xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision ca79522c)
1 /*
2  * arch/alpha/kernel/traps.c
3  *
4  * (C) Copyright 1994 Linus Torvalds
5  */
6 
7 /*
8  * This file initializes the trap entry points
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/mm.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
20 
21 #include <asm/gentrap.h>
22 #include <asm/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
28 
29 #include "proto.h"
30 
31 /* Work-around for some SRMs which mishandle opDEC faults.  */
32 
33 static int opDEC_fix;
34 
35 static void __cpuinit
36 opDEC_check(void)
37 {
38 	__asm__ __volatile__ (
39 	/* Load the address of... */
40 	"	br	$16, 1f\n"
41 	/* A stub instruction fault handler.  Just add 4 to the
42 	   pc and continue.  */
43 	"	ldq	$16, 8($sp)\n"
44 	"	addq	$16, 4, $16\n"
45 	"	stq	$16, 8($sp)\n"
46 	"	call_pal %[rti]\n"
47 	/* Install the instruction fault handler.  */
48 	"1:	lda	$17, 3\n"
49 	"	call_pal %[wrent]\n"
50 	/* With that in place, the fault from the round-to-minf fp
51 	   insn will arrive either at the "lda 4" insn (bad) or one
52 	   past that (good).  This places the correct fixup in %0.  */
53 	"	lda %[fix], 0\n"
54 	"	cvttq/svm $f31,$f31\n"
55 	"	lda %[fix], 4"
56 	: [fix] "=r" (opDEC_fix)
57 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
58 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
59 
60 	if (opDEC_fix)
61 		printk("opDEC fixup enabled.\n");
62 }
63 
64 void
65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
66 {
67 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
68 	       regs->pc, regs->r26, regs->ps, print_tainted());
69 	print_symbol("pc is at %s\n", regs->pc);
70 	print_symbol("ra is at %s\n", regs->r26 );
71 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
72 	       regs->r0, regs->r1, regs->r2);
73 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
74  	       regs->r3, regs->r4, regs->r5);
75 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
76 	       regs->r6, regs->r7, regs->r8);
77 
78 	if (r9_15) {
79 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
80 		       r9_15[9], r9_15[10], r9_15[11]);
81 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
82 		       r9_15[12], r9_15[13], r9_15[14]);
83 		printk("s6 = %016lx\n", r9_15[15]);
84 	}
85 
86 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
87 	       regs->r16, regs->r17, regs->r18);
88 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
89  	       regs->r19, regs->r20, regs->r21);
90  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
91 	       regs->r22, regs->r23, regs->r24);
92 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
93 	       regs->r25, regs->r27, regs->r28);
94 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
95 #if 0
96 __halt();
97 #endif
98 }
99 
100 #if 0
101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
105 #endif
106 
107 static void
108 dik_show_code(unsigned int *pc)
109 {
110 	long i;
111 
112 	printk("Code:");
113 	for (i = -6; i < 2; i++) {
114 		unsigned int insn;
115 		if (__get_user(insn, (unsigned int __user *)pc + i))
116 			break;
117 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
118 	}
119 	printk("\n");
120 }
121 
122 static void
123 dik_show_trace(unsigned long *sp)
124 {
125 	long i = 0;
126 	printk("Trace:\n");
127 	while (0x1ff8 & (unsigned long) sp) {
128 		extern char _stext[], _etext[];
129 		unsigned long tmp = *sp;
130 		sp++;
131 		if (tmp < (unsigned long) &_stext)
132 			continue;
133 		if (tmp >= (unsigned long) &_etext)
134 			continue;
135 		printk("[<%lx>]", tmp);
136 		print_symbol(" %s", tmp);
137 		printk("\n");
138 		if (i > 40) {
139 			printk(" ...");
140 			break;
141 		}
142 	}
143 	printk("\n");
144 }
145 
146 static int kstack_depth_to_print = 24;
147 
148 void show_stack(struct task_struct *task, unsigned long *sp)
149 {
150 	unsigned long *stack;
151 	int i;
152 
153 	/*
154 	 * debugging aid: "show_stack(NULL);" prints the
155 	 * back trace for this cpu.
