xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision bbecb07f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7 
8 /*
9  * This file initializes the trap entry points
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21 
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29 
30 #include "proto.h"
31 
32 /* Work-around for some SRMs which mishandle opDEC faults.  */
33 
34 static int opDEC_fix;
35 
36 static void
37 opDEC_check(void)
38 {
39 	__asm__ __volatile__ (
40 	/* Load the address of... */
41 	"	br	$16, 1f\n"
42 	/* A stub instruction fault handler.  Just add 4 to the
43 	   pc and continue.  */
44 	"	ldq	$16, 8($sp)\n"
45 	"	addq	$16, 4, $16\n"
46 	"	stq	$16, 8($sp)\n"
47 	"	call_pal %[rti]\n"
48 	/* Install the instruction fault handler.  */
49 	"1:	lda	$17, 3\n"
50 	"	call_pal %[wrent]\n"
51 	/* With that in place, the fault from the round-to-minf fp
52 	   insn will arrive either at the "lda 4" insn (bad) or one
53 	   past that (good).  This places the correct fixup in %0.  */
54 	"	lda %[fix], 0\n"
55 	"	cvttq/svm $f31,$f31\n"
56 	"	lda %[fix], 4"
57 	: [fix] "=r" (opDEC_fix)
58 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60 
61 	if (opDEC_fix)
62 		printk("opDEC fixup enabled.\n");
63 }
64 
65 void
66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
69 	       regs->pc, regs->r26, regs->ps, print_tainted());
70 	printk("pc is at %pSR\n", (void *)regs->pc);
71 	printk("ra is at %pSR\n", (void *)regs->r26);
72 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
73 	       regs->r0, regs->r1, regs->r2);
74 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
75  	       regs->r3, regs->r4, regs->r5);
76 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
77 	       regs->r6, regs->r7, regs->r8);
78 
79 	if (r9_15) {
80 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
81 		       r9_15[9], r9_15[10], r9_15[11]);
82 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
83 		       r9_15[12], r9_15[13], r9_15[14]);
84 		printk("s6 = %016lx\n", r9_15[15]);
85 	}
86 
87 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
88 	       regs->r16, regs->r17, regs->r18);
89 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
90  	       regs->r19, regs->r20, regs->r21);
91  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
92 	       regs->r22, regs->r23, regs->r24);
93 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
94 	       regs->r25, regs->r27, regs->r28);
95 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100 
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107 
108 static void
109 dik_show_code(unsigned int *pc)
110 {
111 	long i;
112 
113 	printk("Code:");
114 	for (i = -6; i < 2; i++) {
115 		unsigned int insn;
116 		if (__get_user(insn, (unsigned int __user *)pc + i))
117 			break;
118 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119 	}
120 	printk("\n");
121 }
122 
123 static void
124 dik_show_trace(unsigned long *sp)
125 {
126 	long i = 0;
127 	printk("Trace:\n");
128 	while (0x1ff8 & (unsigned long) sp) {
129 		extern char _stext[], _etext[];
130 		unsigned long tmp = *sp;
131 		sp++;
132 		if (tmp < (unsigned long) &_stext)
133 			continue;
134 		if (tmp >= (unsigned long) &_etext)
135 			continue;
136 		printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
137 		if (i > 40) {
138 			printk(" ...");
139 			break;
140 		}
141 	}
142 	printk("\n");
143 }
144 
145 static int kstack_depth_to_print = 24;
146 
147 void show_stack(struct task_struct *task, unsigned long *sp)
148 {
149 	unsigned long *stack;
150 	int i;
151 
152 	/*
153 	 * debugging aid: "show_stack(NULL);" prints the
154 	 * back trace for this cpu.
