xref: /openbmc/linux/arch/arc/kernel/disasm.c (revision 8730046c)
1 /*
2  * several functions that help interpret ARC instructions
3  * used for unaligned accesses, kprobes and kgdb
4  *
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/types.h>
13 #include <linux/kprobes.h>
14 #include <linux/slab.h>
15 #include <linux/uaccess.h>
16 #include <asm/disasm.h>
17 
18 #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
19 	defined(CONFIG_KPROBES)
20 
21 /* disasm_instr: Analyses instruction at addr, stores
22  * findings in *state
23  */
24 void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
25 	int userspace, struct pt_regs *regs, struct callee_regs *cregs)
26 {
27 	int fieldA = 0;
28 	int fieldC = 0, fieldCisReg = 0;
29 	uint16_t word1 = 0, word0 = 0;
30 	int subopcode, is_linked, op_format;
31 	uint16_t *ins_ptr;
32 	uint16_t ins_buf[4];
33 	int bytes_not_copied = 0;
34 
35 	memset(state, 0, sizeof(struct disasm_state));
36 
37 	/* This fetches the upper part of the 32 bit instruction
38 	 * in both the cases of Little Endian or Big Endian configurations. */
39 	if (userspace) {
40 		bytes_not_copied = copy_from_user(ins_buf,
41 						(const void __user *) addr, 8);
42 		if (bytes_not_copied > 6)
43 			goto fault;
44 		ins_ptr = ins_buf;
45 	} else {
46 		ins_ptr = (uint16_t *) addr;
47 	}
48 
49 	word1 = *((uint16_t *)addr);
50 
51 	state->major_opcode = (word1 >> 11) & 0x1F;
52 
53 	/* Check if the instruction is 32 bit or 16 bit instruction */
54 	if (state->major_opcode < 0x0B) {
55 		if (bytes_not_copied > 4)
56 			goto fault;
57 		state->instr_len = 4;
58 		word0 = *((uint16_t *)(addr+2));
59 		state->words[0] = (word1 << 16) | word0;
60 	} else {
61 		state->instr_len = 2;
62 		state->words[0] = word1;
63 	}
64 
65 	/* Read the second word in case of limm */
66 	word1 = *((uint16_t *)(addr + state->instr_len));
67 	word0 = *((uint16_t *)(addr + state->instr_len + 2));
68 	state->words[1] = (word1 << 16) | word0;
69 
70 	switch (state->major_opcode) {
71 	case op_Bcc:
72 		state->is_branch = 1;
73 
74 		/* unconditional branch s25, conditional branch s21 */
75 		fieldA = (IS_BIT(state->words[0], 16)) ?
76 			FIELD_s25(state->words[0]) :
77 			FIELD_s21(state->words[0]);
78 
79 		state->delay_slot = IS_BIT(state->words[0], 5);
80 		state->target = fieldA + (addr & ~0x3);
81 		state->flow = direct_jump;
82 		break;
83 
84 	case op_BLcc:
85 		if (IS_BIT(state->words[0], 16)) {
86 			/* Branch and Link*/
87 			/* unconditional branch s25, conditional branch s21 */
88 			fieldA = (IS_BIT(state->words[0], 17)) ?
89 				(FIELD_s25(state->words[0]) & ~0x3) :
90 				FIELD_s21(state->words[0]);
91 
92 			state->flow = direct_call;
93 		} else {
94 			/*Branch On Compare */
95 			fieldA = FIELD_s9(state->words[0]) & ~0x3;
96 			state->flow = direct_jump;
97 		}
98 
99 		state->delay_slot = IS_BIT(state->words[0], 5);
100 		state->target = fieldA + (addr & ~0x3);
101 		state->is_branch = 1;
102 		break;
103 
104 	case op_LD:  /* LD<zz> a,[b,s9] */
105 		state->write = 0;
106 		state->di = BITS(state->words[0], 11, 11);
107 		if (state->di)
108 			break;
109 		state->x = BITS(state->words[0], 6, 6);
110 		state->zz = BITS(state->words[0], 7, 8);
111 		state->aa = BITS(state->words[0], 9, 10);
112 		state->wb_reg = FIELD_B(state->words[0]);
113 		if (state->wb_reg == REG_LIMM) {
114 			state->instr_len += 4;
115 			state->aa = 0;
116 			state->src1 = state->words[1];
117 		} else {
118 			state->src1 = get_reg(state->wb_reg, regs, cregs);
119 		}
120 		state->src2 = FIELD_s9(state->words[0]);
121 		state->dest = FIELD_A(state->words[0]);
122 		state->pref = (state->dest == REG_LIMM);
123 		break;
124 
125 	case op_ST:
126 		state->write = 1;
127 		state->di = BITS(state->words[0], 5, 5);
128 		if (state->di)
129 			break;
130 		state->aa = BITS(state->words[0], 3, 4);
131 		state->zz = BITS(state->words[0], 1, 2);
132 		state->src1 = FIELD_C(state->words[0]);
133 		if (state->src1 == REG_LIMM) {
134 			state->instr_len += 4;
135 			state->src1 = state->words[1];
136 		} else {
137 			state->src1 = get_reg(state->src1, regs, cregs);
138 		}
139 		state->wb_reg = FIELD_B(state->words[0]);
140 		if (state->wb_reg == REG_LIMM) {
141 			state->aa = 0;
