1 /* 2 * arch/alpha/kernel/traps.c 3 * 4 * (C) Copyright 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file initializes the trap entry points 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/mm.h> 13 #include <linux/sched.h> 14 #include <linux/tty.h> 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kallsyms.h> 19 #include <linux/ratelimit.h> 20 21 #include <asm/gentrap.h> 22 #include <asm/uaccess.h> 23 #include <asm/unaligned.h> 24 #include <asm/sysinfo.h> 25 #include <asm/hwrpb.h> 26 #include <asm/mmu_context.h> 27 #include <asm/special_insns.h> 28 29 #include "proto.h" 30 31 /* Work-around for some SRMs which mishandle opDEC faults. */ 32 33 static int opDEC_fix; 34 35 static void 36 opDEC_check(void) 37 { 38 __asm__ __volatile__ ( 39 /* Load the address of... */ 40 " br $16, 1f\n" 41 /* A stub instruction fault handler. Just add 4 to the 42 pc and continue. */ 43 " ldq $16, 8($sp)\n" 44 " addq $16, 4, $16\n" 45 " stq $16, 8($sp)\n" 46 " call_pal %[rti]\n" 47 /* Install the instruction fault handler. */ 48 "1: lda $17, 3\n" 49 " call_pal %[wrent]\n" 50 /* With that in place, the fault from the round-to-minf fp 51 insn will arrive either at the "lda 4" insn (bad) or one 52 past that (good). This places the correct fixup in %0. */ 53 " lda %[fix], 0\n" 54 " cvttq/svm $f31,$f31\n" 55 " lda %[fix], 4" 56 : [fix] "=r" (opDEC_fix) 57 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 59 60 if (opDEC_fix) 61 printk("opDEC fixup enabled.\n"); 62 } 63 64 void 65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 66 { 67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 68 regs->pc, regs->r26, regs->ps, print_tainted()); 69 printk("pc is at %pSR\n", (void *)regs->pc); 70 printk("ra is at %pSR\n", (void *)regs->r26); 71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 72 regs->r0, regs->r1, regs->r2); 73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 74 regs->r3, regs->r4, regs->r5); 75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 76 regs->r6, regs->r7, regs->r8); 77 78 if (r9_15) { 79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 80 r9_15[9], r9_15[10], r9_15[11]); 81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 82 r9_15[12], r9_15[13], r9_15[14]); 83 printk("s6 = %016lx\n", r9_15[15]); 84 } 85 86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 87 regs->r16, regs->r17, regs->r18); 88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 89 regs->r19, regs->r20, regs->r21); 90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 91 regs->r22, regs->r23, regs->r24); 92 printk("t11= %016lx pv = %016lx at = %016lx\n", 93 regs->r25, regs->r27, regs->r28); 94 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 95 #if 0 96 __halt(); 97 #endif 98 } 99 100 #if 0 101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 105 #endif 106 107 static void 108 dik_show_code(unsigned int *pc) 109 { 110 long i; 111 112 printk("Code:"); 113 for (i = -6; i < 2; i++) { 114 unsigned int insn; 115 if (__get_user(insn, (unsigned int __user *)pc + i)) 116 break; 117 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 118 } 119 printk("\n"); 120 } 121 122 static void 123 dik_show_trace(unsigned long *sp) 124 { 125 long i = 0; 126 printk("Trace:\n"); 127 while (0x1ff8 & (unsigned long) sp) { 128 extern char _stext[], _etext[]; 129 unsigned