1 /* 2 * arch/alpha/kernel/traps.c 3 * 4 * (C) Copyright 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file initializes the trap entry points 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/mm.h> 13 #include <linux/sched.h> 14 #include <linux/tty.h> 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kallsyms.h> 19 #include <linux/ratelimit.h> 20 21 #include <asm/gentrap.h> 22 #include <asm/uaccess.h> 23 #include <asm/unaligned.h> 24 #include <asm/sysinfo.h> 25 #include <asm/hwrpb.h> 26 #include <asm/mmu_context.h> 27 #include <asm/special_insns.h> 28 29 #include "proto.h" 30 31 /* Work-around for some SRMs which mishandle opDEC faults. */ 32 33 static int opDEC_fix; 34 35 static void 36 opDEC_check(void) 37 { 38 __asm__ __volatile__ ( 39 /* Load the address of... */ 40 " br $16, 1f\n" 41 /* A stub instruction fault handler. Just add 4 to the 42 pc and continue. */ 43 " ldq $16, 8($sp)\n" 44 " addq $16, 4, $16\n" 45 " stq $16, 8($sp)\n" 46 " call_pal %[rti]\n" 47 /* Install the instruction fault handler. */ 48 "1: lda $17, 3\n" 49 " call_pal %[wrent]\n" 50 /* With that in place, the fault from the round-to-minf fp 51 insn will arrive either at the "lda 4" insn (bad) or one 52 past that (good). This places the correct fixup in %0. */ 53 " lda %[fix], 0\n" 54 " cvttq/svm $f31,$f31\n" 55 " lda %[fix], 4" 56 : [fix] "=r" (opDEC_fix) 57 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 59 60 if (opDEC_fix) 61 printk("opDEC fixup enabled.\n"); 62 } 63 64 void 65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 66 { 67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 68 regs->pc, regs->r26, regs->ps, print_tainted()); 69 printk("pc is at %pSR\n", (void *)regs->pc); 70 printk("ra is at %pSR\n", (void *)regs->r26); 71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 72 regs->r0, regs->r1, regs->r2); 73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 74 regs->r3, regs->r4, regs->r5); 75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 76 regs->r6, regs->r7, regs->r8); 77 78 if (r9_15) { 79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 80 r9_15[9], r9_15[10], r9_15[11]); 81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 82 r9_15[12], r9_15[13], r9_15[14]); 83 printk("s6 = %016lx\n", r9_15[15]); 84 } 85 86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 87 regs->r16, regs->r17, regs->r18); 88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 89 regs->r19, regs->r20, regs->r21); 90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 91 regs->r22, regs->r23, regs->r24); 92 printk("t11= %016lx pv = %016lx at = %016lx\n", 93 regs->r25, regs->r27, regs->r28); 94 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 95 #if 0 96 __halt(); 97 #endif 98 } 99 100 #if 0 101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 105 #endif 106 107 static void 108 dik_show_code(unsigned int *pc) 109 { 110 long i; 111 112 printk("Code:"); 113 for (i = -6; i < 2; i++) { 114 unsigned int insn; 115 if (__get_user(insn, (unsigned int __user *)pc + i)) 116 break; 117 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 118 } 119 printk("\n"); 120 } 121 122 static void 123 dik_show_trace(unsigned long *sp) 124 { 125 long i = 0; 126 printk("Trace:\n"); 127 while (0x1ff8 & (unsigned long) sp) { 128 extern char _stext[], _etext[]; 129 unsigned long tmp = *sp; 130 sp++; 131 if (tmp < (unsigned long) &_stext) 132 continue; 133 if (tmp >= (unsigned long) &_etext) 134 continue; 135 printk("[<%lx>] %pSR\n", tmp, (void *)tmp); 136 if (i > 40) { 137 printk(" ..."); 138 break; 139 } 140 } 141 printk("\n"); 142 } 143 144 static int kstack_depth_to_print = 24; 145 146 void show_stack(struct task_struct *task, unsigned long *sp) 147 { 148 unsigned long *stack; 149 int i; 150 151 /* 152 * debugging aid: "show_stack(NULL);" prints the 153 * back trace for this cpu. 154 */ 155 if(sp==NULL) 156 sp=(unsigned long*)&sp; 157 158 stack = sp; 159 for(i=0; i < kstack_depth_to_print; i++) { 160 if (((long) stack & (THREAD_SIZE-1)) == 0) 161 break; 162 if (i && ((i % 4) == 0)) 163 printk("\n "); 164 printk("%016lx ", *stack++); 165 } 166 printk("\n"); 167 dik_show_trace(sp); 168 } 169 170 void 171 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 172 { 173 if (regs->ps & 8) 174 return; 175 #ifdef CONFIG_SMP 176 printk("CPU %d ", hard_smp_processor_id()); 177 #endif 178 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 179 dik_show_regs(regs, r9_15); 180 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 181 dik_show_trace((unsigned long *)(regs+1)); 182 dik_show_code((unsigned int *)regs->pc); 183 184 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 185 printk("die_if_kernel recursion detected.\n"); 186 local_irq_enable(); 187 while (1); 188 } 189 do_exit(SIGSEGV); 190 } 191 192 #ifndef CONFIG_MATHEMU 193 static long dummy_emul(void) { return 0; } 194 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 195 = (void *)dummy_emul; 196 long (*alpha_fp_emul) (unsigned long pc) 197 = (void *)dummy_emul; 198 #else 199 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 200 long alpha_fp_emul (unsigned long pc); 201 #endif 202 203 asmlinkage void 204 do_entArith(unsigned long summary, unsigned long write_mask, 205 struct pt_regs *regs) 206 { 207 long si_code = FPE_FLTINV; 208 siginfo_t info; 209 210 if (summary & 1) { 211 /* Software-completion summary bit is set, so try to 212 emulate the instruction. If the processor supports 213 precise exceptions, we don't have to search. */ 214 if (!amask(AMASK_PRECISE_TRAP)) 215 si_code = alpha_fp_emul(regs->pc - 4); 216 else 217 si_code = alpha_fp_emul_imprecise(regs, write_mask); 218 if (si_code == 0) 219 return; 220 } 221 die_if_kernel("Arithmetic fault", regs, 0, NULL); 222 223 info.si_signo = SIGFPE; 224 info.si_errno = 0; 225 info.si_code = si_code; 226 info.si_addr = (void __user *) regs->pc; 227 send_sig_info(SIGFPE, &info, current); 228 } 229 230 asmlinkage void 231 do_entIF(unsigned long type, struct pt_regs *regs) 232 { 233 siginfo_t info; 234 int signo, code; 235 236 if ((regs->ps & ~IPL_MAX) == 0) { 237 if (type == 1) { 238 const unsigned int *data 239 = (const unsigned int *) regs->pc; 240 printk("Kernel bug at %s:%d\n", 241 (const char *)(data[1] | (long)data[2] << 32), 242 data[0]); 243 } 244 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 245 regs, type, NULL); 246 } 247 248 switch (type) { 249 case 0: /* breakpoint */ 250 info.si_signo = SIGTRAP; 251 info.si_errno = 0; 252 info.si_code = TRAP_BRKPT; 253 info.si_trapno = 0; 254 info.si_addr = (void __user *) regs->pc; 255 256 if (ptrace_cancel_bpt(current)) { 257 regs->pc -= 4; /* make pc point to former bpt */ 258 } 259 260 send_sig_info(SIGTRAP, &info, current); 261 return; 262 263 case 1: /* bugcheck */ 264 info.si_signo = SIGTRAP; 265 info.si_errno = 0; 266 info.si_code = __SI_FAULT; 267 info.si_addr = (void __user *) regs->pc; 268 info.si_trapno = 0; 269 send_sig_info(SIGTRAP, &info, current); 270 return; 271 272 case 2: /* gentrap */ 273 info.si_addr = (void __user *) regs->pc; 274 info.si_trapno = regs->r16; 275 switch ((long) regs->r16) { 276 case GEN_INTOVF: 277 signo = SIGFPE; 278 code = FPE_INTOVF; 279 break; 280 case GEN_INTDIV: 281 signo = SIGFPE; 282 code = FPE_INTDIV; 283 break; 284 case GEN_FLTOVF: 285 signo = SIGFPE; 286 code = FPE_FLTOVF; 287 break; 288 case GEN_FLTDIV: 289 signo = SIGFPE; 290 code = FPE_FLTDIV; 291 break; 292 case GEN_FLTUND: 293 signo = SIGFPE; 294 code = FPE_FLTUND; 295 break; 296 case GEN_FLTINV: 297 signo = SIGFPE; 298 code = FPE_FLTINV; 299 break; 300 case GEN_FLTINE: 301 signo = SIGFPE; 302 code = FPE_FLTRES; 303 break; 304 case GEN_ROPRAND: 305 signo = SIGFPE; 306 code = __SI_FAULT; 307 break; 308 309 case GEN_DECOVF: 310 case GEN_DECDIV: 311 case GEN_DECINV: 312 case GEN_ASSERTERR: 313 case GEN_NULPTRERR: 314 case GEN_STKOVF: 315 case GEN_STRLENERR: 316 case GEN_SUBSTRERR: 317 case GEN_RANGERR: 318 case GEN_SUBRNG: 319 case GEN_SUBRNG1: 320 case GEN_SUBRNG2: 321 case GEN_SUBRNG3: 322 case GEN_SUBRNG4: 323 case GEN_SUBRNG5: 324 case GEN_SUBRNG6: 325 case GEN_SUBRNG7: 326 default: 327 signo = SIGTRAP; 328 code = __SI_FAULT; 329 break; 330 } 331 332 info.si_signo = signo; 333 info.si_errno = 0; 334 info.si_code = code; 335 info.si_addr = (void __user *) regs->pc; 336 send_sig_info(signo, &info, current); 337 return; 338 339 case 4: /* opDEC */ 340 if (implver() == IMPLVER_EV4) { 341 long si_code; 342 343 /* The some versions of SRM do not handle 344 the opDEC properly - they return the PC of the 345 opDEC fault, not the instruction after as the 346 Alpha architecture requires. Here we fix it up. 347 We do this by intentionally causing an opDEC 348 fault during the boot sequence and testing if 349 we get the correct PC. If not, we set a flag 350 to correct it every time through. */ 351 regs->pc += opDEC_fix; 352 353 /* EV4 does not implement anything except normal 354 rounding. Everything else will come here as 355 an illegal instruction. Emulate them. */ 356 si_code = alpha_fp_emul(regs->pc - 4); 357 if (si_code == 0) 358 return; 359 if (si_code > 0) { 360 info.si_signo = SIGFPE; 361 info.si_errno = 0; 362 info.si_code = si_code; 363 info.si_addr = (void __user *) regs->pc; 364 send_sig_info(SIGFPE, &info, current); 365 return; 366 } 367 } 368 break; 369 370 case 3: /* FEN fault */ 371 /* Irritating users can call PAL_clrfen to disable the 372 FPU for the process. The kernel will then trap in 373 do_switch_stack and undo_switch_stack when we try 374 to save and restore the FP registers. 375 376 Given that GCC by default generates code that uses the 377 FP registers, PAL_clrfen is not useful except for DoS 378 attacks. So turn the bleeding FPU back on and be done 379 with it. */ 380 current_thread_info()->pcb.flags |= 1; 381 __reload_thread(¤t_thread_info()->pcb); 382 return; 383 384 case 5: /* illoc */ 385 default: /* unexpected instruction-fault type */ 386 ; 387 } 388 389 info.si_signo = SIGILL; 390 info.si_errno = 0; 391 info.si_code = ILL_ILLOPC; 392 info.si_addr = (void __user *) regs->pc; 393 send_sig_info(SIGILL, &info, current); 394 } 395 396 /* There is an ifdef in the PALcode in MILO that enables a 397 "kernel debugging entry point" as an unprivileged call_pal. 398 399 We don't want to have anything to do with it, but unfortunately 400 several versions of MILO included in distributions have it enabled, 401 and if we don't put something on the entry point we'll oops. */ 402 403 asmlinkage void 404 do_entDbg(struct pt_regs *regs) 405 { 406 siginfo_t info; 407 408 die_if_kernel("Instruction fault", regs, 0, NULL); 409 410 info.si_signo = SIGILL; 411 info.si_errno = 0; 412 info.si_code = ILL_ILLOPC; 413 info.si_addr = (void __user *) regs->pc; 414 force_sig_info(SIGILL, &info, current); 415 } 416 417 418 /* 419 * entUna has a different register layout to be reasonably simple. It 420 * needs access to all the integer registers (the kernel doesn't use 421 * fp-regs), and it needs to have them in order for simpler access. 