156 	 */
157 	if(sp==NULL)
158 		sp=(unsigned long*)&sp;
159 
160 	stack = sp;
161 	for(i=0; i < kstack_depth_to_print; i++) {
162 		if (((long) stack & (THREAD_SIZE-1)) == 0)
163 			break;
164 		if (i && ((i % 4) == 0))
165 			printk("\n       ");
166 		printk("%016lx ", *stack++);
167 	}
168 	printk("\n");
169 	dik_show_trace(sp);
170 }
171 
172 void
173 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
174 {
175 	if (regs->ps & 8)
176 		return;
177 #ifdef CONFIG_SMP
178 	printk("CPU %d ", hard_smp_processor_id());
179 #endif
180 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
181 	dik_show_regs(regs, r9_15);
182 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
183 	dik_show_trace((unsigned long *)(regs+1));
184 	dik_show_code((unsigned int *)regs->pc);
185 
186 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
187 		printk("die_if_kernel recursion detected.\n");
188 		local_irq_enable();
189 		while (1);
190 	}
191 	do_exit(SIGSEGV);
192 }
193 
194 #ifndef CONFIG_MATHEMU
195 static long dummy_emul(void) { return 0; }
196 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
197   = (void *)dummy_emul;
198 long (*alpha_fp_emul) (unsigned long pc)
199   = (void *)dummy_emul;
200 #else
201 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
202 long alpha_fp_emul (unsigned long pc);
203 #endif
204 
205 asmlinkage void
206 do_entArith(unsigned long summary, unsigned long write_mask,
207 	    struct pt_regs *regs)
208 {
209 	long si_code = FPE_FLTINV;
210 	siginfo_t info;
211 
212 	if (summary & 1) {
213 		/* Software-completion summary bit is set, so try to
214 		   emulate the instruction.  If the processor supports
215 		   precise exceptions, we don't have to search.  */
216 		if (!amask(AMASK_PRECISE_TRAP))
217 			si_code = alpha_fp_emul(regs->pc - 4);
218 		else
219 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
220 		if (si_code == 0)
221 			return;
222 	}
223 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
224 
225 	info.si_signo = SIGFPE;
226 	info.si_errno = 0;
227 	info.si_code = si_code;
228 	info.si_addr = (void __user *) regs->pc;
229 	send_sig_info(SIGFPE, &info, current);
230 }
231 
232 asmlinkage void
233 do_entIF(unsigned long type, struct pt_regs *regs)
234 {
235 	siginfo_t info;
236 	int signo, code;
237 
238 	if ((regs->ps & ~IPL_MAX) == 0) {
239 		if (type == 1) {
240 			const unsigned int *data
241 			  = (const unsigned int *) regs->pc;
242 			printk("Kernel bug at %s:%d\n",
243 			       (const char *)(data[1] | (long)data[2] << 32),
244 			       data[0]);
245 		}
246 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
247 			      regs, type, NULL);
248 	}
249 
250 	switch (type) {
251 	      case 0: /* breakpoint */
252 		info.si_signo = SIGTRAP;
253 		info.si_errno = 0;
254 		info.si_code = TRAP_BRKPT;
255 		info.si_trapno = 0;
256 		info.si_addr = (void __user *) regs->pc;
257 
258 		if (ptrace_cancel_bpt(current)) {
259 			regs->pc -= 4;	/* make pc point to former bpt */
260 		}
261 
262 		send_sig_info(SIGTRAP, &info, current);
263 		return;
264 
265 	      case 1: /* bugcheck */
266 		info.si_signo = SIGTRAP;
267 		info.si_errno = 0;
268 		info.si_code = __SI_FAULT;
269 		info.si_addr = (void __user *) regs->pc;
270 		info.si_trapno = 0;
271 		send_sig_info(SIGTRAP, &info, current);
272 		return;
273 
274 	      case 2: /* gentrap */
275 		info.si_addr = (void __user *) regs->pc;
276 		info.si_trapno = regs->r16;
277 		switch ((long) regs->r16) {
278 		case GEN_INTOVF:
279 			signo = SIGFPE;
280 			code = FPE_INTOVF;
281 			break;
282 		case GEN_INTDIV:
283 			signo = SIGFPE;
284 			code = FPE_INTDIV;
285 			break;
286 		case GEN_FLTOVF:
287 			signo = SIGFPE;
288 			code = FPE_FLTOVF;
289 			break;
290 		case GEN_FLTDIV:
291 			signo = SIGFPE;
292 			code = FPE_FLTDIV;
293 			break;
294 		case GEN_FLTUND:
295 			signo = SIGFPE;
296 			code = FPE_FLTUND;
297 			break;
298 		case GEN_FLTINV:
299 			signo = SIGFPE;
300 			code = FPE_FLTINV;
301 			break;
302 		case GEN_FLTINE:
303 			signo = SIGFPE;
304 			code = FPE_FLTRES;
305 			break;
306 		case GEN_ROPRAND:
307 			signo = SIGFPE;
308 			code = __SI_FAULT;
309 			break;
310 
311 		case GEN_DECOVF:
312 		case GEN_DECDIV:
313 		case GEN_DECINV:
314 		case GEN_ASSERTERR:
315 		case GEN_NULPTRERR:
316 		case GEN_STKOVF:
317 		case GEN_STRLENERR:
318 		case GEN_SUBSTRERR:
319 		case GEN_RANGERR:
320 		case GEN_SUBRNG:
321 		case GEN_SUBRNG1:
322 		case GEN_SUBRNG2:
323 		case GEN_SUBRNG3:
324 		case GEN_SUBRNG4:
325 		case GEN_SUBRNG5:
326 		case GEN_SUBRNG6:
327 		case GEN_SUBRNG7:
328 		default:
329 			signo = SIGTRAP;
330 			code = __SI_FAULT;
331 			break;
332 		}
333 
334 		info.si_signo = signo;
335 		info.si_errno = 0;
336 		info.si_code = code;
337 		info.si_addr = (void __user *) regs->pc;
338 		send_sig_info(signo, &info, current);
339 		return;
340 
341 	      case 4: /* opDEC */
342 		if (implver() == IMPLVER_EV4) {
343 			long si_code;