142 			state->instr_len += 4;
143 			state->src2 = state->words[1];
144 		} else {
145 			state->src2 = get_reg(state->wb_reg, regs, cregs);
146 		}
147 		state->src3 = FIELD_s9(state->words[0]);
148 		break;
149 
150 	case op_MAJOR_4:
151 		subopcode = MINOR_OPCODE(state->words[0]);
152 		switch (subopcode) {
153 		case 32:	/* Jcc */
154 		case 33:	/* Jcc.D */
155 		case 34:	/* JLcc */
156 		case 35:	/* JLcc.D */
157 			is_linked = 0;
158 
159 			if (subopcode == 33 || subopcode == 35)
160 				state->delay_slot = 1;
161 
162 			if (subopcode == 34 || subopcode == 35)
163 				is_linked = 1;
164 
165 			fieldCisReg = 0;
166 			op_format = BITS(state->words[0], 22, 23);
167 			if (op_format == 0 || ((op_format == 3) &&
168 				(!IS_BIT(state->words[0], 5)))) {
169 				fieldC = FIELD_C(state->words[0]);
170 
171 				if (fieldC == REG_LIMM) {
172 					fieldC = state->words[1];
173 					state->instr_len += 4;
174 				} else {
175 					fieldCisReg = 1;
176 				}
177 			} else if (op_format == 1 || ((op_format == 3)
178 				&& (IS_BIT(state->words[0], 5)))) {
179 				fieldC = FIELD_C(state->words[0]);
180 			} else  {
181 				/* op_format == 2 */
182 				fieldC = FIELD_s12(state->words[0]);
183 			}
184 
185 			if (!fieldCisReg) {
186 				state->target = fieldC;
187 				state->flow = is_linked ?
188 					direct_call : direct_jump;
189 			} else {
190 				state->target = get_reg(fieldC, regs, cregs);
191 				state->flow = is_linked ?
192 					indirect_call : indirect_jump;
193 			}
194 			state->is_branch = 1;
195 			break;
196 
197 		case 40:	/* LPcc */
198 			if (BITS(state->words[0], 22, 23) == 3) {
199 				/* Conditional LPcc u7 */
200 				fieldC = FIELD_C(state->words[0]);
201 
202 				fieldC = fieldC << 1;
203 				fieldC += (addr & ~0x03);
204 				state->is_branch = 1;
205 				state->flow = direct_jump;
206 				state->target = fieldC;
207 			}
208 			/* For Unconditional lp, next pc is the fall through
209 			 * which is updated */
210 			break;
211 
212 		case 48 ... 55:	/* LD a,[b,c] */
213 			state->di = BITS(state->words[0], 15, 15);
214 			if (state->di)
215 				break;
216 			state->x = BITS(state->words[0], 16, 16);
217 			state->zz = BITS(state->words[0], 17, 18);
218 			state->aa = BITS(state->words[0], 22, 23);
219 			state->wb_reg = FIELD_B(state->words[0]);
220 			if (state->wb_reg == REG_LIMM) {
221 				state->instr_len += 4;
222 				state->src1 = state->words[1];
223 			} else {
224 				state->src1 = get_reg(state->wb_reg, regs,
225 						cregs);
226 			}
227 			state->src2 = FIELD_C(state->words[0]);
228 			if (state->src2 == REG_LIMM) {
229 				state->instr_len += 4;
230 				state->src2 = state->words[1];
231 			} else {
232 				state->src2 = get_reg(state->src2, regs,
233 					cregs);
234 			}
235 			state->dest = FIELD_A(state->words[0]);
236 			if (state->dest == REG_LIMM)
237 				state->pref = 1;
238 			break;
239 
240 		case 10:	/* MOV */
241 			/* still need to check for limm to extract instr len */
242 			/* MOV is special case because it only takes 2 args */
243 			switch (BITS(state->words[0], 22, 23)) {
244 			case 0: /* OP a,b,c */
245 				if (FIELD_C(state->words[0]) == REG_LIMM)
246 					state->instr_len += 4;
247 				break;
248 			case 1: /* OP a,b,u6 */
249 				break;
250 			case 2: /* OP b,b,s12 */
251 				break;
252 			case 3: /* OP.cc b,b,c/u6 */
253 				if ((!IS_BIT(state->words[0], 5)) &&
254 				    (FIELD_C(state->words[0]) == REG_LIMM))
255 					state->instr_len += 4;
256 				break;
257 			}
258 			break;
259 
260 
261 		default:
262 			/* Not a Load, Jump or Loop instruction */
263 			/* still need to check for limm to extract instr len */
264 			switch (BITS(state->words[0], 22, 23)) {
265 			case 0: /* OP a,b,c */
266 				if ((FIELD_B(state->words[0]) == REG_LIMM) ||
267 				    (FIELD_C(state->words[0]) == REG_LIMM))
268 					state->instr_len += 4;
269 				break;
270 			case 1: /* OP a,b,u6 */
271 				break;
272 			case 2: /* OP b,b,s12 */
273 				break;
274 			case 3: /* OP.cc b,b,c/u6 */
275 				if ((!IS_BIT(state->words[0], 5)) &&
276 				   ((FIELD_B(state->words[0]) == REG_LIMM) ||
277 				    (FIELD_C(state->words[0]) == REG_LIMM)))
278 					state->instr_len += 4;
279 				break;
280 			}
281 			break;
282 		}
283 		break;
284 