422 * 423 * Due to the non-standard register layout (and because we don't want 424 * to handle floating-point regs), user-mode unaligned accesses are 425 * handled separately by do_entUnaUser below. 426 * 427 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 428 * on a gp-register unaligned load/store, something is _very_ wrong 429 * in the kernel anyway.. 430 */ 431 struct allregs { 432 unsigned long regs[32]; 433 unsigned long ps, pc, gp, a0, a1, a2; 434 }; 435 436 struct unaligned_stat { 437 unsigned long count, va, pc; 438 } unaligned[2]; 439 440 441 /* Macro for exception fixup code to access integer registers. */ 442 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 443 444 445 asmlinkage void 446 do_entUna(void * va, unsigned long opcode, unsigned long reg, 447 struct allregs *regs) 448 { 449 long error, tmp1, tmp2, tmp3, tmp4; 450 unsigned long pc = regs->pc - 4; 451 unsigned long *_regs = regs->regs; 452 const struct exception_table_entry *fixup; 453 454 unaligned[0].count++; 455 unaligned[0].va = (unsigned long) va; 456 unaligned[0].pc = pc; 457 458 /* We don't want to use the generic get/put unaligned macros as 459 we want to trap exceptions. Only if we actually get an 460 exception will we decide whether we should have caught it. */ 461 462 switch (opcode) { 463 case 0x0c: /* ldwu */ 464 __asm__ __volatile__( 465 "1: ldq_u %1,0(%3)\n" 466 "2: ldq_u %2,1(%3)\n" 467 " extwl %1,%3,%1\n" 468 " extwh %2,%3,%2\n" 469 "3:\n" 470 ".section __ex_table,\"a\"\n" 471 " .long 1b - .\n" 472 " lda %1,3b-1b(%0)\n" 473 " .long 2b - .\n" 474 " lda %2,3b-2b(%0)\n" 475 ".previous" 476 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 477 : "r"(va), "0"(0)); 478 if (error) 479 goto got_exception; 480 una_reg(reg) = tmp1|tmp2; 481 return; 482 483 case 0x28: /* ldl */ 484 __asm__ __volatile__( 485 "1: ldq_u %1,0(%3)\n" 486 "2: ldq_u %2,3(%3)\n" 487 " extll %1,%3,%1\n" 488 " extlh %2,%3,%2\n" 489 "3:\n" 490 ".section __ex_table,\"a\"\n" 491 " .long 1b - .\n" 492 " lda %1,3b-1b(%0)\n" 493 " .long 2b - .\n" 494 " lda %2,3b-2b(%0)\n" 495 ".previous" 496 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 497 : "r"(va), "0"(0)); 498 if (error) 499 goto got_exception; 500 una_reg(reg) = (int)(tmp1|tmp2); 501 return; 502 503 case 0x29: /* ldq */ 504 __asm__ __volatile__( 505 "1: ldq_u %1,0(%3)\n" 506 "2: ldq_u %2,7(%3)\n" 507 " extql %1,%3,%1\n" 508 " extqh %2,%3,%2\n" 509 "3:\n" 510 ".section __ex_table,\"a\"\n" 511 " .long 1b - .\n" 512 " lda %1,3b-1b(%0)\n" 513 " .long 2b - .\n" 514 " lda %2,3b-2b(%0)\n" 515 ".previous" 516 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 517 : "r"(va), "0"(0)); 518 if (error) 519 goto got_exception; 520 una_reg(reg) = tmp1|tmp2; 521 return; 522 523 /* Note that the store sequences do not indicate that they change 524 memory because it _should_ be affecting nothing in this context. 525 (Otherwise we have other, much larger, problems.) */ 526 case 0x0d: /* stw */ 527 __asm__ __volatile__( 528 "1: ldq_u %2,1(%5)\n" 529 "2: ldq_u %1,0(%5)\n" 530 " inswh %6,%5,%4\n" 531 " inswl %6,%5,%3\n" 532 " mskwh %2,%5,%2\n" 533 " mskwl %1,%5,%1\n" 534 " or %2,%4,%2\n" 535 " or %1,%3,%1\n" 536 "3: stq_u %2,1(%5)\n" 537 "4: stq_u %1,0(%5)\n" 538 "5:\n" 539 ".section __ex_table,\"a\"\n" 540 " .long 1b - .\n" 541 " lda %2,5b-1b(%0)\n" 542 " .long 2b - .\n" 543 " lda %1,5b-2b(%0)\n" 544 " .long 3b - .\n" 545 " lda $31,5b-3b(%0)\n" 546 " .long 4b - .\n" 547 " lda $31,5b-4b(%0)\n" 548 ".previous" 549 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 550 "=&r"(tmp3), "=&r"(tmp4) 551 : "r"(va), "r"(una_reg(reg)), "0"(0)); 552 if (error) 553 goto got_exception; 554 return; 555 556 case 0x2c: /* stl */ 557 __asm__ __volatile__( 558 "1: ldq_u %2,3(%5)\n" 559 "2: ldq_u %1,0(%5)\n" 560 " inslh %6,%5,%4\n" 561 " insll %6,%5,%3\n" 562 " msklh %2,%5,%2\n" 563 " mskll %1,%5,%1\n" 564 " or %2,%4,%2\n" 565 " or %1,%3,%1\n" 566 "3: stq_u %2,3(%5)\n" 567 "4: stq_u %1,0(%5)\n" 568 "5:\n" 569 ".section __ex_table,\"a\"\n" 570 " .long 1b - .