xref: /openbmc/linux/arch/alpha/lib/ev6-clear_user.S (revision c819e2cf)
1/*
2 * arch/alpha/lib/ev6-clear_user.S
3 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
4 *
5 * Zero user space, handling exceptions as we go.
6 *
7 * We have to make sure that $0 is always up-to-date and contains the
8 * right "bytes left to zero" value (and that it is updated only _after_
9 * a successful copy).  There is also some rather minor exception setup
10 * stuff.
11 *
12 * NOTE! This is not directly C-callable, because the calling semantics
13 * are different:
14 *
15 * Inputs:
16 *	length in $0
17 *	destination address in $6
18 *	exception pointer in $7
19 *	return address in $28 (exceptions expect it there)
20 *
21 * Outputs:
22 *	bytes left to copy in $0
23 *
24 * Clobbers:
25 *	$1,$2,$3,$4,$5,$6
26 *
27 * Much of the information about 21264 scheduling/coding comes from:
28 *	Compiler Writer's Guide for the Alpha 21264
29 *	abbreviated as 'CWG' in other comments here
30 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
31 * Scheduling notation:
32 *	E	- either cluster
33 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
34 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
35 * Try not to change the actual algorithm if possible for consistency.
36 * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
37 * From perusing the source code context where this routine is called, it is
38 * a fair assumption that significant fractions of entire pages are zeroed, so
39 * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
40 * ASSUMPTION:
41 *	The believed purpose of only updating $0 after a store is that a signal
42 *	may come along during the execution of this chunk of code, and we don't
43 *	want to leave a hole (and we also want to avoid repeating lots of work)
44 */
45
46/* Allow an exception for an insn; exit if we get one.  */
47#define EX(x,y...)			\
48	99: x,##y;			\
49	.section __ex_table,"a";	\
50	.long 99b - .;			\
51	lda $31, $exception-99b($31); 	\
52	.previous
53
54	.set noat
55	.set noreorder
56	.align 4
57
58	.globl __do_clear_user
59	.ent __do_clear_user
60	.frame	$30, 0, $28
61	.prologue 0
62
63				# Pipeline info : Slotting & Comments
64__do_clear_user:
65	and	$6, 7, $4	# .. E  .. ..	: find dest head misalignment
66	beq	$0, $zerolength # U  .. .. ..	:  U L U L
67
68	addq	$0, $4, $1	# .. .. .. E	: bias counter
69	and	$1, 7, $2	# .. .. E  ..	: number of misaligned bytes in tail
70# Note - we never actually use $2, so this is a moot computation
71# and we can rewrite this later...
72	srl	$1, 3, $1	# .. E  .. ..	: number of quadwords to clear
73	beq	$4, $headalign	# U  .. .. ..	: U L U L
74
75/*
76 * Head is not aligned.  Write (8 - $4) bytes to head of destination
77 * This means $6 is known to be misaligned
78 */
79	EX( ldq_u $5, 0($6) )	# .. .. .. L	: load dst word to mask back in
80	beq	$1, $onebyte	# .. .. U  ..	: sub-word store?
81	mskql	$5, $6, $5	# .. U  .. ..	: take care of misaligned head
82	addq	$6, 8, $6	# E  .. .. .. 	: L U U L
83
84	EX( stq_u $5, -8($6) )	# .. .. .. L	:
85	subq	$1, 1, $1	# .. .. E  ..	:
86	addq	$0, $4, $0	# .. E  .. ..	: bytes left -= 8 - misalignment
87	subq	$0, 8, $0	# E  .. .. ..	: U L U L
88
89	.align	4
90/*
91 * (The .align directive ought to be a moot point)
92 * values upon initial entry to the loop
93 * $1 is number of quadwords to clear (zero is a valid value)
94 * $2 is number of trailing bytes (0..7) ($2 never used...)
95 * $6 is known to be aligned 0mod8
96 */
97$headalign:
98	subq	$1, 16, $4	# .. .. .. E	: If < 16, we can not use the huge loop
99	and	$6, 0x3f, $2	# .. .. E  ..	: Forward work for huge loop
100	subq	$2, 0x40, $3	# .. E  .. ..	: bias counter (huge loop)
101	blt	$4, $trailquad	# U  .. .. ..	: U L U L
102
103/*
104 * We know that we're going to do at least 16 quads, which means we are
105 * going to be able to use the large block clear loop at least once.
106 * Figure out how many quads we need to clear before we are 0mod64 aligned
107 * so we can use the wh64 instruction.
108 */
109
110	nop			# .. .. .. E
111	nop			# .. .. E  ..
112	nop			# .. E  .. ..
113	beq	$3, $bigalign	# U  .. .. ..	: U L U L : Aligned 0mod64
114
115$alignmod64:
116	EX( stq_u $31, 0($6) )	# .. .. .. L
117	addq	$3, 8, $3	# .. .. E  ..
