xref: /openbmc/linux/arch/alpha/lib/ev6-clear_user.S (revision 1c2dd16a)
1/*
2 * arch/alpha/lib/ev6-clear_user.S
3 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
4 *
5 * Zero user space, handling exceptions as we go.
6 *
7 * We have to make sure that $0 is always up-to-date and contains the
8 * right "bytes left to zero" value (and that it is updated only _after_
9 * a successful copy).  There is also some rather minor exception setup
10 * stuff.
11 *
12 * Much of the information about 21264 scheduling/coding comes from:
13 *	Compiler Writer's Guide for the Alpha 21264
14 *	abbreviated as 'CWG' in other comments here
15 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
16 * Scheduling notation:
17 *	E	- either cluster
18 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
19 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
20 * Try not to change the actual algorithm if possible for consistency.
21 * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
22 * From perusing the source code context where this routine is called, it is
23 * a fair assumption that significant fractions of entire pages are zeroed, so
24 * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
25 * ASSUMPTION:
26 *	The believed purpose of only updating $0 after a store is that a signal
27 *	may come along during the execution of this chunk of code, and we don't
28 *	want to leave a hole (and we also want to avoid repeating lots of work)
29 */
30
31#include <asm/export.h>
32/* Allow an exception for an insn; exit if we get one.  */
33#define EX(x,y...)			\
34	99: x,##y;			\
35	.section __ex_table,"a";	\
36	.long 99b - .;			\
37	lda $31, $exception-99b($31); 	\
38	.previous
39
40	.set noat
41	.set noreorder
42	.align 4
43
44	.globl __clear_user
45	.ent __clear_user
46	.frame	$30, 0, $26
47	.prologue 0
48
49				# Pipeline info : Slotting & Comments
50__clear_user:
51	and	$17, $17, $0
52	and	$16, 7, $4	# .. E  .. ..	: find dest head misalignment
53	beq	$0, $zerolength # U  .. .. ..	:  U L U L
54
55	addq	$0, $4, $1	# .. .. .. E	: bias counter
56	and	$1, 7, $2	# .. .. E  ..	: number of misaligned bytes in tail
57# Note - we never actually use $2, so this is a moot computation
58# and we can rewrite this later...
59	srl	$1, 3, $1	# .. E  .. ..	: number of quadwords to clear
60	beq	$4, $headalign	# U  .. .. ..	: U L U L
61
62/*
63 * Head is not aligned.  Write (8 - $4) bytes to head of destination
64 * This means $16 is known to be misaligned
65 */
66	EX( ldq_u $5, 0($16) )	# .. .. .. L	: load dst word to mask back in
67	beq	$1, $onebyte	# .. .. U  ..	: sub-word store?
68	mskql	$5, $16, $5	# .. U  .. ..	: take care of misaligned head
69	addq	$16, 8, $16	# E  .. .. .. 	: L U U L
70
71	EX( stq_u $5, -8($16) )	# .. .. .. L	:
72	subq	$1, 1, $1	# .. .. E  ..	:
73	addq	$0, $4, $0	# .. E  .. ..	: bytes left -= 8 - misalignment
74	subq	$0, 8, $0	# E  .. .. ..	: U L U L
75
76	.align	4
77/*
78 * (The .align directive ought to be a moot point)
79 * values upon initial entry to the loop
80 * $1 is number of quadwords to clear (zero is a valid value)
81 * $2 is number of trailing bytes (0..7) ($2 never used...)
82 * $16 is known to be aligned 0mod8
83 */
84$headalign:
85	subq	$1, 16, $4	# .. .. .. E	: If < 16, we can not use the huge loop
86	and	$16, 0x3f, $2	# .. .. E  ..	: Forward work for huge loop
87	subq	$2, 0x40, $3	# .. E  .. ..	: bias counter (huge loop)
88	blt	$4, $trailquad	# U  .. .. ..	: U L U L
89
90/*
91 * We know that we're going to do at least 16 quads, which means we are
92 * going to be able to use the large block clear loop at least once.
93 * Figure out how many quads we need to clear before we are 0mod64 aligned
94 * so we can use the wh64 instruction.
95 */
96
97	nop			# .. .. .. E
98	nop			# .. .. E  ..
99	nop			# .. E  .. ..
100	beq	$3, $bigalign	# U  .. .. ..	: U L U L : Aligned 0mod64
101
102$alignmod64:
103	EX( stq_u $31, 0($16) )	# .. .. .. L
104	addq	$3, 8, $3	# .. .. E  ..
105	subq	$0, 8, $0	# .. E  .. ..
106	nop			# E  .. .. ..	: U L U L
107
108	nop			# .. .. .. E
109	subq	$1, 1, $1	# .. .. E  ..