\n" 571 " lda %2,5b-1b(%0)\n" 572 " .long 2b - .\n" 573 " lda %1,5b-2b(%0)\n" 574 " .long 3b - .\n" 575 " lda $31,5b-3b(%0)\n" 576 " .long 4b - .\n" 577 " lda $31,5b-4b(%0)\n" 578 ".previous" 579 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 580 "=&r"(tmp3), "=&r"(tmp4) 581 : "r"(va), "r"(una_reg(reg)), "0"(0)); 582 if (error) 583 goto got_exception; 584 return; 585 586 case 0x2d: /* stq */ 587 __asm__ __volatile__( 588 "1: ldq_u %2,7(%5)\n" 589 "2: ldq_u %1,0(%5)\n" 590 " insqh %6,%5,%4\n" 591 " insql %6,%5,%3\n" 592 " mskqh %2,%5,%2\n" 593 " mskql %1,%5,%1\n" 594 " or %2,%4,%2\n" 595 " or %1,%3,%1\n" 596 "3: stq_u %2,7(%5)\n" 597 "4: stq_u %1,0(%5)\n" 598 "5:\n" 599 ".section __ex_table,\"a\"\n\t" 600 " .long 1b - .\n" 601 " lda %2,5b-1b(%0)\n" 602 " .long 2b - .\n" 603 " lda %1,5b-2b(%0)\n" 604 " .long 3b - .\n" 605 " lda $31,5b-3b(%0)\n" 606 " .long 4b - .\n" 607 " lda $31,5b-4b(%0)\n" 608 ".previous" 609 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 610 "=&r"(tmp3), "=&r"(tmp4) 611 : "r"(va), "r"(una_reg(reg)), "0"(0)); 612 if (error) 613 goto got_exception; 614 return; 615 } 616 617 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 618 pc, va, opcode, reg); 619 do_exit(SIGSEGV); 620 621 got_exception: 622 /* Ok, we caught the exception, but we don't want it. Is there 623 someone to pass it along to? */ 624 if ((fixup = search_exception_tables(pc)) != 0) { 625 unsigned long newpc; 626 newpc = fixup_exception(una_reg, fixup, pc); 627 628 printk("Forwarding unaligned exception at %lx (%lx)\n", 629 pc, newpc); 630 631 regs->pc = newpc; 632 return; 633 } 634 635 /* 636 * Yikes! No one to forward the exception to. 637 * Since the registers are in a weird format, dump them ourselves. 638 */ 639 640 printk("%s(%d): unhandled unaligned exception\n", 641 current->comm, task_pid_nr(current)); 642 643 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 644 pc, una_reg(26), regs->ps); 645 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 646 una_reg(0), una_reg(1), una_reg(2)); 647 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 648 una_reg(3), una_reg(4), una_reg(5)); 649 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 650 una_reg(6), una_reg(7), una_reg(8)); 651 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 652 una_reg(9), una_reg(10), una_reg(11)); 653 printk("r12= %016lx r13= %016lx r14= %016lx\n", 654 una_reg(12), una_reg(13), una_reg(14)); 655 printk("r15= %016lx\n", una_reg(15)); 656 printk("r16= %016lx r17= %016lx r18= %016lx\n", 657 una_reg(16), una_reg(17), una_reg(18)); 658 printk("r19= %016lx r20= %016lx r21= %016lx\n", 659 una_reg(19), una_reg(20), una_reg(21)); 660 printk("r22= %016lx r23= %016lx r24= %016lx\n", 661 una_reg(22), una_reg(23), una_reg(24)); 662 printk("r25= %016lx r27= %016lx r28= %016lx\n", 663 una_reg(25), una_reg(27), una_reg(28)); 664 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 665 666 dik_show_code((unsigned int *)pc); 667 dik_show_trace((unsigned long *)(regs+1)); 668 669 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 670 printk("die_if_kernel recursion detected.\n"); 671 local_irq_enable(); 672 while (1); 673 } 674 do_exit(SIGSEGV); 675 } 676 677 /* 678 * Convert an s-floating point value in memory format to the 679 * corresponding value in register format. The exponent 680 * needs to be remapped to preserve non-finite values 681 * (infinities, not-a-numbers, denormals). 