344 
345 			/* The some versions of SRM do not handle
346 			   the opDEC properly - they return the PC of the
347 			   opDEC fault, not the instruction after as the
348 			   Alpha architecture requires.  Here we fix it up.
349 			   We do this by intentionally causing an opDEC
350 			   fault during the boot sequence and testing if
351 			   we get the correct PC.  If not, we set a flag
352 			   to correct it every time through.  */
353 			regs->pc += opDEC_fix;
354 
355 			/* EV4 does not implement anything except normal
356 			   rounding.  Everything else will come here as
357 			   an illegal instruction.  Emulate them.  */
358 			si_code = alpha_fp_emul(regs->pc - 4);
359 			if (si_code == 0)
360 				return;
361 			if (si_code > 0) {
362 				info.si_signo = SIGFPE;
363 				info.si_errno = 0;
364 				info.si_code = si_code;
365 				info.si_addr = (void __user *) regs->pc;
366 				send_sig_info(SIGFPE, &info, current);
367 				return;
368 			}
369 		}
370 		break;
371 
372 	      case 3: /* FEN fault */
373 		/* Irritating users can call PAL_clrfen to disable the
374 		   FPU for the process.  The kernel will then trap in
375 		   do_switch_stack and undo_switch_stack when we try
376 		   to save and restore the FP registers.
377 
378 		   Given that GCC by default generates code that uses the
379 		   FP registers, PAL_clrfen is not useful except for DoS
380 		   attacks.  So turn the bleeding FPU back on and be done
381 		   with it.  */
382 		current_thread_info()->pcb.flags |= 1;
383 		__reload_thread(&current_thread_info()->pcb);
384 		return;
385 
386 	      case 5: /* illoc */
387 	      default: /* unexpected instruction-fault type */
388 		      ;
389 	}
390 
391 	info.si_signo = SIGILL;
392 	info.si_errno = 0;
393 	info.si_code = ILL_ILLOPC;
394 	info.si_addr = (void __user *) regs->pc;
395 	send_sig_info(SIGILL, &info, current);
396 }
397 
398 /* There is an ifdef in the PALcode in MILO that enables a
399    "kernel debugging entry point" as an unprivileged call_pal.
400 
401    We don't want to have anything to do with it, but unfortunately
402    several versions of MILO included in distributions have it enabled,
403    and if we don't put something on the entry point we'll oops.  */
404 
405 asmlinkage void
406 do_entDbg(struct pt_regs *regs)
407 {
408 	siginfo_t info;
409 
410 	die_if_kernel("Instruction fault", regs, 0, NULL);
411 
412 	info.si_signo = SIGILL;
413 	info.si_errno = 0;
414 	info.si_code = ILL_ILLOPC;
415 	info.si_addr = (void __user *) regs->pc;
416 	force_sig_info(SIGILL, &info, current);
417 }
418 
419 
420 /*
421  * entUna has a different register layout to be reasonably simple. It
422  * needs access to all the integer registers (the kernel doesn't use
423  * fp-regs), and it needs to have them in order for simpler access.
424  *
425  * Due to the non-standard register layout (and because we don't want
426  * to handle floating-point regs), user-mode unaligned accesses are
427  * handled separately by do_entUnaUser below.
428  *
429  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
430  * on a gp-register unaligned load/store, something is _very_ wrong
431  * in the kernel anyway..