155 	 */
156 	if(sp==NULL)
157 		sp=(unsigned long*)&sp;
158 
159 	stack = sp;
160 	for(i=0; i < kstack_depth_to_print; i++) {
161 		if (((long) stack & (THREAD_SIZE-1)) == 0)
162 			break;
163 		if (i && ((i % 4) == 0))
164 			printk("\n       ");
165 		printk("%016lx ", *stack++);
166 	}
167 	printk("\n");
168 	dik_show_trace(sp);
169 }
170 
171 void
172 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
173 {
174 	if (regs->ps & 8)
175 		return;
176 #ifdef CONFIG_SMP
177 	printk("CPU %d ", hard_smp_processor_id());
178 #endif
179 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
180 	dik_show_regs(regs, r9_15);
181 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
182 	dik_show_trace((unsigned long *)(regs+1));
183 	dik_show_code((unsigned int *)regs->pc);
184 
185 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
186 		printk("die_if_kernel recursion detected.\n");
187 		local_irq_enable();
188 		while (1);
189 	}
190 	do_exit(SIGSEGV);
191 }
192 
193 #ifndef CONFIG_MATHEMU
194 static long dummy_emul(void) { return 0; }
195 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
196   = (void *)dummy_emul;
197 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
198 long (*alpha_fp_emul) (unsigned long pc)
199   = (void *)dummy_emul;
200 EXPORT_SYMBOL_GPL(alpha_fp_emul);
201 #else
202 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
203 long alpha_fp_emul (unsigned long pc);
204 #endif
205 
206 asmlinkage void
207 do_entArith(unsigned long summary, unsigned long write_mask,
208 	    struct pt_regs *regs)
209 {
210 	long si_code = FPE_FLTINV;
211 	siginfo_t info;
212 
213 	if (summary & 1) {
214 		/* Software-completion summary bit is set, so try to
215 		   emulate the instruction.  If the processor supports
216 		   precise exceptions, we don't have to search.  */
217 		if (!amask(AMASK_PRECISE_TRAP))
218 			si_code = alpha_fp_emul(regs->pc - 4);
219 		else
220 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
221 		if (si_code == 0)
222 			return;
223 	}
224 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
225 
226 	info.si_signo = SIGFPE;
227 	info.si_errno = 0;
228 	info.si_code = si_code;
229 	info.si_addr = (void __user *) regs->pc;
230 	send_sig_info(SIGFPE, &info, current);
231 }
232 
233 asmlinkage void
234 do_entIF(unsigned long type, struct pt_regs *regs)
235 {
236 	siginfo_t info;
237 	int signo, code;
238 
239 	if ((regs->ps & ~IPL_MAX) == 0) {
240 		if (type == 1) {
241 			const unsigned int *data
242 			  = (const unsigned int *) regs->pc;
243 			printk("Kernel bug at %s:%d\n",
244 			       (const char *)(data[1] | (long)data[2] << 32),
245 			       data[0]);
246 		}
247 #ifdef CONFIG_ALPHA_WTINT
248 		if (type == 4) {
249 			/* If CALL_PAL WTINT is totally unsupported by the
250 			   PALcode, e.g. MILO, "emulate" it by overwriting
251 			   the insn.  */
252 			unsigned int *pinsn
253 			  = (unsigned int *) regs->pc - 1;
254 			if (*pinsn == PAL_wtint) {
255 				*pinsn = 0x47e01400; /* mov 0,$0 */
256 				imb();
257 				regs->r0 = 0;
258 				return;
259 			}
260 		}
261 #endif /* ALPHA_WTINT */
262 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
263 			      regs, type, NULL);
264 	}
265 
266 	switch (type) {
267 	      case 0: /* breakpoint */
268 		info.si_signo = SIGTRAP;
269 		info.si_errno = 0;
270 		info.si_code = TRAP_BRKPT;
271 		info.si_trapno = 0;
272 		info.si_addr = (void __user *) regs->pc;
273 
274 		if (ptrace_cancel_bpt(current)) {
275 			regs->pc -= 4;	/* make pc point to former bpt */
276 		}
277 
278 		send_sig_info(SIGTRAP, &info, current);
279 		return;
280 
281 	      case 1: /* bugcheck */
282 		info.si_signo = SIGTRAP;
283 		info.si_errno = 0;
284 		info.si_code = TRAP_FIXME;
285 		info.si_addr = (void __user *) regs->pc;
286 		info.si_trapno = 0;
287 		send_sig_info(SIGTRAP, &info, current);
288 		return;
289 
290 	      case 2: /* gentrap */
291 		info.si_addr = (void __user *) regs->pc;
292 		info.si_trapno = regs->r16;
293 		switch ((long) regs->r16) {
294 		case GEN_INTOVF:
295 			signo = SIGFPE;
296 			code = FPE_INTOVF;
297 			break;
298 		case GEN_INTDIV:
299 			signo = SIGFPE;