682 */ 683 static inline unsigned long 684 s_mem_to_reg (unsigned long s_mem) 685 { 686 unsigned long frac = (s_mem >> 0) & 0x7fffff; 687 unsigned long sign = (s_mem >> 31) & 0x1; 688 unsigned long exp_msb = (s_mem >> 30) & 0x1; 689 unsigned long exp_low = (s_mem >> 23) & 0x7f; 690 unsigned long exp; 691 692 exp = (exp_msb << 10) | exp_low; /* common case */ 693 if (exp_msb) { 694 if (exp_low == 0x7f) { 695 exp = 0x7ff; 696 } 697 } else { 698 if (exp_low == 0x00) { 699 exp = 0x000; 700 } else { 701 exp |= (0x7 << 7); 702 } 703 } 704 return (sign << 63) | (exp << 52) | (frac << 29); 705 } 706 707 /* 708 * Convert an s-floating point value in register format to the 709 * corresponding value in memory format. 710 */ 711 static inline unsigned long 712 s_reg_to_mem (unsigned long s_reg) 713 { 714 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 715 } 716 717 /* 718 * Handle user-level unaligned fault. Handling user-level unaligned 719 * faults is *extremely* slow and produces nasty messages. A user 720 * program *should* fix unaligned faults ASAP. 721 * 722 * Notice that we have (almost) the regular kernel stack layout here, 723 * so finding the appropriate registers is a little more difficult 724 * than in the kernel case. 725 * 726 * Finally, we handle regular integer load/stores only. In 727 * particular, load-linked/store-conditionally and floating point 728 * load/stores are not supported. The former make no sense with 729 * unaligned faults (they are guaranteed to fail) and I don't think 730 * the latter will occur in any decent program. 731 * 732 * Sigh. We *do* have to handle some FP operations, because GCC will 733 * uses them as temporary storage for integer memory to memory copies. 734 * However, we need to deal with stt/ldt and sts/lds only. 735 */ 736 737 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 738 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 739 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 740 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 741 742 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 743 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 744 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 745 746 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 747 748 static int unauser_reg_offsets[32] = { 749 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 750 /* r9 ... r15 are stored in front of regs. */ 751 -56, -48, -40, -32, -24, -16, -8, 752 R(r16), R(r17), R(r18), 753 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 754 R(r27), R(r28), R(gp), 755 0, 0 756 }; 757 758 #undef R 759 760 asmlinkage void 761 do_entUnaUser(void __user * va, unsigned long opcode, 762 unsigned long reg, struct pt_regs *regs) 763 { 764 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 765 766 unsigned long tmp1, tmp2, tmp3, tmp4; 767 unsigned long fake_reg, *reg_addr = &fake_reg; 768 siginfo_t info; 769 long error; 770 771 /* Check the UAC bits to decide what the user wants us to do 772 with the unaliged access. */ 773 774 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { 775 if (__ratelimit(&ratelimit)) { 776 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 777 current->comm, task_pid_nr(current), 778 regs->pc - 4, va, opcode, reg); 779 } 780 } 781 if ((current_thread_info()->status & TS_UAC_SIGBUS)) 782 goto give_sigbus; 783 /* Not sure why you'd want to use this, but... */ 784 if ((current_thread_info()->status & TS_UAC_NOFIX)) 785 return; 786 787 /* Don't bother reading ds in the access check since we already 788 know that this came from the user. Also rely on the fact that 789 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 790 if (!