long tmp = *sp; 130 sp++; 131 if (tmp < (unsigned long) &_stext) 132 continue; 133 if (tmp >= (unsigned long) &_etext) 134 continue; 135 printk("[<%lx>] %pSR\n", tmp, (void *)tmp); 136 if (i > 40) { 137 printk(" ..."); 138 break; 139 } 140 } 141 printk("\n"); 142 } 143 144 static int kstack_depth_to_print = 24; 145 146 void show_stack(struct task_struct *task, unsigned long *sp) 147 { 148 unsigned long *stack; 149 int i; 150 151 /* 152 * debugging aid: "show_stack(NULL);" prints the 153 * back trace for this cpu. 154 */ 155 if(sp==NULL) 156 sp=(unsigned long*)&sp; 157 158 stack = sp; 159 for(i=0; i < kstack_depth_to_print; i++) { 160 if (((long) stack & (THREAD_SIZE-1)) == 0) 161 break; 162 if (i && ((i % 4) == 0)) 163 printk("\n "); 164 printk("%016lx ", *stack++); 165 } 166 printk("\n"); 167 dik_show_trace(sp); 168 } 169 170 void 171 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 172 { 173 if (regs->ps & 8) 174 return; 175 #ifdef CONFIG_SMP 176 printk("CPU %d ", hard_smp_processor_id()); 177 #endif 178 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 179 dik_show_regs(regs, r9_15); 180 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 181 dik_show_trace((unsigned long *)(regs+1)); 182 dik_show_code((unsigned int *)regs->pc); 183 184 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 185 printk("die_if_kernel recursion detected.\n"); 186 local_irq_enable(); 187 while (1); 188 } 189 do_exit(SIGSEGV); 190 } 191 192 #ifndef CONFIG_MATHEMU 193 static long dummy_emul(void) { return 0; } 194 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 195 = (void *)dummy_emul; 196 long (*alpha_fp_emul) (unsigned long pc) 197 = (void *)dummy_emul; 198 #else 199 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 200 long alpha_fp_emul (unsigned long pc); 201 #endif 202 203 asmlinkage void 204 do_entArith(unsigned long summary, unsigned long write_mask, 205 struct pt_regs *regs) 206 { 207 long si_code = FPE_FLTINV; 208 siginfo_t info; 209 210 if (summary & 1) { 211 /* Software-completion summary bit is set, so try to 212 emulate the instruction. If the processor supports 213 precise exceptions, we don't have to search. */ 214 if (!amask(AMASK_PRECISE_TRAP)) 215 si_code = alpha_fp_emul(regs->pc - 4); 216 else 217 si_code = alpha_fp_emul_imprecise(regs, write_mask); 218 if (si_code == 0) 219 return; 220 } 221 die_if_kernel("Arithmetic fault", regs, 0, NULL); 222 223 info.si_signo = SIGFPE; 224 info.si_errno = 0; 225 info.si_code = si_code; 226 info.si_addr = (void __user *) regs->pc; 227 send_sig_info(SIGFPE, &info, current); 228 } 229 230 asmlinkage void 231 do_entIF(unsigned long type, struct pt_regs *regs) 232 { 233 siginfo_t info; 234 int signo, code; 235 236 if ((regs->ps & ~IPL_MAX) == 0) { 237 if (type == 1) { 238 const unsigned int *data 239 = (const unsigned int *) regs->pc; 240 printk("Kernel bug at %s:%d\n", 241 (const char *)(data[1] | (long)data[2] << 32), 242 data[0]); 243 } 244 #ifdef CONFIG_ALPHA_WTINT 245 if (type == 4) { 246 /* If CALL_PAL WTINT is totally unsupported by the 247 PALcode, e.g. MILO, "emulate" it by overwriting 248 the insn. */ 249 unsigned int *pinsn 250 = (unsigned int *) regs->pc - 1; 251 if (*pinsn == PAL_wtint) { 252 *pinsn = 0x47e01400; /* mov 0,$0 */ 253 imb(); 254 regs->r0 = 0; 255 return; 256 } 257 } 258 #endif /* ALPHA_WTINT */ 259 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 260 regs, type, NULL); 261 } 262 263 switch (type) { 264 case 0: /* breakpoint */ 265 info.si_signo = SIGTRAP; 266 info.si_errno = 0; 267 info.si_code = TRAP_BRKPT; 268 info.si_trapno = 0; 269 info.si_addr = (void __user *) regs->pc; 270 271 if (ptrace_cancel_bpt(current)) { 272 regs->pc -= 4; /* make pc point to former bpt */ 273 } 274 275 send_sig_info(SIGTRAP, &info, current); 276 return; 277 278 case 1: /* bugcheck */ 279 info.si_signo = SIGTRAP; 280 info.si_errno = 0; 281 info.si_code = __SI_FAULT; 282 info.si_addr = (void __user *) regs->pc; 283 info.si_trapno = 0; 284 send_sig_info(SIGTRAP, &info, current); 285 return; 286 287 case 2: /* gentrap */ 288 info.si_addr = (void __user *) regs->pc; 289 info.si_trapno = regs->r16; 290 switch ((long) regs->r16) { 291 case GEN_INTOVF: 292 signo = SIGFPE; 293 code = FPE_INTOVF; 294 break; 295 case GEN_INTDIV: 296 signo = SIGFPE; 297 code = FPE_INTDIV; 298 break; 299 case GEN_FLTOVF: 300 signo = SIGFPE; 301 code = FPE_FLTOVF; 302 break; 303 case GEN_FLTDIV: 304 signo = SIGFPE; 305 code = FPE_FLTDIV; 306 break; 307 case GEN_FLTUND: 308 signo = SIGFPE; 309 code = FPE_FLTUND; 310 break; 311 case GEN_FLTINV: 312 signo = SIGFPE; 313 code = FPE_FLTINV; 314 break; 315 case GEN_FLTINE: 316 signo = SIGFPE; 317 code = FPE_FLTRES; 318 break; 319 case GEN_ROPRAND: 320 signo = SIGFPE; 321 code = __SI_FAULT; 322 break; 323 324 case GEN_DECOVF: 325 case GEN_DECDIV: 326 case GEN_DECINV: 327 case GEN_ASSERTERR: 328 case GEN_NULPTRERR: 329 case GEN_STKOVF: 330 case GEN_STRLENERR: 331 case GEN_SUBSTRERR: 332 case GEN_RANGERR: 333 case GEN_SUBRNG: 334 case GEN_SUBRNG1: 335 case GEN_SUBRNG2: 336 case GEN_SUBRNG3: 337 case GEN_SUBRNG4: 338 case GEN_SUBRNG5: 339 case GEN_SUBRNG6: 340 case GEN_SUBRNG7: 341 default: 342 signo = SIGTRAP; 343 code = __SI_FAULT; 344 break; 345 } 346 347 info.si_signo = signo; 348 info.si_errno = 0; 349 info.si_code = code; 350 info.si_addr = (void __user *) regs->pc; 351 send_sig_info(signo, &info, current); 352 return; 353 354 case 4: /* opDEC */ 355 if (implver() == IMPLVER_EV4) { 356 long si_code; 357 358 /* The some versions of SRM do not handle 359 the opDEC properly - they return the PC of the 360 opDEC fault, not the instruction after as the 361 Alpha architecture requires. Here we fix it up. 362 We do this by intentionally causing an opDEC 363 fault during the boot sequence and testing if 364 we get the correct PC. If not, we set a flag 365 to correct it every time through. */ 366 regs->pc += opDEC_fix; 367 368 /* EV4 does not implement anything except normal 369 rounding. Everything else will come here as 370 an illegal instruction. Emulate them. */ 371 si_code = alpha_fp_emul(regs->pc - 4); 372 if (si_code == 0) 373 return; 374 if (si_code > 0) { 375 info.si_signo = SIGFPE; 376 info.si_errno = 0; 377 info.si_code = si_code; 378 info.si_addr = (void __user *) regs->pc; 379 send_sig_info(SIGFPE, &info, current); 380 return; 381 } 382 } 383 break; 384 385 case 3: /* FEN fault */ 386 /* Irritating users can call PAL_clrfen to disable the 387 FPU for the process. The kernel will then trap in 388 do_switch_stack and undo_switch_stack when we try 389 to save and restore the FP registers. 