432  */
433 struct allregs {
434 	unsigned long regs[32];
435 	unsigned long ps, pc, gp, a0, a1, a2;
436 };
437 
438 struct unaligned_stat {
439 	unsigned long count, va, pc;
440 } unaligned[2];
441 
442 
443 /* Macro for exception fixup code to access integer registers.  */
444 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
445 
446 
447 asmlinkage void
448 do_entUna(void * va, unsigned long opcode, unsigned long reg,
449 	  struct allregs *regs)
450 {
451 	long error, tmp1, tmp2, tmp3, tmp4;
452 	unsigned long pc = regs->pc - 4;
453 	unsigned long *_regs = regs->regs;
454 	const struct exception_table_entry *fixup;
455 
456 	unaligned[0].count++;
457 	unaligned[0].va = (unsigned long) va;
458 	unaligned[0].pc = pc;
459 
460 	/* We don't want to use the generic get/put unaligned macros as
461 	   we want to trap exceptions.  Only if we actually get an
462 	   exception will we decide whether we should have caught it.  */
463 
464 	switch (opcode) {
465 	case 0x0c: /* ldwu */
466 		__asm__ __volatile__(
467 		"1:	ldq_u %1,0(%3)\n"
468 		"2:	ldq_u %2,1(%3)\n"
469 		"	extwl %1,%3,%1\n"
470 		"	extwh %2,%3,%2\n"
471 		"3:\n"
472 		".section __ex_table,\"a\"\n"
473 		"	.long 1b - .\n"
474 		"	lda %1,3b-1b(%0)\n"
475 		"	.long 2b - .\n"
476 		"	lda %2,3b-2b(%0)\n"
477 		".previous"
478 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
479 			: "r"(va), "0"(0));
480 		if (error)
481 			goto got_exception;
482 		una_reg(reg) = tmp1|tmp2;
483 		return;
484 
485 	case 0x28: /* ldl */
486 		__asm__ __volatile__(
487 		"1:	ldq_u %1,0(%3)\n"
488 		"2:	ldq_u %2,3(%3)\n"
489 		"	extll %1,%3,%1\n"
490 		"	extlh %2,%3,%2\n"
491 		"3:\n"
492 		".section __ex_table,\"a\"\n"
493 		"	.long 1b - .\n"
494 		"	lda %1,3b-1b(%0)\n"
495 		"	.long 2b - .\n"
496 		"	lda %2,3b-2b(%0)\n"
497 		".previous"
498 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
499 			: "r"(va), "0"(0));
500 		if (error)
501 			goto got_exception;
502 		una_reg(reg) = (int)(tmp1|tmp2);
503 		return;
504 
505 	case 0x29: /* ldq */
506 		__asm__ __volatile__(
507 		"1:	ldq_u %1,0(%3)\n"
508 		"2:	ldq_u %2,7(%3)\n"
509 		"	extql %1,%3,%1\n"
510 		"	extqh %2,%3,%2\n"
511 		"3:\n"
512 		".section __ex_table,\"a\"\n"
513 		"	.long 1b - .\n"
514 		"	lda %1,3b-1b(%0)\n"
515 		"	.long 2b - .\n"
516 		"	lda %2,3b-2b(%0)\n"
517 		".previous"
518 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
519 			: "r"(va), "0"(0));
520 		if (error)
521 			goto got_exception;
522 		una_reg(reg) = tmp1|tmp2;
523 		return;
524 
525 	/* Note that the store sequences do not indicate that they change
526 	   memory because it _should_ be affecting nothing in this context.
527 	   (Otherwise we have other, much larger, problems.)  */
528 	case 0x0d: /* stw */
529 		__asm__ __volatile__(
530 		"1:	ldq_u %2,1(%5)\n"
531 		"2:	ldq_u %1,0(%5)\n"
532 		"	inswh %6,%5,%4\n"
533 		"	inswl %6,%5,%3\n"
534 		"	mskwh %2,%5,%2\n"
535 		"	mskwl %1,%5,%1\n"
536 		"	or %2,%4,%2\n"
537 		"	or %1,%3,%1\n"
538 		"3:	stq_u %2,1(%5)\n"
539 		"4:	stq_u %1,0(%5)\n"
540 		"5:\n"
541 		".section __ex_table,\"a\"\n"
542 		"	.long 1b - .\n"
543 		"	lda %2,5b-1b(%0)\n"
544 		"	.long 2b - .\n"
545 		"	lda %1,5b-2b(%0)\n"
546 		"	.long 3b - .\n"
547 		"	lda $31,5b-3b(%0)\n"
548 		"	.long 4b - .\n"
549 		"	lda $31,5b-4b(%0)\n"
550 		".previous"
551 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
552 			  "=&r"(tmp3), "=&r"(tmp4)
553 			: "r"(va), "r"(una_reg(reg)), "0"(0));
554 		if (error)
555 			goto got_exception;
556 		return;
557 
558 	case 0x2c: /* stl */
559 		__asm__ __volatile__(
560 		"1:	ldq_u %2,3(%5)\n"
561 		"2:	ldq_u %1,0(%5)\n"
562 		"	inslh %6,%5,%4\n"
563 		"	insll %6,%5,%3\n"
564 		"	msklh %2,%5,%2\n"
565 		"	mskll %1,%5,%1\n"
566 		"	or %2,%4,%2\n"
567 		"	or %1,%3,%1\n"
568 		"3:	stq_u %2,3(%5)\n"
569 		"4:	stq_u %1,0(%5)\n"
570 		"5:\n"
571 		".section __ex_table,\"a\"\n"
572 		"	.long 1b - .\n"
573 		"	lda %2,5b-1b(%0)\n"
574 		"	.long 2b - .\n"
575 		"	lda %1,5b-2b(%0)\n"
576 		"	.long 3b - .\n"
577 		"	lda $31,5b-3b(%0)\n"
578 		"	.long 4b - .\n"
579 		"	lda $31,5b-4b(%0)\n"
580 		".previous"
581 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
582 			  "=&r"(tmp3), "=&r"(tmp4)