__access_ok((unsigned long)va, 0, USER_DS)) 791 goto give_sigsegv; 792 793 ++unaligned[1].count; 794 unaligned[1].va = (unsigned long)va; 795 unaligned[1].pc = regs->pc - 4; 796 797 if ((1L << opcode) & OP_INT_MASK) { 798 /* it's an integer load/store */ 799 if (reg < 30) { 800 reg_addr = (unsigned long *) 801 ((char *)regs + unauser_reg_offsets[reg]); 802 } else if (reg == 30) { 803 /* usp in PAL regs */ 804 fake_reg = rdusp(); 805 } else { 806 /* zero "register" */ 807 fake_reg = 0; 808 } 809 } 810 811 /* We don't want to use the generic get/put unaligned macros as 812 we want to trap exceptions. Only if we actually get an 813 exception will we decide whether we should have caught it. */ 814 815 switch (opcode) { 816 case 0x0c: /* ldwu */ 817 __asm__ __volatile__( 818 "1: ldq_u %1,0(%3)\n" 819 "2: ldq_u %2,1(%3)\n" 820 " extwl %1,%3,%1\n" 821 " extwh %2,%3,%2\n" 822 "3:\n" 823 ".section __ex_table,\"a\"\n" 824 " .long 1b - .\n" 825 " lda %1,3b-1b(%0)\n" 826 " .long 2b - .\n" 827 " lda %2,3b-2b(%0)\n" 828 ".previous" 829 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 830 : "r"(va), "0"(0)); 831 if (error) 832 goto give_sigsegv; 833 *reg_addr = tmp1|tmp2; 834 break; 835 836 case 0x22: /* lds */ 837 __asm__ __volatile__( 838 "1: ldq_u %1,0(%3)\n" 839 "2: ldq_u %2,3(%3)\n" 840 " extll %1,%3,%1\n" 841 " extlh %2,%3,%2\n" 842 "3:\n" 843 ".section __ex_table,\"a\"\n" 844 " .long 1b - .\n" 845 " lda %1,3b-1b(%0)\n" 846 " .long 2b - .\n" 847 " lda %2,3b-2b(%0)\n" 848 ".previous" 849 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 850 : "r"(va), "0"(0)); 851 if (error) 852 goto give_sigsegv; 853 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 854 return; 855 856 case 0x23: /* ldt */ 857 __asm__ __volatile__( 858 "1: ldq_u %1,0(%3)\n" 859 "2: ldq_u %2,7(%3)\n" 860 " extql %1,%3,%1\n" 861 " extqh %2,%3,%2\n" 862 "3:\n" 863 ".section __ex_table,\"a\"\n" 864 " .long 1b - .\n" 865 " lda %1,3b-1b(%0)\n" 866 " .long 2b - .\n" 867 " lda %2,3b-2b(%0)\n" 868 ".previous" 869 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 870 : "r"(va), "0"(0)); 871 if (error) 872 goto give_sigsegv; 873 alpha_write_fp_reg(reg, tmp1|tmp2); 874 return; 875 876 case 0x28: /* ldl */ 877 __asm__ __volatile__( 878 "1: ldq_u %1,0(%3)\n" 879 "2: ldq_u %2,3(%3)\n" 880 " extll %1,%3,%1\n" 881 " extlh %2,%3,%2\n" 882 "3:\n" 883 ".section __ex_table,\"a\"\n" 884 " .long 1b - .\n" 885 " lda %1,3b-1b(%0)\n" 886 " .long 2b - .\n" 887 " lda %2,3b-2b(%0)\n" 888 ".previous" 889 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 890 : "r"(va), "0"(0)); 891 if (error) 892 goto give_sigsegv; 893 *reg_addr = (int)(tmp1|tmp2); 894 break; 895 896 case 0x29: /* ldq */ 897 __asm__ __volatile__( 898 "1: ldq_u %1,0(%3)\n" 899 "2: ldq_u %2,7(%3)\n" 900 " extql %1,%3,%1\n" 901 " extqh %2,%3,%2\n" 902 "3:\n" 903 ".section __ex_table,\"a\"\n" 904 " .long 1b - .\n" 905 " lda %1,3b-1b(%0)\n" 906 " .long 2b - .\n" 907 " lda %2,3b-2b(%0)\n" 908 ".previous" 909 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 910 : "r"(va), "0"(0)); 911 if (error) 912 goto give_sigsegv; 913 *reg_addr = tmp1|tmp2; 914 break; 915 916 /* Note that the store sequences do not indicate that they change 917 memory because it _should_ be affecting nothing in this context. 918 (Otherwise we have other, much larger, problems.) */ 919 case 0x0d: /* stw */ 920 __asm__ __volatile__( 921 "1: ldq_u %2,1(%5)\n" 922 "2: ldq_u %1,0(%5)\n" 923 " inswh %6,%5,%4\n" 924 " inswl %6,%5,%3\n" 925 " mskwh %2,%5,%2\n" 926 " mskwl %1,%5,%1\n" 927 " or %2,%4,%2\n" 928 " or %1,%3,%1\n" 929 "3: stq_u %2,1(%5)\n" 930 "4: stq_u %1,0(%5)\n" 931 "5:\n" 932 ".section __ex_table,\"a\"\n" 933 " .long 1b - .\n" 934 " lda %2,5b-1b(%0)\n" 935 " .long 2b - .