285 	/* 16 Bit Instructions */
286 	case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
287 		state->zz = BITS(state->words[0], 3, 4);
288 		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
289 		state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
290 		state->dest = FIELD_S_A(state->words[0]);
291 		break;
292 
293 	case op_ADD_MOV_CMP:
294 		/* check for limm, ignore mov_s h,b (== mov_s 0,b) */
295 		if ((BITS(state->words[0], 3, 4) < 3) &&
296 		    (FIELD_S_H(state->words[0]) == REG_LIMM))
297 			state->instr_len += 4;
298 		break;
299 
300 	case op_S:
301 		subopcode = BITS(state->words[0], 5, 7);
302 		switch (subopcode) {
303 		case 0:	/* j_s */
304 		case 1:	/* j_s.d */
305 		case 2:	/* jl_s */
306 		case 3:	/* jl_s.d */
307 			state->target = get_reg(FIELD_S_B(state->words[0]),
308 						regs, cregs);
309 			state->delay_slot = subopcode & 1;
310 			state->flow = (subopcode >= 2) ?
311 				direct_call : indirect_jump;
312 			break;
313 		case 7:
314 			switch (BITS(state->words[0], 8, 10)) {
315 			case 4:	/* jeq_s [blink] */
316 			case 5:	/* jne_s [blink] */
317 			case 6:	/* j_s [blink] */
318 			case 7:	/* j_s.d [blink] */
319 				state->delay_slot = (subopcode == 7);
320 				state->flow = indirect_jump;
321 				state->target = get_reg(31, regs, cregs);
322 			default:
323 				break;
324 			}
325 		default:
326 			break;
327 		}
328 		break;
329 
330 	case op_LD_S:	/* LD_S c, [b, u7] */
331 		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
332 		state->src2 = FIELD_S_u7(state->words[0]);
333 		state->dest = FIELD_S_C(state->words[0]);
334 		break;
335 
336 	case op_LDB_S:
337 	case op_STB_S:
338 		/* no further handling required as byte accesses should not
339 		 * cause an unaligned access exception */
340 		state->zz = 1;
341 		break;
342 
343 	case op_LDWX_S:	/* LDWX_S c, [b, u6] */
344 		state->x = 1;
345 		/* intentional fall-through */
346 
347 	case op_LDW_S:	/* LDW_S c, [b, u6] */
348 		state->zz = 2;
349 		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
350 		state->src2 = FIELD_S_u6(state->words[0]);
351 		state->dest = FIELD_S_C(state->words[0]);
352 		break;
353 
354 	case op_ST_S:	/* ST_S c, [b, u7] */
355 		state->write = 1;
356 		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
357 		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
358 		state->src3 = FIELD_S_u7(state->words[0]);
359 		break;
360 
361 	case op_STW_S:	/* STW_S c,[b,u6] */
362 		state->write = 1;
363 		state->zz = 2;
364 		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
365 		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
366 		state->src3 = FIELD_S_u6(state->words[0]);
367 		break;
368 
369 	case op_SP:	/* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
370 		/* note: we are ignoring possibility of:
371 		 * ADD_S, SUB_S, PUSH_S, POP_S as these should not
372 		 * cause unaliged exception anyway */
373 		state->write = BITS(state->words[0], 6, 6);
374 		state->zz = BITS(state->words[0], 5, 5);
375 		if (state->zz)
376 			break;	/* byte accesses should not come here */
377 		if (!state->write) {
378 			state->src1 = get_reg(28, regs, cregs);
379 			state->src2 = FIELD_S_u7(state->words[0]);
380 			state->dest = FIELD_S_B(state->words[0]);
381 		} else {
382 			state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
383 					cregs);
384 			state->src2 = get_reg(28, regs, cregs);
385 			state->src3 = FIELD_S_u7(state->words[0]);
386 		}
387 		break;
388 
389 	case op_GP:	/* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
390 		/* note: ADD_S r0, gp, s11 is ignored */
391 		state->zz = BITS(state->words[0], 9, 10);
392 		state->src1 = get_reg(26, regs, cregs);
393 		state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
394 			FIELD_S_s11(state->words[0]);
395 		state->dest = 0;
396 		break;
397 
398 	case op_Pcl:	/* LD_S b,[pcl,u10] */
399 		state->src1 = regs->ret & ~3;
400 		state->src2 = FIELD_S_u10(state->words[0]);
401 		state->dest = FIELD_S_B(state->words[0]);
402 		break;
403 
404 	case op_BR_S:
405 		state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
406 		state->flow = direct_jump;
407 		state->is_branch = 1;
408 		break;
409 
410 	case op_B_S:
411 		fieldA = (BITS(state->words[0], 9, 10) == 3) ?