300 			code = FPE_INTDIV;
301 			break;
302 		case GEN_FLTOVF:
303 			signo = SIGFPE;
304 			code = FPE_FLTOVF;
305 			break;
306 		case GEN_FLTDIV:
307 			signo = SIGFPE;
308 			code = FPE_FLTDIV;
309 			break;
310 		case GEN_FLTUND:
311 			signo = SIGFPE;
312 			code = FPE_FLTUND;
313 			break;
314 		case GEN_FLTINV:
315 			signo = SIGFPE;
316 			code = FPE_FLTINV;
317 			break;
318 		case GEN_FLTINE:
319 			signo = SIGFPE;
320 			code = FPE_FLTRES;
321 			break;
322 		case GEN_ROPRAND:
323 			signo = SIGFPE;
324 			code = FPE_FIXME;
325 			break;
326 
327 		case GEN_DECOVF:
328 		case GEN_DECDIV:
329 		case GEN_DECINV:
330 		case GEN_ASSERTERR:
331 		case GEN_NULPTRERR:
332 		case GEN_STKOVF:
333 		case GEN_STRLENERR:
334 		case GEN_SUBSTRERR:
335 		case GEN_RANGERR:
336 		case GEN_SUBRNG:
337 		case GEN_SUBRNG1:
338 		case GEN_SUBRNG2:
339 		case GEN_SUBRNG3:
340 		case GEN_SUBRNG4:
341 		case GEN_SUBRNG5:
342 		case GEN_SUBRNG6:
343 		case GEN_SUBRNG7:
344 		default:
345 			signo = SIGTRAP;
346 			code = TRAP_FIXME;
347 			break;
348 		}
349 
350 		info.si_signo = signo;
351 		info.si_errno = 0;
352 		info.si_code = code;
353 		info.si_addr = (void __user *) regs->pc;
354 		send_sig_info(signo, &info, current);
355 		return;
356 
357 	      case 4: /* opDEC */
358 		if (implver() == IMPLVER_EV4) {
359 			long si_code;
360 
361 			/* The some versions of SRM do not handle
362 			   the opDEC properly - they return the PC of the
363 			   opDEC fault, not the instruction after as the
364 			   Alpha architecture requires.  Here we fix it up.
365 			   We do this by intentionally causing an opDEC
366 			   fault during the boot sequence and testing if
367 			   we get the correct PC.  If not, we set a flag
368 			   to correct it every time through.  */
369 			regs->pc += opDEC_fix;
370 
371 			/* EV4 does not implement anything except normal
372 			   rounding.  Everything else will come here as
373 			   an illegal instruction.  Emulate them.  */
374 			si_code = alpha_fp_emul(regs->pc - 4);
375 			if (si_code == 0)
376 				return;
377 			if (si_code > 0) {
378 				info.si_signo = SIGFPE;
379 				info.si_errno = 0;
380 				info.si_code = si_code;
381 				info.si_addr = (void __user *) regs->pc;
382 				send_sig_info(SIGFPE, &info, current);
383 				return;
384 			}
385 		}
386 		break;
387 
388 	      case 3: /* FEN fault */
389 		/* Irritating users can call PAL_clrfen to disable the
390 		   FPU for the process.  The kernel will then trap in
391 		   do_switch_stack and undo_switch_stack when we try
392 		   to save and restore the FP registers.
393 
394 		   Given that GCC by default generates code that uses the
395 		   FP registers, PAL_clrfen is not useful except for DoS
396 		   attacks.  So turn the bleeding FPU back on and be done
397 		   with it.  */
398 		current_thread_info()->pcb.flags |= 1;
399 		__reload_thread(&current_thread_info()->pcb);
400 		return;
401 
402 	      case 5: /* illoc */
403 	      default: /* unexpected instruction-fault type */
404 		      ;
405 	}
406 
407 	info.si_signo = SIGILL;
408 	info.si_errno = 0;
409 	info.si_code = ILL_ILLOPC;
410 	info.si_addr = (void __user *) regs->pc;
411 	send_sig_info(SIGILL, &info, current);
412 }
413 
414 /* There is an ifdef in the PALcode in MILO that enables a
415    "kernel debugging entry point" as an unprivileged call_pal.
416 
417    We don't want to have anything to do with it, but unfortunately
418    several versions of MILO included in distributions have it enabled,
419    and if we don't put something on the entry point we'll oops.  */
420 
421 asmlinkage void
422 do_entDbg(struct pt_regs *regs)
423 {
424 	siginfo_t info;
425 
426 	die_if_kernel("Instruction fault", regs, 0, NULL);
427 
428 	info.si_signo = SIGILL;
429 	info.si_errno = 0;
430 	info.si_code = ILL_ILLOPC;
431 	info.si_addr = (void __user *) regs->pc;
432 	force_sig_info(SIGILL, &info, current);
433 }
434 
435 
436 /*
437  * entUna has a different register layout to be reasonably simple. It
438  * needs access to all the integer registers (the kernel doesn't use
439  * fp-regs), and it needs to have them in order for simpler access.