583 			: "r"(va), "r"(una_reg(reg)), "0"(0));
584 		if (error)
585 			goto got_exception;
586 		return;
587 
588 	case 0x2d: /* stq */
589 		__asm__ __volatile__(
590 		"1:	ldq_u %2,7(%5)\n"
591 		"2:	ldq_u %1,0(%5)\n"
592 		"	insqh %6,%5,%4\n"
593 		"	insql %6,%5,%3\n"
594 		"	mskqh %2,%5,%2\n"
595 		"	mskql %1,%5,%1\n"
596 		"	or %2,%4,%2\n"
597 		"	or %1,%3,%1\n"
598 		"3:	stq_u %2,7(%5)\n"
599 		"4:	stq_u %1,0(%5)\n"
600 		"5:\n"
601 		".section __ex_table,\"a\"\n\t"
602 		"	.long 1b - .\n"
603 		"	lda %2,5b-1b(%0)\n"
604 		"	.long 2b - .\n"
605 		"	lda %1,5b-2b(%0)\n"
606 		"	.long 3b - .\n"
607 		"	lda $31,5b-3b(%0)\n"
608 		"	.long 4b - .\n"
609 		"	lda $31,5b-4b(%0)\n"
610 		".previous"
611 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
612 			  "=&r"(tmp3), "=&r"(tmp4)
613 			: "r"(va), "r"(una_reg(reg)), "0"(0));
614 		if (error)
615 			goto got_exception;
616 		return;
617 	}
618 
619 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
620 		pc, va, opcode, reg);
621 	do_exit(SIGSEGV);
622 
623 got_exception:
624 	/* Ok, we caught the exception, but we don't want it.  Is there
625 	   someone to pass it along to?  */
626 	if ((fixup = search_exception_tables(pc)) != 0) {
627 		unsigned long newpc;
628 		newpc = fixup_exception(una_reg, fixup, pc);
629 
630 		printk("Forwarding unaligned exception at %lx (%lx)\n",
631 		       pc, newpc);
632 
633 		regs->pc = newpc;
634 		return;
635 	}
636 
637 	/*
638 	 * Yikes!  No one to forward the exception to.
639 	 * Since the registers are in a weird format, dump them ourselves.
640  	 */
641 
642 	printk("%s(%d): unhandled unaligned exception\n",
643 	       current->comm, task_pid_nr(current));
644 
645 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
646 	       pc, una_reg(26), regs->ps);
647 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
648 	       una_reg(0), una_reg(1), una_reg(2));
649 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
650  	       una_reg(3), una_reg(4), una_reg(5));
651 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
652 	       una_reg(6), una_reg(7), una_reg(8));
653 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
654 	       una_reg(9), una_reg(10), una_reg(11));
655 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
656 	       una_reg(12), una_reg(13), una_reg(14));
657 	printk("r15= %016lx\n", una_reg(15));
658 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
659 	       una_reg(16), una_reg(17), una_reg(18));
660 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
661  	       una_reg(19), una_reg(20), una_reg(21));
662  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
663 	       una_reg(22), una_reg(23), una_reg(24));
664 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
665 	       una_reg(25), una_reg(27), una_reg(28));
666 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
667 
668 	dik_show_code((unsigned int *)pc);
669 	dik_show_trace((unsigned long *)(regs+1));
670 
671 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
672 		printk("die_if_kernel recursion detected.\n");
673 		local_irq_enable();
674 		while (1);
675 	}
676 	do_exit(SIGSEGV);
677 }
678 
679 /*
680  * Convert an s-floating point value in memory format to the
681  * corresponding value in register format.  The exponent
682  * needs to be remapped to preserve non-finite values
683  * (infinities, not-a-numbers, denormals).
684  */
685 static inline unsigned long
686 s_mem_to_reg (unsigned long s_mem)
687 {
688 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
689 	unsigned long sign    = (s_mem >> 31) & 0x1;
690 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
691 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
692 	unsigned long exp;
693 
694 	exp = (exp_msb << 10) | exp_low;	/* common case */
695 	if (exp_msb) {
696 		if (exp_low == 0x7f) {
697 			exp = 0x7ff;
698 		}
699 	} else {
700 		if (exp_low == 0x00) {
701 			exp = 0x000;
702 		} else {
703 			exp |= (0x7 << 7);
704 		}
705 	}
706 	return (sign << 63) | (exp << 52) | (frac << 29);
707 }
708 
709 /*
710  * Convert an s-floating point value in register format to the
711  * corresponding value in memory format.