412 			FIELD_S_s7(state->words[0]) :
413 			FIELD_S_s10(state->words[0]);
414 		state->target = fieldA + (addr & ~0x03);
415 		state->flow = direct_jump;
416 		state->is_branch = 1;
417 		break;
418 
419 	case op_BL_S:
420 		state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
421 		state->flow = direct_call;
422 		state->is_branch = 1;
423 		break;
424 
425 	default:
426 		break;
427 	}
428 
429 	if (bytes_not_copied <= (8 - state->instr_len))
430 		return;
431 
432 fault:	state->fault = 1;
433 }
434 
435 long __kprobes get_reg(int reg, struct pt_regs *regs,
436 		       struct callee_regs *cregs)
437 {
438 	long *p;
439 
440 	if (reg <= 12) {
441 		p = &regs->r0;
442 		return p[-reg];
443 	}
444 
445 	if (cregs && (reg <= 25)) {
446 		p = &cregs->r13;
447 		return p[13-reg];
448 	}
449 
450 	if (reg == 26)
451 		return regs->r26;
452 	if (reg == 27)
453 		return regs->fp;
454 	if (reg == 28)
455 		return regs->sp;
456 	if (reg == 31)
457 		return regs->blink;
458 
459 	return 0;
460 }
461 
462 void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
463 		struct callee_regs *cregs)
464 {
465 	long *p;
466 
467 	switch (reg) {
468 	case 0 ... 12:
469 		p = &regs->r0;
470 		p[-reg] = val;
471 		break;
472 	case 13 ... 25:
473 		if (cregs) {
474 			p = &cregs->r13;
475 			p[13-reg] = val;
476 		}
477 		break;
478 	case 26:
479 		regs->r26 = val;
480 		break;
481 	case 27:
482 		regs->fp = val;
483 		break;
484 	case 28:
485 		regs->sp = val;
486 		break;
487 	case 31:
488 		regs->blink = val;
489 		break;
490 	default:
491 		break;
492 	}
493 }
494 
495 /*
496  * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
497  * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
498  *
499  * If @pc is a branch
500  *	-@tgt_if_br is set to branch target.
501  *	-If branch has delay slot, @next_pc updated with actual next PC.
502  */
503 int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
504 			     struct callee_regs *cregs,
505 			     unsigned long *next_pc, unsigned long *tgt_if_br)
506 {
507 	struct disasm_state instr;
508 
509 	memset(&instr, 0, sizeof(struct disasm_state));
510 	disasm_instr(pc, &instr, 0, regs, cregs);
511 
512 	*next_pc = pc + instr.instr_len;
513 
514 	/* Instruction with possible two targets branch, jump and loop */
515 	if (instr.is_branch)
516 		*tgt_if_br = instr.target;
517 
518 	/* For the instructions with delay slots, the fall through is the
519 	 * instruction following the instruction in delay slot.
520 	 */
521 	 if (instr.delay_slot) {
522 		struct disasm_state instr_d;
523 
524 		disasm_instr(*next_pc, &instr_d, 0, regs, cregs);
525 
526 		*next_pc += instr_d.instr_len;
527 	 }
528 
529 	 /* Zero Overhead Loop - end of the loop */
530 	if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
531 		&& (regs->lp_count > 1)) {
532 		*next_pc = regs->lp_start;
533 	}
534 
535 	return instr.is_branch;
536 }
537 
538 #endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */
539