110	addq	$16, 8, $16	# .. E  .. ..
111	blt	$3, $alignmod64	# U  .. .. ..	: U L U L
112
113$bigalign:
114/*
115 * $0 is the number of bytes left
116 * $1 is the number of quads left
117 * $16 is aligned 0mod64
118 * we know that we'll be taking a minimum of one trip through
119 * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
120 * We are _not_ going to update $0 after every single store.  That
121 * would be silly, because there will be cross-cluster dependencies
122 * no matter how the code is scheduled.  By doing it in slightly
123 * staggered fashion, we can still do this loop in 5 fetches
124 * The worse case will be doing two extra quads in some future execution,
125 * in the event of an interrupted clear.
126 * Assumes the wh64 needs to be for 2 trips through the loop in the future
127 * The wh64 is issued on for the starting destination address for trip +2
128 * through the loop, and if there are less than two trips left, the target
129 * address will be for the current trip.
130 */
131	nop			# E :
132	nop			# E :
133	nop			# E :
134	bis	$16,$16,$3	# E : U L U L : Initial wh64 address is dest
135	/* This might actually help for the current trip... */
136
137$do_wh64:
138	wh64	($3)		# .. .. .. L1	: memory subsystem hint
139	subq	$1, 16, $4	# .. .. E  ..	: Forward calculation - repeat the loop?
140	EX( stq_u $31, 0($16) )	# .. L  .. ..
141	subq	$0, 8, $0	# E  .. .. ..	: U L U L
142
143	addq	$16, 128, $3	# E : Target address of wh64
144	EX( stq_u $31, 8($16) )	# L :
145	EX( stq_u $31, 16($16) )	# L :
146	subq	$0, 16, $0	# E : U L L U
147
148	nop			# E :
149	EX( stq_u $31, 24($16) )	# L :
150	EX( stq_u $31, 32($16) )	# L :
151	subq	$0, 168, $5	# E : U L L U : two trips through the loop left?
152	/* 168 = 192 - 24, since we've already completed some stores */
153
154	subq	$0, 16, $0	# E :
155	EX( stq_u $31, 40($16) )	# L :
156	EX( stq_u $31, 48($16) )	# L :
157	cmovlt	$5, $16, $3	# E : U L L U : Latency 2, extra mapping cycle
158
159	subq	$1, 8, $1	# E :
160	subq	$0, 16, $0	# E :
161	EX( stq_u $31, 56($16) )	# L :
162	nop			# E : U L U L
163
164	nop			# E :
165	subq	$0, 8, $0	# E :
166	addq	$16, 64, $16	# E :
167	bge	$4, $do_wh64	# U : U L U L
168
169$trailquad:
170	# zero to 16 quadwords left to store, plus any trailing bytes
171	# $1 is the number of quadwords left to go.
172	#
173	nop			# .. .. .. E
174	nop			# .. .. E  ..
175	nop			# .. E  .. ..
176	beq	$1, $trailbytes	# U  .. .. ..	: U L U L : Only 0..7 bytes to go
177
178$onequad:
179	EX( stq_u $31, 0($16) )	# .. .. .. L
180	subq	$1, 1, $1	# .. .. E  ..
181	subq	$0, 8, $0	# .. E  .. ..
182	nop			# E  .. .. ..	: U L U L
183
184	nop			# .. .. .. E
185	nop			# .. .. E  ..
186	addq	$16, 8, $16	# .. E  .. ..
187	bgt	$1, $onequad	# U  .. .. ..	: U L U L
188
189	# We have an unknown number of bytes left to go.
190$trailbytes:
191	nop			# .. .. .. E
192	nop			# .. .. E  ..
193	nop			# .. E  .. ..
194	beq	$0, $zerolength	# U  .. .. ..	: U L U L
195
196	# $0 contains the number of bytes left to copy (0..31)
197	# so we will use $0 as the loop counter
198	# We know for a fact that $0 > 0 zero due to previous context
199$onebyte:
200	EX( stb $31, 0($16) )	# .. .. .. L
201	subq	$0, 1, $0	# .. .. E  ..	:
202	addq	$16, 1, $16	# .. E  .. ..	:
203	bgt	$0, $onebyte	# U  .. .. ..	: U L U L
204
205$zerolength:
206$exception:			# Destination for exception recovery(?)
207	nop			# .. .. .. E	:
208	nop			# .. .. E  ..	:
209	nop			# .. E  .. ..	:
210	ret	$31, ($26), 1	# L0 .. .. ..	: L U L U
211	.end __clear_user
212	EXPORT_SYMBOL(__clear_user)
213