440  *
441  * Due to the non-standard register layout (and because we don't want
442  * to handle floating-point regs), user-mode unaligned accesses are
443  * handled separately by do_entUnaUser below.
444  *
445  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
446  * on a gp-register unaligned load/store, something is _very_ wrong
447  * in the kernel anyway..
448  */
449 struct allregs {
450 	unsigned long regs[32];
451 	unsigned long ps, pc, gp, a0, a1, a2;
452 };
453 
454 struct unaligned_stat {
455 	unsigned long count, va, pc;
456 } unaligned[2];
457 
458 
459 /* Macro for exception fixup code to access integer registers.  */
460 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
461 
462 
463 asmlinkage void
464 do_entUna(void * va, unsigned long opcode, unsigned long reg,
465 	  struct allregs *regs)
466 {
467 	long error, tmp1, tmp2, tmp3, tmp4;
468 	unsigned long pc = regs->pc - 4;
469 	unsigned long *_regs = regs->regs;
470 	const struct exception_table_entry *fixup;
471 
472 	unaligned[0].count++;
473 	unaligned[0].va = (unsigned long) va;
474 	unaligned[0].pc = pc;
475 
476 	/* We don't want to use the generic get/put unaligned macros as
477 	   we want to trap exceptions.  Only if we actually get an
478 	   exception will we decide whether we should have caught it.  */
479 
480 	switch (opcode) {
481 	case 0x0c: /* ldwu */
482 		__asm__ __volatile__(
483 		"1:	ldq_u %1,0(%3)\n"
484 		"2:	ldq_u %2,1(%3)\n"
485 		"	extwl %1,%3,%1\n"
486 		"	extwh %2,%3,%2\n"
487 		"3:\n"
488 		EXC(1b,3b,%1,%0)
489 		EXC(2b,3b,%2,%0)
490 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
491 			: "r"(va), "0"(0));
492 		if (error)
493 			goto got_exception;
494 		una_reg(reg) = tmp1|tmp2;
495 		return;
496 
497 	case 0x28: /* ldl */
498 		__asm__ __volatile__(
499 		"1:	ldq_u %1,0(%3)\n"
500 		"2:	ldq_u %2,3(%3)\n"
501 		"	extll %1,%3,%1\n"
502 		"	extlh %2,%3,%2\n"
503 		"3:\n"
504 		EXC(1b,3b,%1,%0)
505 		EXC(2b,3b,%2,%0)
506 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
507 			: "r"(va), "0"(0));
508 		if (error)
509 			goto got_exception;
510 		una_reg(reg) = (int)(tmp1|tmp2);
511 		return;
512 
513 	case 0x29: /* ldq */
514 		__asm__ __volatile__(
515 		"1:	ldq_u %1,0(%3)\n"
516 		"2:	ldq_u %2,7(%3)\n"
517 		"	extql %1,%3,%1\n"
518 		"	extqh %2,%3,%2\n"
519 		"3:\n"
520 		EXC(1b,3b,%1,%0)
521 		EXC(2b,3b,%2,%0)
522 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
523 			: "r"(va), "0"(0));
524 		if (error)
525 			goto got_exception;
526 		una_reg(reg) = tmp1|tmp2;
527 		return;
528 
529 	/* Note that the store sequences do not indicate that they change
530 	   memory because it _should_ be affecting nothing in this context.
