/*
336 		 * We come here because instructions in the pre/post
337 		 * handler caused the page_fault, this could happen
338 		 * if handler tries to access user space by
339 		 * copy_from_user(), get_user() etc. Let the
340 		 * user-specified handler try to fix it first.
341 		 */
342 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
343 			return 1;
344 
345 		/*
346 		 * In case the user-specified fault handler returned zero,
347 		 * try to fix up.
348 		 */
349 		if (fixup_exception(regs))
350 			return 1;
351 
352 		/*
353 		 * fixup_exception() could not handle it,
354 		 * Let do_page_fault() fix it.
355 		 */
356 		break;
357 
358 	default:
359 		break;
360 	}
361 	return 0;
362 }
363 
364 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
365 				       unsigned long val, void *data)
366 {
367 	struct die_args *args = data;
368 	unsigned long addr = args->err;
369 	int ret = NOTIFY_DONE;
370 
371 	switch (val) {
372 	case DIE_IERR:
373 		if (arc_kprobe_handler(addr, args->regs))
374 			return NOTIFY_STOP;
375 		break;
376 
377 	case DIE_TRAP:
378 		if (arc_post_kprobe_handler(addr, args->regs))
379 			return NOTIFY_STOP;
380 		break;
381 
382 	default:
383 		break;
384 	}
385 
386 	return ret;
387 }
388 
389 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
390 {
391 	struct jprobe *jp = container_of(p, struct jprobe, kp);
392 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393 	unsigned long sp_addr = regs->sp;
394 
395 	kcb->jprobe_saved_regs = *regs;
396 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
397 	regs->ret = (unsigned long)(jp->entry);
398 
399 	return 1;
400 }
401 
402 void __kprobes jprobe_return(void)
403 {
404 	__asm__ __volatile__("unimp_s");
405 	return;
406 }
407 
408 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
409 {
410 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 	unsigned long sp_addr;
412 
413 	*regs = kcb->jprobe_saved_regs;
414 	sp_addr = regs->sp;
415 	memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr));
416 	preempt_enable_no_resched();
417 
418 	return 1;
419 }
420 
421 static void __used kretprobe_trampoline_holder(void)
422 {
423 	__asm__ __volatile__(".global kretprobe_trampoline\n"
424 			     "kretprobe_trampoline:\n" "nop\n");
425 }
426 
427 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
428 				      struct pt_regs *regs)
429 {
430 
431 	ri->ret_addr = (kprobe_opcode_t *) regs->blink;
432 
433 	/* Replace the return addr with trampoline addr */
434 	regs->blink = (unsigned long)&kretprobe_trampoline;
435 }
436 
437 static int __kprobes trampoline_probe_handler(struct kprobe *p,
438 					      struct pt_regs *regs)
439 {
440 	struct kretprobe_instance *ri = NULL;
441 	struct hlist_head *head, empty_rp;
442 	struct hlist_node *tmp;
443 	unsigned long flags, orig_ret_address = 0;
444 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
445 
446 	INIT_HLIST_HEAD(&empty_rp);
447 	kretprobe_hash_lock(current, &head, &flags);
448 
449 	/*
450 	 * It is possible to have multiple instances associated with a given
451 	 * task either because an multiple functions in the call path
452 	 * have a return probe installed on them, and/or more than one return
453 	 * return probe was registered for a target function.
454 	 *
455 	 * We can handle this because:
456 	 *     - instances are always inserted at the head of the list
457 	 *     - when multiple return probes are registered for the same
458 	 *       function, the first instance's ret_addr will point to the
459 	 *       real return address, and all the rest will point to
460 	 *       kretprobe_trampoline
461 	 */
462 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463 		if (ri->task != current)
464 			/* another task is sharing our hash bucket */
465 			continue;
466 
467 		if (ri->rp && ri->rp->handler)
468 			ri->rp->handler(ri, regs);
469 
470 		orig_ret_address = (unsigned long)ri->ret_addr;
471 		recycle_rp_inst(ri, &empty_rp);
472 
473 		if (orig_ret_address != trampoline_address) {
474 			/*
475 			 * This is the real return address. Any other
476 			 * instances associated with this task are for
477 			 * other calls deeper on the call stack
478 			 */
479 			break;
480 		}
481 	}
482 
483 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
484 	regs->ret = orig_ret_address;
485 
486 	reset_current_kprobe();
487 	kretprobe_hash_unlock(current, &flags);
488 	preempt_enable_no_resched();
489 
490 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
491 		hlist_del(&ri->hlist);
492 		kfree(ri);
493 	}
494 
495 	/* By returning a non zero value, we are telling the kprobe handler
496 	 * that we don't want the post_handler to run
497 	 */
498 	return 1;
499 }
500 
501 static struct kprobe trampoline_p = {
502 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
503 	.pre_handler = trampoline_probe_handler
504 };
505 
506 int __init arch_init_kprobes(void)
507 {
508 	/* Registering the trampoline code for the kret probe */
509 	return register_kprobe(&trampoline_p);
510 }
511 
512 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
513 {
514 	if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
515 		return 1;
516 
517 	return 0;
518 }
519 
520 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
521 {
522 	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
523 }
524