1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 4 * 5 * vineetg: May 2011 6 * -Refactored get_new_mmu_context( ) to only handle live-mm. 7 * retiring-mm handled in other hooks 8 * 9 * Vineetg: March 25th, 2008: Bug #92690 10 * -Major rewrite of Core ASID allocation routine get_new_mmu_context 11 * 12 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004 13 */ 14 15 #ifndef _ASM_ARC_MMU_CONTEXT_H 16 #define _ASM_ARC_MMU_CONTEXT_H 17 18 #include <asm/arcregs.h> 19 #include <asm/tlb.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm-generic/mm_hooks.h> 23 24 /* ARC700 ASID Management 25 * 26 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries 27 * with same vaddr (different tasks) to co-exit. This provides for 28 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch 29 * 30 * Linux assigns each task a unique ASID. A simple round-robin allocation 31 * of H/w ASID is done using software tracker @asid_cpu. 32 * When it reaches max 255, the allocation cycle starts afresh by flushing 33 * the entire TLB and wrapping ASID back to zero. 34 * 35 * A new allocation cycle, post rollover, could potentially reassign an ASID 36 * to a different task. Thus the rule is to refresh the ASID in a new cycle. 37 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits 38 * serve as cycle/generation indicator and natural 32 bit unsigned math 39 * automagically increments the generation when lower 8 bits rollover. 40 */ 41 42 #define MM_CTXT_ASID_MASK 0x000000ff /* MMU PID reg :8 bit PID */ 43 #define MM_CTXT_CYCLE_MASK (~MM_CTXT_ASID_MASK) 44 45 #define MM_CTXT_FIRST_CYCLE (MM_CTXT_ASID_MASK + 1) 46 #define MM_CTXT_NO_ASID 0UL 47 48 #define asid_mm(mm, cpu) mm->context.asid[cpu] 49 #define hw_pid(mm, cpu) (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK) 50 51 DECLARE_PER_CPU(unsigned int, asid_cache); 52 #define asid_cpu(cpu) per_cpu(asid_cache, cpu) 53 54 /* 55 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle) 56 * Also set the MMU PID register to existing/updated ASID 57 */ 58 static inline void get_new_mmu_context(struct mm_struct *mm) 59 { 60 const unsigned int cpu = smp_processor_id(); 61 unsigned long flags; 62 63 local_irq_save(flags); 64 65 /* 66 * Move to new ASID if it was not from current alloc-cycle/generation. 67 * This is done by ensuring that the generation bits in both mm->ASID 68 * and cpu's ASID counter are exactly same. 69 * 70 * Note: Callers needing new ASID unconditionally, independent of 71 * generation, e.g. local_flush_tlb_mm() for forking parent, 72 * first need to destroy the context, setting it to invalid 73 * value. 74 */ 75 if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK)) 76 goto set_hw; 77 78 /* move to new ASID and handle rollover */ 79 if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) { 80 81 local_flush_tlb_all(); 82 83 /* 84 * Above check for rollover of 8 bit ASID in 32 bit container. 85 * If the container itself wrapped around, set it to a non zero 86 * "generation" to distinguish from no context 87 */ 88 if (!asid_cpu(cpu)) 89 asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE; 90 } 91 92 /* Assign new ASID to tsk */ 93 asid_mm(mm, cpu) = asid_cpu(cpu); 94 95 set_hw: 96 write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE); 97 98 local_irq_restore(flags); 99 } 100 101 /* 102 * Initialize the context related info for a new mm_struct 103 * instance. 104 */ 105 static inline int 106 init_new_context(struct task_struct *tsk, struct mm_struct *mm) 107 { 108 int i; 109 110 for_each_possible_cpu(i) 111 asid_mm(mm, i) = MM_CTXT_NO_ASID; 112 113 return 0; 114 } 115 116 static inline void destroy_context(struct mm_struct *mm) 117 { 118 unsigned long flags; 119 120 /* Needed to elide CONFIG_DEBUG_PREEMPT warning */ 121 local_irq_save(flags); 122 asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID; 123 local_irq_restore(flags); 124 } 125 126 /* Prepare the MMU for task: setup PID reg with allocated ASID 127 If task doesn't have an ASID (never alloc or stolen, get a new ASID) 128 */ 129 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, 130 struct task_struct *tsk) 131 { 132 const int cpu = smp_processor_id(); 133 134 /* 135 * Note that the mm_cpumask is "aggregating" only, we don't clear it 136 * for the switched-out task, unlike some other arches. 137 * It is used to enlist cpus for sending TLB flush IPIs and not sending 138 * it to CPUs where a task once ran-on, could cause stale TLB entry 139 * re-use, specially for a multi-threaded task. 140 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps. 141 * For a non-aggregating mm_cpumask, IPI not sent C1, and if T1 142 * were to re-migrate to C1, it could access the unmapped region 143 * via any existing stale TLB entries. 144 */ 145 cpumask_set_cpu(cpu, mm_cpumask(next)); 146 147 #ifdef ARC_USE_SCRATCH_REG 148 /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */ 149 write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd); 150 #endif 151 152 get_new_mmu_context(next); 153 } 154 155 /* 156 * Called at the time of execve() to get a new ASID 157 * Note the subtlety here: get_new_mmu_context() behaves differently here 158 * vs. in switch_mm(). Here it always returns a new ASID, because mm has 159 * an unallocated "initial" value, while in latter, it moves to a new ASID, 160 * only if it was unallocated 161 */ 162 #define activate_mm(prev, next) switch_mm(prev, next, NULL) 163 164 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping 165 * for retiring-mm. However destroy_context( ) still needs to do that because 166 * between mm_release( ) = >deactive_mm( ) and 167 * mmput => .. => __mmdrop( ) => destroy_context( ) 168 * there is a good chance that task gets sched-out/in, making it's ASID valid 169 * again (this teased me for a whole day). 170 */ 171 #define deactivate_mm(tsk, mm) do { } while (0) 172 173 #define enter_lazy_tlb(mm, tsk) 174 175 #endif /* __ASM_ARC_MMU_CONTEXT_H */ 176