531 	   (Otherwise we have other, much larger, problems.)  */
532 	case 0x0d: /* stw */
533 		__asm__ __volatile__(
534 		"1:	ldq_u %2,1(%5)\n"
535 		"2:	ldq_u %1,0(%5)\n"
536 		"	inswh %6,%5,%4\n"
537 		"	inswl %6,%5,%3\n"
538 		"	mskwh %2,%5,%2\n"
539 		"	mskwl %1,%5,%1\n"
540 		"	or %2,%4,%2\n"
541 		"	or %1,%3,%1\n"
542 		"3:	stq_u %2,1(%5)\n"
543 		"4:	stq_u %1,0(%5)\n"
544 		"5:\n"
545 		EXC(1b,5b,%2,%0)
546 		EXC(2b,5b,%1,%0)
547 		EXC(3b,5b,$31,%0)
548 		EXC(4b,5b,$31,%0)
549 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
550 			  "=&r"(tmp3), "=&r"(tmp4)
551 			: "r"(va), "r"(una_reg(reg)), "0"(0));
552 		if (error)
553 			goto got_exception;
554 		return;
555 
556 	case 0x2c: /* stl */
557 		__asm__ __volatile__(
558 		"1:	ldq_u %2,3(%5)\n"
559 		"2:	ldq_u %1,0(%5)\n"
560 		"	inslh %6,%5,%4\n"
561 		"	insll %6,%5,%3\n"
562 		"	msklh %2,%5,%2\n"
563 		"	mskll %1,%5,%1\n"
564 		"	or %2,%4,%2\n"
565 		"	or %1,%3,%1\n"
566 		"3:	stq_u %2,3(%5)\n"
567 		"4:	stq_u %1,0(%5)\n"
568 		"5:\n"
569 		EXC(1b,5b,%2,%0)
570 		EXC(2b,5b,%1,%0)
571 		EXC(3b,5b,$31,%0)
572 		EXC(4b,5b,$31,%0)
573 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
574 			  "=&r"(tmp3), "=&r"(tmp4)
575 			: "r"(va), "r"(una_reg(reg)), "0"(0));
576 		if (error)
577 			goto got_exception;
578 		return;
579 
580 	case 0x2d: /* stq */
581 		__asm__ __volatile__(
582 		"1:	ldq_u %2,7(%5)\n"
583 		"2:	ldq_u %1,0(%5)\n"
584 		"	insqh %6,%5,%4\n"
585 		"	insql %6,%5,%3\n"
586 		"	mskqh %2,%5,%2\n"
587 		"	mskql %1,%5,%1\n"
588 		"	or %2,%4,%2\n"
589 		"	or %1,%3,%1\n"
590 		"3:	stq_u %2,7(%5)\n"
591 		"4:	stq_u %1,0(%5)\n"
592 		"5:\n"
593 		EXC(1b,5b,%2,%0)
594 		EXC(2b,5b,%1,%0)
595 		EXC(3b,5b,$31,%0)
596 		EXC(4b,5b,$31,%0)
597 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
598 			  "=&r"(tmp3), "=&r"(tmp4)
599 			: "r"(va), "r"(una_reg(reg)), "0"(0));
600 		if (error)
601 			goto got_exception;
602 		return;
603 	}
604 
605 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
606 		pc, va, opcode, reg);
607 	do_exit(SIGSEGV);
608 
609 got_exception:
610 	/* Ok, we caught the exception, but we don't want it.  Is there
611 	   someone to pass it along to?  */
612 	if ((fixup = search_exception_tables(pc)) != 0) {
613 		unsigned long newpc;
614 		newpc = fixup_exception(una_reg, fixup, pc);
615 
616 		printk("Forwarding unaligned exception at %lx (%lx)\n",
617 		       pc, newpc);
618 
619 		regs->pc = newpc;
620 		return;
621 	}
622 
623 	/*
624 	 * Yikes!  No one to forward the exception to.
625 	 * Since the registers are in a weird format, dump them ourselves.
626  	 */
627 
628 	printk("%s(%d): unhandled unaligned exception\n",
629 	       current->comm, task_pid_nr(current));
630 
631 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
632 	       pc, una_reg(26), regs->ps);
633 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
634 	       una_reg(0), una_reg(1), una_reg(2));
635 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
636  	       una_reg(3), una_reg(4), una_reg(5));
637 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
638 	       una_reg(6), una_reg(7), una_reg(8));
639 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
640 	       una_reg(9), una_reg(10), una_reg(11));
641 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
642 	       una_reg(12), una_reg(13), una_reg(14));
643 	printk("r15= %016lx\n", una_reg(15));
644 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
645 	       una_reg(16), una_reg(17), una_reg(18));
646 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
647  	       una_reg(19), una_reg(20), una_reg(21));
648  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
649 	       una_reg(22), una_reg(23), una_reg(24));
650 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
651 	       una_reg(25), una_reg(27), una_reg(28));
652 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
653 
654 	dik_show_code((unsigned int *)pc);
655 	dik_show_trace((unsigned long *)(regs+1));
656 
657 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
658 		printk("die_if_kernel recursion detected.\n");
659 		local_irq_enable();
660 		while (1);
661 	}
662 	do_exit(SIGSEGV);
663 }
664 
665 /*
666  * Convert an s-floating point value in memory format to the
667  * corresponding value in register format.  The exponent
668  * needs to be remapped to preserve non-finite values
669  * (infinities, not-a-numbers, denormals).