712  */
713 static inline unsigned long
714 s_reg_to_mem (unsigned long s_reg)
715 {
716 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
717 }
718 
719 /*
720  * Handle user-level unaligned fault.  Handling user-level unaligned
721  * faults is *extremely* slow and produces nasty messages.  A user
722  * program *should* fix unaligned faults ASAP.
723  *
724  * Notice that we have (almost) the regular kernel stack layout here,
725  * so finding the appropriate registers is a little more difficult
726  * than in the kernel case.
727  *
728  * Finally, we handle regular integer load/stores only.  In
729  * particular, load-linked/store-conditionally and floating point
730  * load/stores are not supported.  The former make no sense with
731  * unaligned faults (they are guaranteed to fail) and I don't think
732  * the latter will occur in any decent program.
733  *
734  * Sigh. We *do* have to handle some FP operations, because GCC will
735  * uses them as temporary storage for integer memory to memory copies.
736  * However, we need to deal with stt/ldt and sts/lds only.
737  */
738 
739 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
740 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
741 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
742 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
743 
744 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
745 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
746 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
747 
748 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
749 
750 static int unauser_reg_offsets[32] = {
751 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
752 	/* r9 ... r15 are stored in front of regs.  */
753 	-56, -48, -40, -32, -24, -16, -8,
754 	R(r16), R(r17), R(r18),
755 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
756 	R(r27), R(r28), R(gp),
757 	0, 0
758 };
759 
760 #undef R
761 
762 asmlinkage void
763 do_entUnaUser(void __user * va, unsigned long opcode,
764 	      unsigned long reg, struct pt_regs *regs)
765 {
766 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
767 
768 	unsigned long tmp1, tmp2, tmp3, tmp4;
769 	unsigned long fake_reg, *reg_addr = &fake_reg;
770 	siginfo_t info;
771 	long error;
772 
773 	/* Check the UAC bits to decide what the user wants us to do
774 	   with the unaliged access.  */
775 
776 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
777 		if (__ratelimit(&ratelimit)) {
778 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
779 			       current->comm, task_pid_nr(current),
780 			       regs->pc - 4, va, opcode, reg);
781 		}
782 	}
783 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
784 		goto give_sigbus;
785 	/* Not sure why you'd want to use this, but... */
786 	if ((current_thread_info()->status & TS_UAC_NOFIX))
787 		return;
788 
789 	/* Don't bother reading ds in the access check since we already
790 	   know that this came from the user.  Also rely on the fact that
791 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
792 	if (!__access_ok((unsigned long)va, 0, USER_DS))
793 		goto give_sigsegv;
794 
795 	++unaligned[1].count;
796 	unaligned[1].va = (unsigned long)va;
797 	unaligned[1].pc = regs->pc - 4;
798 
799 	if ((1L << opcode) & OP_INT_MASK) {
800 		/* it's an integer load/store */
801 		if (reg < 30) {
802 			reg_addr = (unsigned long *)
803 			  ((char *)regs + unauser_reg_offsets[reg]);
804 		} else if (reg == 30) {
805 			/* usp in PAL regs */
806 			fake_reg = rdusp();
807 		} else {
808 			/* zero "register" */
809 			fake_reg = 0;
810 		}
811 	}
812 
813 	/* We don't want to use the generic get/put unaligned macros as