\n" 936 " lda %1,5b-2b(%0)\n" 937 " .long 3b - .\n" 938 " lda $31,5b-3b(%0)\n" 939 " .long 4b - .\n" 940 " lda $31,5b-4b(%0)\n" 941 ".previous" 942 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 943 "=&r"(tmp3), "=&r"(tmp4) 944 : "r"(va), "r"(*reg_addr), "0"(0)); 945 if (error) 946 goto give_sigsegv; 947 return; 948 949 case 0x26: /* sts */ 950 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 951 /* FALLTHRU */ 952 953 case 0x2c: /* stl */ 954 __asm__ __volatile__( 955 "1: ldq_u %2,3(%5)\n" 956 "2: ldq_u %1,0(%5)\n" 957 " inslh %6,%5,%4\n" 958 " insll %6,%5,%3\n" 959 " msklh %2,%5,%2\n" 960 " mskll %1,%5,%1\n" 961 " or %2,%4,%2\n" 962 " or %1,%3,%1\n" 963 "3: stq_u %2,3(%5)\n" 964 "4: stq_u %1,0(%5)\n" 965 "5:\n" 966 ".section __ex_table,\"a\"\n" 967 " .long 1b - .\n" 968 " lda %2,5b-1b(%0)\n" 969 " .long 2b - .\n" 970 " lda %1,5b-2b(%0)\n" 971 " .long 3b - .\n" 972 " lda $31,5b-3b(%0)\n" 973 " .long 4b - .\n" 974 " lda $31,5b-4b(%0)\n" 975 ".previous" 976 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 977 "=&r"(tmp3), "=&r"(tmp4) 978 : "r"(va), "r"(*reg_addr), "0"(0)); 979 if (error) 980 goto give_sigsegv; 981 return; 982 983 case 0x27: /* stt */ 984 fake_reg = alpha_read_fp_reg(reg); 985 /* FALLTHRU */ 986 987 case 0x2d: /* stq */ 988 __asm__ __volatile__( 989 "1: ldq_u %2,7(%5)\n" 990 "2: ldq_u %1,0(%5)\n" 991 " insqh %6,%5,%4\n" 992 " insql %6,%5,%3\n" 993 " mskqh %2,%5,%2\n" 994 " mskql %1,%5,%1\n" 995 " or %2,%4,%2\n" 996 " or %1,%3,%1\n" 997 "3: stq_u %2,7(%5)\n" 998 "4: stq_u %1,0(%5)\n" 999 "5:\n" 1000 ".section __ex_table,\"a\"\n\t" 1001 " .long 1b - .\n" 1002 " lda %2,5b-1b(%0)\n" 1003 " .long 2b - .\n" 1004 " lda %1,5b-2b(%0)\n" 1005 " .long 3b - .\n" 1006 " lda $31,5b-3b(%0)\n" 1007 " .long 4b - .\n" 1008 " lda $31,5b-4b(%0)\n" 1009 ".previous" 1010 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 1011 "=&r"(tmp3), "=&r"(tmp4) 1012 : "r"(va), "r"(*reg_addr), "0"(0)); 1013 if (error) 1014 goto give_sigsegv; 1015 return; 1016 1017 default: 1018 /* What instruction were you trying to use, exactly? */ 1019 goto give_sigbus; 1020 } 1021 1022 /* Only integer loads should get here; everyone else returns early. */ 1023 if (reg == 30) 1024 wrusp(fake_reg); 1025 return; 1026 1027 give_sigsegv: 1028 regs->pc -= 4; /* make pc point to faulting insn */ 1029 info.si_signo = SIGSEGV; 1030 info.si_errno = 0; 1031 1032 /* We need to replicate some of the logic in mm/fault.c, 1033 since we don't have access to the fault code in the 1034 exception handling return path. */ 1035 if (!__access_ok((unsigned long)va, 0, USER_DS)) 1036 info.si_code = SEGV_ACCERR; 1037 else { 1038 struct mm_struct *mm = current->mm; 1039 down_read(&mm->mmap_sem); 1040 if (find_vma(mm, (unsigned long)va)) 1041 info.si_code = SEGV_ACCERR; 1042 else 1043 info.si_code = SEGV_MAPERR; 1044 up_read(&mm->mmap_sem); 1045 } 1046 info.si_addr = va; 1047 send_sig_info(SIGSEGV, &info, current); 1048 return; 1049 1050 give_sigbus: 1051 regs->pc -= 4; 1052 info.si_signo = SIGBUS; 1053 info.si_errno = 0; 1054 info.si_code = BUS_ADRALN; 1055 info.si_addr = va; 1056 send_sig_info(SIGBUS, &info, current); 1057 return; 1058 } 1059 1060 void 1061 trap_init(void) 1062 { 1063 /* Tell PAL-code what global pointer we want in the kernel. */ 1064 register unsigned long gptr __asm__("$29"); 1065 wrkgp(gptr); 1066 1067 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 1068 a bug in the handling of the opDEC fault. Fix it up if so. */ 1069 if (implver() == IMPLVER_EV4) 1070 opDEC_check(); 1071 1072 wrent(entArith, 1); 1073 wrent(entMM, 2); 1074 wrent(entIF, 3); 1075 wrent(entUna, 4); 1076 wrent(entSys, 5); 1077 wrent(entDbg, 6); 1078 } 1079