670  */
671 static inline unsigned long
672 s_mem_to_reg (unsigned long s_mem)
673 {
674 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
675 	unsigned long sign    = (s_mem >> 31) & 0x1;
676 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
677 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
678 	unsigned long exp;
679 
680 	exp = (exp_msb << 10) | exp_low;	/* common case */
681 	if (exp_msb) {
682 		if (exp_low == 0x7f) {
683 			exp = 0x7ff;
684 		}
685 	} else {
686 		if (exp_low == 0x00) {
687 			exp = 0x000;
688 		} else {
689 			exp |= (0x7 << 7);
690 		}
691 	}
692 	return (sign << 63) | (exp << 52) | (frac << 29);
693 }
694 
695 /*
696  * Convert an s-floating point value in register format to the
697  * corresponding value in memory format.
698  */
699 static inline unsigned long
700 s_reg_to_mem (unsigned long s_reg)
701 {
702 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
703 }
704 
705 /*
706  * Handle user-level unaligned fault.  Handling user-level unaligned
707  * faults is *extremely* slow and produces nasty messages.  A user
708  * program *should* fix unaligned faults ASAP.
709  *
710  * Notice that we have (almost) the regular kernel stack layout here,
711  * so finding the appropriate registers is a little more difficult
712  * than in the kernel case.
713  *
714  * Finally, we handle regular integer load/stores only.  In
715  * particular, load-linked/store-conditionally and floating point
716  * load/stores are not supported.  The former make no sense with
717  * unaligned faults (they are guaranteed to fail) and I don't think
718  * the latter will occur in any decent program.
719  *
720  * Sigh. We *do* have to handle some FP operations, because GCC will
721  * uses them as temporary storage for integer memory to memory copies.
722  * However, we need to deal with stt/ldt and sts/lds only.
723  */
724 
725 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
726 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
727 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
728 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
729 
730 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
731 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
732 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
733 
734 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
735 
736 static int unauser_reg_offsets[32] = {
737 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
738 	/* r9 ... r15 are stored in front of regs.  */
739 	-56, -48, -40, -32, -24, -16, -8,
740 	R(r16), R(r17), R(r18),
741 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
742 	R(r27), R(r28), R(gp),
743 	0, 0
744 };
745 
746 #undef R
747 
748 asmlinkage void
749 do_entUnaUser(void __user * va, unsigned long opcode,
750 	      unsigned long reg, struct pt_regs *regs)
751 {
752 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
753 
754 	unsigned long tmp1, tmp2, tmp3, tmp4;
755 	unsigned long fake_reg, *reg_addr = &fake_reg;
756 	siginfo_t info;
757 	long error;
758 
759 	/* Check the UAC bits to decide what the user wants us to do
760 	   with the unaliged access.  */
761 
762 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
763 		if (__ratelimit(&ratelimit)) {
764 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
765 			       current->comm, task_pid_nr(current),
766 			       regs->pc - 4, va, opcode, reg);