390 391 Given that GCC by default generates code that uses the 392 FP registers, PAL_clrfen is not useful except for DoS 393 attacks. So turn the bleeding FPU back on and be done 394 with it. */ 395 current_thread_info()->pcb.flags |= 1; 396 __reload_thread(¤t_thread_info()->pcb); 397 return; 398 399 case 5: /* illoc */ 400 default: /* unexpected instruction-fault type */ 401 ; 402 } 403 404 info.si_signo = SIGILL; 405 info.si_errno = 0; 406 info.si_code = ILL_ILLOPC; 407 info.si_addr = (void __user *) regs->pc; 408 send_sig_info(SIGILL, &info, current); 409 } 410 411 /* There is an ifdef in the PALcode in MILO that enables a 412 "kernel debugging entry point" as an unprivileged call_pal. 413 414 We don't want to have anything to do with it, but unfortunately 415 several versions of MILO included in distributions have it enabled, 416 and if we don't put something on the entry point we'll oops. */ 417 418 asmlinkage void 419 do_entDbg(struct pt_regs *regs) 420 { 421 siginfo_t info; 422 423 die_if_kernel("Instruction fault", regs, 0, NULL); 424 425 info.si_signo = SIGILL; 426 info.si_errno = 0; 427 info.si_code = ILL_ILLOPC; 428 info.si_addr = (void __user *) regs->pc; 429 force_sig_info(SIGILL, &info, current); 430 } 431 432 433 /* 434 * entUna has a different register layout to be reasonably simple. It 435 * needs access to all the integer registers (the kernel doesn't use 436 * fp-regs), and it needs to have them in order for simpler access. 437 * 438 * Due to the non-standard register layout (and because we don't want 439 * to handle floating-point regs), user-mode unaligned accesses are 440 * handled separately by do_entUnaUser below. 441 * 442 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 443 * on a gp-register unaligned load/store, something is _very_ wrong 444 * in the kernel anyway.. 445 */ 446 struct allregs { 447 unsigned long regs[32]; 448 unsigned long ps, pc, gp, a0, a1, a2; 449 }; 450 451 struct unaligned_stat { 452 unsigned long count, va, pc; 453 } unaligned[2]; 454 455 456 /* Macro for exception fixup code to access integer registers. */ 457 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 458 459 460 asmlinkage void 461 do_entUna(void * va, unsigned long opcode, unsigned long reg, 462 struct allregs *regs) 463 { 464 long error, tmp1, tmp2, tmp3, tmp4; 465 unsigned long pc = regs->pc - 4; 466 unsigned long *_regs = regs->regs; 467 const struct exception_table_entry *fixup; 468 469 unaligned[0].count++; 470 unaligned[0].va = (unsigned long) va; 471 unaligned[0].pc = pc; 472 473 /* We don't want to use the generic get/put unaligned macros as 474 we want to trap exceptions. Only if we actually get an 475 exception will we decide whether we should have caught it. */ 476 477 switch (opcode) { 478 case 0x0c: /* ldwu */ 479 __asm__ __volatile__( 480 "1: ldq_u %1,0(%3)\n" 481 "2: ldq_u %2,1(%3)\n" 482 " extwl %1,%3,%1\n" 483 " extwh %2,%3,%2\n" 484 "3:\n" 485 ".section __ex_table,\"a\"\n" 486 " .long 1b - .\n" 487 " lda %1,3b-1b(%0)\n" 488 " .long 2b - .\n" 489 " lda %2,3b-2b(%0)\n" 490 ".previous" 491 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 492 : "r"(va), "0"(0)); 493 if (error) 494 goto got_exception; 495 una_reg(reg) = tmp1|tmp2; 496 return; 497 498 case 0x28: /* ldl */ 499 __asm__ __volatile__( 500 "1: ldq_u %1,0(%3)\n" 501 "2: ldq_u %2,3(%3)\n" 502 " extll %1,%3,%1\n" 503 " extlh %2,%3,%2\n" 504 "3:\n" 505 ".section __ex_table,\"a\"\n" 506 " .long 1b - .