814 	   we want to trap exceptions.  Only if we actually get an
815 	   exception will we decide whether we should have caught it.  */
816 
817 	switch (opcode) {
818 	case 0x0c: /* ldwu */
819 		__asm__ __volatile__(
820 		"1:	ldq_u %1,0(%3)\n"
821 		"2:	ldq_u %2,1(%3)\n"
822 		"	extwl %1,%3,%1\n"
823 		"	extwh %2,%3,%2\n"
824 		"3:\n"
825 		".section __ex_table,\"a\"\n"
826 		"	.long 1b - .\n"
827 		"	lda %1,3b-1b(%0)\n"
828 		"	.long 2b - .\n"
829 		"	lda %2,3b-2b(%0)\n"
830 		".previous"
831 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
832 			: "r"(va), "0"(0));
833 		if (error)
834 			goto give_sigsegv;
835 		*reg_addr = tmp1|tmp2;
836 		break;
837 
838 	case 0x22: /* lds */
839 		__asm__ __volatile__(
840 		"1:	ldq_u %1,0(%3)\n"
841 		"2:	ldq_u %2,3(%3)\n"
842 		"	extll %1,%3,%1\n"
843 		"	extlh %2,%3,%2\n"
844 		"3:\n"
845 		".section __ex_table,\"a\"\n"
846 		"	.long 1b - .\n"
847 		"	lda %1,3b-1b(%0)\n"
848 		"	.long 2b - .\n"
849 		"	lda %2,3b-2b(%0)\n"
850 		".previous"
851 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
852 			: "r"(va), "0"(0));
853 		if (error)
854 			goto give_sigsegv;
855 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
856 		return;
857 
858 	case 0x23: /* ldt */
859 		__asm__ __volatile__(
860 		"1:	ldq_u %1,0(%3)\n"
861 		"2:	ldq_u %2,7(%3)\n"
862 		"	extql %1,%3,%1\n"
863 		"	extqh %2,%3,%2\n"
864 		"3:\n"
865 		".section __ex_table,\"a\"\n"
866 		"	.long 1b - .\n"
867 		"	lda %1,3b-1b(%0)\n"
868 		"	.long 2b - .\n"
869 		"	lda %2,3b-2b(%0)\n"
870 		".previous"
871 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
872 			: "r"(va), "0"(0));
873 		if (error)
874 			goto give_sigsegv;
875 		alpha_write_fp_reg(reg, tmp1|tmp2);
876 		return;
877 
878 	case 0x28: /* ldl */
879 		__asm__ __volatile__(
880 		"1:	ldq_u %1,0(%3)\n"
881 		"2:	ldq_u %2,3(%3)\n"
882 		"	extll %1,%3,%1\n"
883 		"	extlh %2,%3,%2\n"
884 		"3:\n"
885 		".section __ex_table,\"a\"\n"
886 		"	.long 1b - .\n"
887 		"	lda %1,3b-1b(%0)\n"
888 		"	.long 2b - .\n"
889 		"	lda %2,3b-2b(%0)\n"
890 		".previous"
891 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
892 			: "r"(va), "0"(0));
893 		if (error)
894 			goto give_sigsegv;
895 		*reg_addr = (int)(tmp1|tmp2);
896 		break;
897 
898 	case 0x29: /* ldq */
899 		__asm__ __volatile__(
900 		"1:	ldq_u %1,0(%3)\n"
901 		"2:	ldq_u %2,7(%3)\n"
902 		"	extql %1,%3,%1\n"
903 		"	extqh %2,%3,%2\n"
904 		"3:\n"
905 		".section __ex_table,\"a\"\n"
906 		"	.long 1b - .\n"
907 		"	lda %1,3b-1b(%0)\n"
908 		"	.long 2b - .\n"
909 		"	lda %2,3b-2b(%0)\n"
910 		".previous"
911 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
912 			: "r"(va), "0"(0));
913 		if (error)
914 			goto give_sigsegv;
915 		*reg_addr = tmp1|tmp2;
916 		break;
917 
918 	/* Note that the store sequences do not indicate that they change
919 	   memory because it _should_ be affecting nothing in this context.
920 	   (Otherwise we have other, much larger, problems.)  */
921 	case 0x0d: /* stw */
922 		__asm__ __volatile__(
923 		"1:	ldq_u %2,1(%5)\n"
924 		"2:	ldq_u %1,0(%5)\n"
925 		"	inswh %6,%5,%4\n"
926 		"	inswl %6,%5,%3\n"
927 		"	mskwh %2,%5,%2\n"
928 		"	mskwl %1,%5,%1\n"
929 		"	or %2,%4,%2\n"
930 		"	or %1,%3,%1\n"
931 		"3:	stq_u %2,1(%5)\n"
932 		"4:	stq_u %1,0(%5)\n"
933 		"5:\n"
934 		".section __ex_table,\"a\"\n"
935 		"	.long 1b - .\n"
936 		"	lda %2,5b-1b(%0)\n"
937 		"	.long 2b - .\n"
938 		"	lda %1,5b-2b(%0)\n"
939 		"	.long 3b - .\n"
940 		"	lda $31,5b-3b(%0)\n"
941 		"	.long 4b - .\n"
942 		"	lda $31,5b-4b(%0)\n"
943 		".previous"
944 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
945 			  "=&r"(tmp3), "=&r"(tmp4)