767 		}
768 	}
769 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
770 		goto give_sigbus;
771 	/* Not sure why you'd want to use this, but... */
772 	if ((current_thread_info()->status & TS_UAC_NOFIX))
773 		return;
774 
775 	/* Don't bother reading ds in the access check since we already
776 	   know that this came from the user.  Also rely on the fact that
777 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
778 	if ((unsigned long)va >= TASK_SIZE)
779 		goto give_sigsegv;
780 
781 	++unaligned[1].count;
782 	unaligned[1].va = (unsigned long)va;
783 	unaligned[1].pc = regs->pc - 4;
784 
785 	if ((1L << opcode) & OP_INT_MASK) {
786 		/* it's an integer load/store */
787 		if (reg < 30) {
788 			reg_addr = (unsigned long *)
789 			  ((char *)regs + unauser_reg_offsets[reg]);
790 		} else if (reg == 30) {
791 			/* usp in PAL regs */
792 			fake_reg = rdusp();
793 		} else {
794 			/* zero "register" */
795 			fake_reg = 0;
796 		}
797 	}
798 
799 	/* We don't want to use the generic get/put unaligned macros as
800 	   we want to trap exceptions.  Only if we actually get an
801 	   exception will we decide whether we should have caught it.  */
802 
803 	switch (opcode) {
804 	case 0x0c: /* ldwu */
805 		__asm__ __volatile__(
806 		"1:	ldq_u %1,0(%3)\n"
807 		"2:	ldq_u %2,1(%3)\n"
808 		"	extwl %1,%3,%1\n"
809 		"	extwh %2,%3,%2\n"
810 		"3:\n"
811 		EXC(1b,3b,%1,%0)
812 		EXC(2b,3b,%2,%0)
813 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
814 			: "r"(va), "0"(0));
815 		if (error)
816 			goto give_sigsegv;
817 		*reg_addr = tmp1|tmp2;
818 		break;
819 
820 	case 0x22: /* lds */
821 		__asm__ __volatile__(
822 		"1:	ldq_u %1,0(%3)\n"
823 		"2:	ldq_u %2,3(%3)\n"
824 		"	extll %1,%3,%1\n"
825 		"	extlh %2,%3,%2\n"
826 		"3:\n"
827 		EXC(1b,3b,%1,%0)
828 		EXC(2b,3b,%2,%0)
829 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
830 			: "r"(va), "0"(0));
831 		if (error)
832 			goto give_sigsegv;
833 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
834 		return;
835 
836 	case 0x23: /* ldt */
837 		__asm__ __volatile__(
838 		"1:	ldq_u %1,0(%3)\n"
839 		"2:	ldq_u %2,7(%3)\n"
840 		"	extql %1,%3,%1\n"
841 		"	extqh %2,%3,%2\n"
842 		"3:\n"
843 		EXC(1b,3b,%1,%0)
844 		EXC(2b,3b,%2,%0)
845 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
846 			: "r"(va), "0"(0));
847 		if (error)
848 			goto give_sigsegv;
849 		alpha_write_fp_reg(reg, tmp1|tmp2);
850 		return;
851 
852 	case 0x28: /* ldl */
853 		__asm__ __volatile__(
854 		"1:	ldq_u %1,0(%3)\n"
855 		"2:	ldq_u %2,3(%3)\n"
856 		"	extll %1,%3,%1\n"
857 		"	extlh %2,%3,%2\n"
858 		"3:\n"
859 		EXC(1b,3b,%1,%0)
860 		EXC(2b,3b,%2,%0)
861 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
862 			: "r"(va), "0"(0));
863 		if (error)
864 			goto give_sigsegv;
865 		*reg_addr = (int)(tmp1|tmp2);
866 		break;
867 
868 	case 0x29: /* ldq */
869 		__asm__ __volatile__(
870 		"1:	ldq_u %1,0(%3)\n"
871 		"2:	ldq_u %2,7(%3)\n"
872 		"	extql %1,%3,%1\n"
873 		"	extqh %2,%3,%2\n"
874 		"3:\n"
875 		EXC(1b,3b,%1,%0)
876 		EXC(2b,3b,%2,%0)
877 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
878 			: "r"(va), "0"(0));
879 		if (error)
880 			goto give_sigsegv;
881 		*reg_addr = tmp1|tmp2;
882 		break;
883 
884 	/* Note that the store sequences do not indicate that they change
885 	   memory because it _should_ be affecting nothing in this context.