\n" 507 " lda %1,3b-1b(%0)\n" 508 " .long 2b - .\n" 509 " lda %2,3b-2b(%0)\n" 510 ".previous" 511 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 512 : "r"(va), "0"(0)); 513 if (error) 514 goto got_exception; 515 una_reg(reg) = (int)(tmp1|tmp2); 516 return; 517 518 case 0x29: /* ldq */ 519 __asm__ __volatile__( 520 "1: ldq_u %1,0(%3)\n" 521 "2: ldq_u %2,7(%3)\n" 522 " extql %1,%3,%1\n" 523 " extqh %2,%3,%2\n" 524 "3:\n" 525 ".section __ex_table,\"a\"\n" 526 " .long 1b - .\n" 527 " lda %1,3b-1b(%0)\n" 528 " .long 2b - .\n" 529 " lda %2,3b-2b(%0)\n" 530 ".previous" 531 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 532 : "r"(va), "0"(0)); 533 if (error) 534 goto got_exception; 535 una_reg(reg) = tmp1|tmp2; 536 return; 537 538 /* Note that the store sequences do not indicate that they change 539 memory because it _should_ be affecting nothing in this context. 540 (Otherwise we have other, much larger, problems.) */ 541 case 0x0d: /* stw */ 542 __asm__ __volatile__( 543 "1: ldq_u %2,1(%5)\n" 544 "2: ldq_u %1,0(%5)\n" 545 " inswh %6,%5,%4\n" 546 " inswl %6,%5,%3\n" 547 " mskwh %2,%5,%2\n" 548 " mskwl %1,%5,%1\n" 549 " or %2,%4,%2\n" 550 " or %1,%3,%1\n" 551 "3: stq_u %2,1(%5)\n" 552 "4: stq_u %1,0(%5)\n" 553 "5:\n" 554 ".section __ex_table,\"a\"\n" 555 " .long 1b - .\n" 556 " lda %2,5b-1b(%0)\n" 557 " .long 2b - .\n" 558 " lda %1,5b-2b(%0)\n" 559 " .long 3b - .\n" 560 " lda $31,5b-3b(%0)\n" 561 " .long 4b - .\n" 562 " lda $31,5b-4b(%0)\n" 563 ".previous" 564 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 565 "=&r"(tmp3), "=&r"(tmp4) 566 : "r"(va), "r"(una_reg(reg)), "0"(0)); 567 if (error) 568 goto got_exception; 569 return; 570 571 case 0x2c: /* stl */ 572 __asm__ __volatile__( 573 "1: ldq_u %2,3(%5)\n" 574 "2: ldq_u %1,0(%5)\n" 575 " inslh %6,%5,%4\n" 576 " insll %6,%5,%3\n" 577 " msklh %2,%5,%2\n" 578 " mskll %1,%5,%1\n" 579 " or %2,%4,%2\n" 580 " or %1,%3,%1\n" 581 "3: stq_u %2,3(%5)\n" 582 "4: stq_u %1,0(%5)\n" 583 "5:\n" 584 ".section __ex_table,\"a\"\n" 585 " .long 1b - .\n" 586 " lda %2,5b-1b(%0)\n" 587 " .long 2b - .\n" 588 " lda %1,5b-2b(%0)\n" 589 " .long 3b - .\n" 590 " lda $31,5b-3b(%0)\n" 591 " .long 4b - .\n" 592 " lda $31,5b-4b(%0)\n" 593 ".previous" 594 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 595 "=&r"(tmp3), "=&r"(tmp4) 596 : "r"(va), "r"(una_reg(reg)), "0"(0)); 597 if (error) 598 goto got_exception; 599 return; 600 601 case 0x2d: /* stq */ 602 __asm__ __volatile__( 603 "1: ldq_u %2,7(%5)\n" 604 "2: ldq_u %1,0(%5)\n" 605 " insqh %6,%5,%4\n" 606 " insql %6,%5,%3\n" 607 " mskqh %2,%5,%2\n" 608 " mskql %1,%5,%1\n" 609 " or %2,%4,%2\n" 610 " or %1,%3,%1\n" 611 "3: stq_u %2,7(%5)\n" 612 "4: stq_u %1,0(%5)\n" 613 "5:\n" 614 ".section __ex_table,\"a\"\n\t" 615 " .long 1b - .\n" 616 " lda %2,5b-1b(%0)\n" 617 " .long 2b - .\n" 618 " lda %1,5b-2b(%0)\n" 619 " .long 3b - .\n" 620 " lda $31,5b-3b(%0)\n" 621 " .long 4b - .