946 			: "r"(va), "r"(*reg_addr), "0"(0));
947 		if (error)
948 			goto give_sigsegv;
949 		return;
950 
951 	case 0x26: /* sts */
952 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
953 		/* FALLTHRU */
954 
955 	case 0x2c: /* stl */
956 		__asm__ __volatile__(
957 		"1:	ldq_u %2,3(%5)\n"
958 		"2:	ldq_u %1,0(%5)\n"
959 		"	inslh %6,%5,%4\n"
960 		"	insll %6,%5,%3\n"
961 		"	msklh %2,%5,%2\n"
962 		"	mskll %1,%5,%1\n"
963 		"	or %2,%4,%2\n"
964 		"	or %1,%3,%1\n"
965 		"3:	stq_u %2,3(%5)\n"
966 		"4:	stq_u %1,0(%5)\n"
967 		"5:\n"
968 		".section __ex_table,\"a\"\n"
969 		"	.long 1b - .\n"
970 		"	lda %2,5b-1b(%0)\n"
971 		"	.long 2b - .\n"
972 		"	lda %1,5b-2b(%0)\n"
973 		"	.long 3b - .\n"
974 		"	lda $31,5b-3b(%0)\n"
975 		"	.long 4b - .\n"
976 		"	lda $31,5b-4b(%0)\n"
977 		".previous"
978 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
979 			  "=&r"(tmp3), "=&r"(tmp4)
980 			: "r"(va), "r"(*reg_addr), "0"(0));
981 		if (error)
982 			goto give_sigsegv;
983 		return;
984 
985 	case 0x27: /* stt */
986 		fake_reg = alpha_read_fp_reg(reg);
987 		/* FALLTHRU */
988 
989 	case 0x2d: /* stq */
990 		__asm__ __volatile__(
991 		"1:	ldq_u %2,7(%5)\n"
992 		"2:	ldq_u %1,0(%5)\n"
993 		"	insqh %6,%5,%4\n"
994 		"	insql %6,%5,%3\n"
995 		"	mskqh %2,%5,%2\n"
996 		"	mskql %1,%5,%1\n"
997 		"	or %2,%4,%2\n"
998 		"	or %1,%3,%1\n"
999 		"3:	stq_u %2,7(%5)\n"
1000 		"4:	stq_u %1,0(%5)\n"
1001 		"5:\n"
1002 		".section __ex_table,\"a\"\n\t"
1003 		"	.long 1b - .\n"
1004 		"	lda %2,5b-1b(%0)\n"
1005 		"	.long 2b - .\n"
1006 		"	lda %1,5b-2b(%0)\n"
1007 		"	.long 3b - .\n"
1008 		"	lda $31,5b-3b(%0)\n"
1009 		"	.long 4b - .\n"
1010 		"	lda $31,5b-4b(%0)\n"
1011 		".previous"
1012 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1013 			  "=&r"(tmp3), "=&r"(tmp4)
1014 			: "r"(va), "r"(*reg_addr), "0"(0));
1015 		if (error)
1016 			goto give_sigsegv;
1017 		return;
1018 
1019 	default:
1020 		/* What instruction were you trying to use, exactly?  */
1021 		goto give_sigbus;
1022 	}
1023 
1024 	/* Only integer loads should get here; everyone else returns early. */
1025 	if (reg == 30)
1026 		wrusp(fake_reg);
1027 	return;
1028 
1029 give_sigsegv:
1030 	regs->pc -= 4;  /* make pc point to faulting insn */
1031 	info.si_signo = SIGSEGV;
1032 	info.si_errno = 0;
1033 
1034 	/* We need to replicate some of the logic in mm/fault.c,
1035 	   since we don't have access to the fault code in the
1036 	   exception handling return path.  */
1037 	if (!__access_ok((unsigned long)va, 0, USER_DS))
1038 		info.si_code = SEGV_ACCERR;
1039 	else {
1040 		struct mm_struct *mm = current->mm;
1041 		down_read(&mm->mmap_sem);
1042 		if (find_vma(mm, (unsigned long)va))
1043 			info.si_code = SEGV_ACCERR;
1044 		else
1045 			info.si_code = SEGV_MAPERR;
1046 		up_read(&mm->mmap_sem);
1047 	}
1048 	info.si_addr = va;
1049 	send_sig_info(SIGSEGV, &info, current);
1050 	return;
1051 
1052 give_sigbus:
1053 	regs->pc -= 4;
1054 	info.si_signo = SIGBUS;
1055 	info.si_errno = 0;
1056 	info.si_code = BUS_ADRALN;
1057 	info.si_addr = va;
1058 	send_sig_info(SIGBUS, &info, current);
1059 	return;
1060 }
1061 
1062 void __cpuinit
1063 trap_init(void)
1064 {
1065 	/* Tell PAL-code what global pointer we want in the kernel.  */
1066 	register unsigned long gptr __asm__("$29");
1067 	wrkgp(gptr);
1068 
1069 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1070 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1071 	if (implver() == IMPLVER_EV4)
1072 		opDEC_check();
1073 
1074 	wrent(entArith, 1);
1075 	wrent(entMM, 2);
1076 	wrent(entIF, 3);
1077 	wrent(entUna, 4);
1078 	wrent(entSys, 5);
1079 	wrent(entDbg, 6);
1080 }
1081