886 	   (Otherwise we have other, much larger, problems.)  */
887 	case 0x0d: /* stw */
888 		__asm__ __volatile__(
889 		"1:	ldq_u %2,1(%5)\n"
890 		"2:	ldq_u %1,0(%5)\n"
891 		"	inswh %6,%5,%4\n"
892 		"	inswl %6,%5,%3\n"
893 		"	mskwh %2,%5,%2\n"
894 		"	mskwl %1,%5,%1\n"
895 		"	or %2,%4,%2\n"
896 		"	or %1,%3,%1\n"
897 		"3:	stq_u %2,1(%5)\n"
898 		"4:	stq_u %1,0(%5)\n"
899 		"5:\n"
900 		EXC(1b,5b,%2,%0)
901 		EXC(2b,5b,%1,%0)
902 		EXC(3b,5b,$31,%0)
903 		EXC(4b,5b,$31,%0)
904 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
905 			  "=&r"(tmp3), "=&r"(tmp4)
906 			: "r"(va), "r"(*reg_addr), "0"(0));
907 		if (error)
908 			goto give_sigsegv;
909 		return;
910 
911 	case 0x26: /* sts */
912 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
913 		/* FALLTHRU */
914 
915 	case 0x2c: /* stl */
916 		__asm__ __volatile__(
917 		"1:	ldq_u %2,3(%5)\n"
918 		"2:	ldq_u %1,0(%5)\n"
919 		"	inslh %6,%5,%4\n"
920 		"	insll %6,%5,%3\n"
921 		"	msklh %2,%5,%2\n"
922 		"	mskll %1,%5,%1\n"
923 		"	or %2,%4,%2\n"
924 		"	or %1,%3,%1\n"
925 		"3:	stq_u %2,3(%5)\n"
926 		"4:	stq_u %1,0(%5)\n"
927 		"5:\n"
928 		EXC(1b,5b,%2,%0)
929 		EXC(2b,5b,%1,%0)
930 		EXC(3b,5b,$31,%0)
931 		EXC(4b,5b,$31,%0)
932 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
933 			  "=&r"(tmp3), "=&r"(tmp4)
934 			: "r"(va), "r"(*reg_addr), "0"(0));
935 		if (error)
936 			goto give_sigsegv;
937 		return;
938 
939 	case 0x27: /* stt */
940 		fake_reg = alpha_read_fp_reg(reg);
941 		/* FALLTHRU */
942 
943 	case 0x2d: /* stq */
944 		__asm__ __volatile__(
945 		"1:	ldq_u %2,7(%5)\n"
946 		"2:	ldq_u %1,0(%5)\n"
947 		"	insqh %6,%5,%4\n"
948 		"	insql %6,%5,%3\n"
949 		"	mskqh %2,%5,%2\n"
950 		"	mskql %1,%5,%1\n"
951 		"	or %2,%4,%2\n"
952 		"	or %1,%3,%1\n"
953 		"3:	stq_u %2,7(%5)\n"
954 		"4:	stq_u %1,0(%5)\n"
955 		"5:\n"
956 		EXC(1b,5b,%2,%0)
957 		EXC(2b,5b,%1,%0)
958 		EXC(3b,5b,$31,%0)
959 		EXC(4b,5b,$31,%0)
960 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
961 			  "=&r"(tmp3), "=&r"(tmp4)
962 			: "r"(va), "r"(*reg_addr), "0"(0));
963 		if (error)
964 			goto give_sigsegv;
965 		return;
966 
967 	default:
968 		/* What instruction were you trying to use, exactly?  */
969 		goto give_sigbus;
970 	}
971 
972 	/* Only integer loads should get here; everyone else returns early. */
973 	if (reg == 30)
974 		wrusp(fake_reg);
975 	return;
976 
977 give_sigsegv:
978 	regs->pc -= 4;  /* make pc point to faulting insn */
979 	info.si_signo = SIGSEGV;
980 	info.si_errno = 0;
981 
982 	/* We need to replicate some of the logic in mm/fault.c,
983 	   since we don't have access to the fault code in the
984 	   exception handling return path.  */
985 	if ((unsigned long)va >= TASK_SIZE)
986 		info.si_code = SEGV_ACCERR;
987 	else {
988 		struct mm_struct *mm = current->mm;
989 		down_read(&mm->mmap_sem);
990 		if (find_vma(mm, (unsigned long)va))
991 			info.si_code = SEGV_ACCERR;
992 		else
993 			info.si_code = SEGV_MAPERR;
994 		up_read(&mm->mmap_sem);
995 	}
996 	info.si_addr = va;
997 	send_sig_info(SIGSEGV, &info, current);
998 	return;
999 
1000 give_sigbus:
1001 	regs->pc -= 4;
1002 	info.si_signo = SIGBUS;
1003 	info.si_errno = 0;
1004 	info.si_code = BUS_ADRALN;
1005 	info.si_addr = va;
1006 	send_sig_info(SIGBUS, &info, current);
1007 	return;
1008 }
1009 
1010 void
1011 trap_init(void)
1012 {
1013 	/* Tell PAL-code what global pointer we want in the kernel.  */
1014 	register unsigned long gptr __asm__("$29");
1015 	wrkgp(gptr);
1016 
1017 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1018 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1019 	if (implver() == IMPLVER_EV4)
1020 		opDEC_check();
1021 
1022 	wrent(entArith, 1);
1023 	wrent(entMM, 2);
1024 	wrent(entIF, 3);
1025 	wrent(entUna, 4);
1026 	wrent(entSys, 5);
1027 	wrent(entDbg, 6);
1028 }
1029