\n" 622 " lda $31,5b-4b(%0)\n" 623 ".previous" 624 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 625 "=&r"(tmp3), "=&r"(tmp4) 626 : "r"(va), "r"(una_reg(reg)), "0"(0)); 627 if (error) 628 goto got_exception; 629 return; 630 } 631 632 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 633 pc, va, opcode, reg); 634 do_exit(SIGSEGV); 635 636 got_exception: 637 /* Ok, we caught the exception, but we don't want it. Is there 638 someone to pass it along to? */ 639 if ((fixup = search_exception_tables(pc)) != 0) { 640 unsigned long newpc; 641 newpc = fixup_exception(una_reg, fixup, pc); 642 643 printk("Forwarding unaligned exception at %lx (%lx)\n", 644 pc, newpc); 645 646 regs->pc = newpc; 647 return; 648 } 649 650 /* 651 * Yikes! No one to forward the exception to. 652 * Since the registers are in a weird format, dump them ourselves. 653 */ 654 655 printk("%s(%d): unhandled unaligned exception\n", 656 current->comm, task_pid_nr(current)); 657 658 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 659 pc, una_reg(26), regs->ps); 660 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 661 una_reg(0), una_reg(1), una_reg(2)); 662 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 663 una_reg(3), una_reg(4), una_reg(5)); 664 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 665 una_reg(6), una_reg(7), una_reg(8)); 666 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 667 una_reg(9), una_reg(10), una_reg(11)); 668 printk("r12= %016lx r13= %016lx r14= %016lx\n", 669 una_reg(12), una_reg(13), una_reg(14)); 670 printk("r15= %016lx\n", una_reg(15)); 671 printk("r16= %016lx r17= %016lx r18= %016lx\n", 672 una_reg(16), una_reg(17), una_reg(18)); 673 printk("r19= %016lx r20= %016lx r21= %016lx\n", 674 una_reg(19), una_reg(20), una_reg(21)); 675 printk("r22= %016lx r23= %016lx r24= %016lx\n", 676 una_reg(22), una_reg(23), una_reg(24)); 677 printk("r25= %016lx r27= %016lx r28= %016lx\n", 678 una_reg(25), una_reg(27), una_reg(28)); 679 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 680 681 dik_show_code((unsigned int *)pc); 682 dik_show_trace((unsigned long *)(regs+1)); 683 684 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 685 printk("die_if_kernel recursion detected.\n"); 686 local_irq_enable(); 687 while (1); 688 } 689 do_exit(SIGSEGV); 690 } 691 692 /* 693 * Convert an s-floating point value in memory format to the 694 * corresponding value in register format. The exponent 695 * needs to be remapped to preserve non-finite values 696 * (infinities, not-a-numbers, denormals). 697 */ 698 static inline unsigned long 699 s_mem_to_reg (unsigned long s_mem) 700 { 701 unsigned long frac = (s_mem >> 0) & 0x7fffff; 702 unsigned long sign = (s_mem >> 31) & 0x1; 703 unsigned long exp_msb = (s_mem >> 30) & 0x1; 704 unsigned long exp_low = (s_mem >> 23) & 0x7f; 705 unsigned long exp; 706 707 exp = (exp_msb << 10) | exp_low; /* common case */ 708 if (exp_msb) { 709 if (exp_low == 0x7f) { 710 exp = 0x7ff; 711 } 712 } else { 713 if (exp_low == 0x00) { 714 exp = 0x000; 715 } else { 716 exp |= (0x7 << 7); 717 } 718 } 719 return (sign << 63) | (exp << 52) | (frac << 29); 720 } 721 722 /* 723 * Convert an s-floating point value in register format to the 724 * corresponding value in memory format. 