118	subq	$0, 8, $0	# .. E  .. ..
119	nop			# E  .. .. ..	: U L U L
120
121	nop			# .. .. .. E
122	subq	$1, 1, $1	# .. .. E  ..
123	addq	$6, 8, $6	# .. E  .. ..
124	blt	$3, $alignmod64	# U  .. .. ..	: U L U L
125
126$bigalign:
127/*
128 * $0 is the number of bytes left
129 * $1 is the number of quads left
130 * $6 is aligned 0mod64
131 * we know that we'll be taking a minimum of one trip through
132 * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
133 * We are _not_ going to update $0 after every single store.  That
134 * would be silly, because there will be cross-cluster dependencies
135 * no matter how the code is scheduled.  By doing it in slightly
136 * staggered fashion, we can still do this loop in 5 fetches
137 * The worse case will be doing two extra quads in some future execution,
138 * in the event of an interrupted clear.
139 * Assumes the wh64 needs to be for 2 trips through the loop in the future
140 * The wh64 is issued on for the starting destination address for trip +2
141 * through the loop, and if there are less than two trips left, the target
142 * address will be for the current trip.
143 */
144	nop			# E :
145	nop			# E :
146	nop			# E :
147	bis	$6,$6,$3	# E : U L U L : Initial wh64 address is dest
148	/* This might actually help for the current trip... */
149
150$do_wh64:
151	wh64	($3)		# .. .. .. L1	: memory subsystem hint
152	subq	$1, 16, $4	# .. .. E  ..	: Forward calculation - repeat the loop?
153	EX( stq_u $31, 0($6) )	# .. L  .. ..
154	subq	$0, 8, $0	# E  .. .. ..	: U L U L
155
156	addq	$6, 128, $3	# E : Target address of wh64
157	EX( stq_u $31, 8($6) )	# L :
158	EX( stq_u $31, 16($6) )	# L :
159	subq	$0, 16, $0	# E : U L L U
160
161	nop			# E :
162	EX( stq_u $31, 24($6) )	# L :
163	EX( stq_u $31, 32($6) )	# L :
164	subq	$0, 168, $5	# E : U L L U : two trips through the loop left?
165	/* 168 = 192 - 24, since we've already completed some stores */
166
167	subq	$0, 16, $0	# E :
168	EX( stq_u $31, 40($6) )	# L :
169	EX( stq_u $31, 48($6) )	# L :
170	cmovlt	$5, $6, $3	# E : U L L U : Latency 2, extra mapping cycle
171
172	subq	$1, 8, $1	# E :
173	subq	$0, 16, $0	# E :
174	EX( stq_u $31, 56($6) )	# L :
175	nop			# E : U L U L
176
177	nop			# E :
178	subq	$0, 8, $0	# E :
179	addq	$6, 64, $6	# E :
180	bge	$4, $do_wh64	# U : U L U L
181
182$trailquad:
183	# zero to 16 quadwords left to store, plus any trailing bytes
184	# $1 is the number of quadwords left to go.
185	#
186	nop			# .. .. .. E
187	nop			# .. .. E  ..
188	nop			# .. E  .. ..
189	beq	$1, $trailbytes	# U  .. .. ..	: U L U L : Only 0..7 bytes to go
190
191$onequad:
192	EX( stq_u $31, 0($6) )	# .. .. .. L
193	subq	$1, 1, $1	# .. .. E  ..
194	subq	$0, 8, $0	# .. E  .. ..
195	nop			# E  .. .. ..	: U L U L
196
197	nop			# .. .. .. E
198	nop			# .. .. E  ..
199	addq	$6, 8, $6	# .. E  .. ..
200	bgt	$1, $onequad	# U  .. .. ..	: U L U L
201
202	# We have an unknown number of bytes left to go.
203$trailbytes:
204	nop			# .. .. .. E
205	nop			# .. .. E  ..
206	nop			# .. E  .. ..
207	beq	$0, $zerolength	# U  .. .. ..	: U L U L
208
209	# $0 contains the number of bytes left to copy (0..31)
210	# so we will use $0 as the loop counter
211	# We know for a fact that $0 > 0 zero due to previous context
212$onebyte:
213	EX( stb $31, 0($6) )	# .. .. .. L
214	subq	$0, 1, $0	# .. .. E  ..	:
215	addq	$6, 1, $6	# .. E  .. ..	:
216	bgt	$0, $onebyte	# U  .. .. ..	: U L U L
217
218$zerolength:
219$exception:			# Destination for exception recovery(?)
220	nop			# .. .. .. E	:
221	nop			# .. .. E  ..	:
222	nop			# .. E  .. ..	:
223	ret	$31, ($28), 1	# L0 .. .. ..	: L U L U
224	.end __do_clear_user
225
226