xref: /openbmc/linux/arch/arc/include/asm/mmu_context.h (revision c6011553)
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * vineetg: May 2011
9  *  -Refactored get_new_mmu_context( ) to only handle live-mm.
10  *   retiring-mm handled in other hooks
11  *
12  * Vineetg: March 25th, 2008: Bug #92690
13  *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
14  *
15  * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
16  */
17 
18 #ifndef _ASM_ARC_MMU_CONTEXT_H
19 #define _ASM_ARC_MMU_CONTEXT_H
20 
21 #include <asm/arcregs.h>
22 #include <asm/tlb.h>
23 
24 #include <asm-generic/mm_hooks.h>
25 
26 /*		ARC700 ASID Management
27  *
28  * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
29  * with same vaddr (different tasks) to co-exit. This provides for
30  * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
31  *
32  * Linux assigns each task a unique ASID. A simple round-robin allocation
33  * of H/w ASID is done using software tracker @asid_cache.
34  * When it reaches max 255, the allocation cycle starts afresh by flushing
35  * the entire TLB and wrapping ASID back to zero.
36  *
37  * For book-keeping, Linux uses a couple of data-structures:
38  *  -mm_struct has an @asid field to keep a note of task's ASID (needed at the
39  *   time of say switch_mm( )
40  *  -An array of mm structs @asid_mm_map[] for asid->mm the reverse mapping,
41  *  given an ASID, finding the mm struct associated.
42  *
43  * The round-robin allocation algorithm allows for ASID stealing.
44  * If asid tracker is at "x-1", a new req will allocate "x", even if "x" was
45  * already assigned to another (switched-out) task. Obviously the prev owner
46  * is marked with an invalid ASID to make it request for a new ASID when it
47  * gets scheduled next time. However its TLB entries (with ASID "x") could
48  * exist, which must be cleared before the same ASID is used by the new owner.
49  * Flushing them would be plausible but costly solution. Instead we force a
50  * allocation policy quirk, which ensures that a stolen ASID won't have any
51  * TLB entries associates, alleviating the need to flush.
52  * The quirk essentially is not allowing ASID allocated in prev cycle
53  * to be used past a roll-over in the next cycle.
54  * When this happens (i.e. task ASID > asid tracker), task needs to refresh
55  * its ASID, aligning it to current value of tracker. If the task doesn't get
56  * scheduled past a roll-over, hence its ASID is not yet realigned with
57  * tracker, such ASID is anyways safely reusable because it is
58  * gauranteed that TLB entries with that ASID wont exist.
59  */
60 
61 #define FIRST_ASID  0
62 #define MAX_ASID    255			/* 8 bit PID field in PID Aux reg */
63 #define NO_ASID     (MAX_ASID + 1)	/* ASID Not alloc to mmu ctxt */
64 #define NUM_ASID    ((MAX_ASID - FIRST_ASID) + 1)
65 
66 /* ASID to mm struct mapping */
67 extern struct mm_struct *asid_mm_map[NUM_ASID + 1];
68 
69 extern int asid_cache;
70 
71 /*
72  * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
73  * Also set the MMU PID register to existing/updated ASID
74  */
75 static inline void get_new_mmu_context(struct mm_struct *mm)
76 {
77 	struct mm_struct *prev_owner;
78 	unsigned long flags;
79 
80 	local_irq_save(flags);
81 
82 	/*
83 	 * Move to new ASID if it was not from current alloc-cycle/generation.
84 	 *
85 	 * Note: Callers needing new ASID unconditionally, independent of
86 	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
87 	 * 	 first need to destroy the context, setting it to invalid
88 	 * 	 value.
89 	 */
90 	if (mm->context.asid <= asid_cache)
91 		goto set_hw;
92 
93 	/*
94 	 * Relinquish the currently owned ASID (if any).
95 	 * Doing unconditionally saves a cmp-n-branch; for already unused
96 	 * ASID slot, the value was/remains NULL
97 	 */
98 	asid_mm_map[mm->context.asid] = (struct mm_struct *)NULL;
99 
100 	/* move to new ASID */
101 	if (++asid_cache > MAX_ASID) {	/* ASID roll-over */
102 		asid_cache = FIRST_ASID;
103 		flush_tlb_all();
104 	}
105 
106 	/*
107 	 * Is next ASID already owned by some-one else (we are stealing it).
108 	 * If so, let the orig owner be aware of this, so when it runs, it
109 	 * asks for a brand new ASID. This would only happen for a long-lived
110 	 * task with ASID from prev allocation cycle (before ASID roll-over).
111 	 *
112 	 * This might look wrong - if we are re-using some other task's ASID,
113 	 * won't we use it's stale TLB entries too. Actually the algorithm takes
114 	 * care of such a case: it ensures that task with ASID from prev alloc
115 	 * cycle, when scheduled will refresh it's ASID
116 	 * The stealing scenario described here will only happen if that task
117 	 * didn't get a chance to refresh it's ASID - implying stale entries
118 	 * won't exist.
119 	 */
120 	prev_owner = asid_mm_map[asid_cache];
121 	if (prev_owner)
122 		prev_owner->context.asid = NO_ASID;
123 
124 	/* Assign new ASID to tsk */
125 	asid_mm_map[asid_cache] = mm;
126 	mm->context.asid = asid_cache;
127 
128 set_hw:
129 	write_aux_reg(ARC_REG_PID, mm->context.asid | MMU_ENABLE);
130 
131 	local_irq_restore(flags);
132 }
133 
134 /*
135  * Initialize the context related info for a new mm_struct
136  * instance.
137  */
138 static inline int
139 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
140 {
141 	mm->context.asid = NO_ASID;
142 	return 0;
143 }
144 
145 /* Prepare the MMU for task: setup PID reg with allocated ASID
146     If task doesn't have an ASID (never alloc or stolen, get a new ASID)
147 */
148 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
149 			     struct task_struct *tsk)
150 {
151 #ifndef CONFIG_SMP
152 	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
153 	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
154 #endif
155 
156 	get_new_mmu_context(next);
157 }
158 
159 /*
160  * Called at the time of execve() to get a new ASID
161  * Note the subtlety here: get_new_mmu_context() behaves differently here
162  * vs. in switch_mm(). Here it always returns a new ASID, because mm has
163  * an unallocated "initial" value, while in latter, it moves to a new ASID,
164  * only if it was unallocated
165  */
166 #define activate_mm(prev, next)		switch_mm(prev, next, NULL)
167 
168 static inline void destroy_context(struct mm_struct *mm)
169 {
170 	unsigned long flags;
171 
172 	local_irq_save(flags);
173 
174 	asid_mm_map[mm->context.asid] = NULL;
175 	mm->context.asid = NO_ASID;
176 
177 	local_irq_restore(flags);
178 }
179 
180 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
181  * for retiring-mm. However destroy_context( ) still needs to do that because
182  * between mm_release( ) = >deactive_mm( ) and
183  * mmput => .. => __mmdrop( ) => destroy_context( )
184  * there is a good chance that task gets sched-out/in, making it's ASID valid
185  * again (this teased me for a whole day).
186  */
187 #define deactivate_mm(tsk, mm)   do { } while (0)
188 
189 #define enter_lazy_tlb(mm, tsk)
190 
191 #endif /* __ASM_ARC_MMU_CONTEXT_H */
192