725 */ 726 static inline unsigned long 727 s_reg_to_mem (unsigned long s_reg) 728 { 729 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 730 } 731 732 /* 733 * Handle user-level unaligned fault. Handling user-level unaligned 734 * faults is *extremely* slow and produces nasty messages. A user 735 * program *should* fix unaligned faults ASAP. 736 * 737 * Notice that we have (almost) the regular kernel stack layout here, 738 * so finding the appropriate registers is a little more difficult 739 * than in the kernel case. 740 * 741 * Finally, we handle regular integer load/stores only. In 742 * particular, load-linked/store-conditionally and floating point 743 * load/stores are not supported. The former make no sense with 744 * unaligned faults (they are guaranteed to fail) and I don't think 745 * the latter will occur in any decent program. 746 * 747 * Sigh. We *do* have to handle some FP operations, because GCC will 748 * uses them as temporary storage for integer memory to memory copies. 749 * However, we need to deal with stt/ldt and sts/lds only. 750 */ 751 752 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 753 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 754 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 755 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 756 757 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 758 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 759 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 760 761 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 762 763 static int unauser_reg_offsets[32] = { 764 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 765 /* r9 ... r15 are stored in front of regs. */ 766 -56, -48, -40, -32, -24, -16, -8, 767 R(r16), R(r17), R(r18), 768 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 769 R(r27), R(r28), R(gp), 770 0, 0 771 }; 772 773 #undef R 774 775 asmlinkage void 776 do_entUnaUser(void __user * va, unsigned long opcode, 777 unsigned long reg, struct pt_regs *regs) 778 { 779 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 780 781 unsigned long tmp1, tmp2, tmp3, tmp4; 782 unsigned long fake_reg, *reg_addr = &fake_reg; 783 siginfo_t info; 784 long error; 785 786 /* Check the UAC bits to decide what the user wants us to do 787 with the unaliged access. */ 788 789 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { 790 if (__ratelimit(&ratelimit)) { 791 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 792 current->comm, task_pid_nr(current), 793 regs->pc - 4, va, opcode, reg); 794 } 795 } 796 if ((current_thread_info()->status & TS_UAC_SIGBUS)) 797 goto give_sigbus; 798 /* Not sure why you'd want to use this, but... */ 799 if ((current_thread_info()->status & TS_UAC_NOFIX)) 800 return; 801 802 /* Don't bother reading ds in the access check since we already 803 know that this came from the user. Also rely on the fact that 804 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 805 if (!__access_ok((unsigned long)va, 0, USER_DS)) 806 goto give_sigsegv; 807 808 ++unaligned[1].count; 809 unaligned[1].va = (unsigned long)va; 810 unaligned[1].pc = regs->pc - 4; 811 812 if ((1L << opcode) & OP_INT_MASK) { 813 /* it's an integer load/store */ 814 if (reg < 30) { 815 reg_addr = (unsigned long *) 816 ((char *)regs + unauser_reg_offsets[reg]); 817 } else if (reg == 30) { 818 /* usp in PAL regs */ 819 fake_reg = rdusp(); 820 } else { 821 /* zero "register" */ 822 fake_reg = 0; 823 } 824 } 825 826 /* We don't want to use the generic get/put unaligned macros as 827 we want to trap exceptions. Only if we actually get an 828 exception will we decide whether we should have caught it. */ 829 830 switch (opcode) { 831 case 0x0c: /* ldwu */ 832 __asm__ __volatile__( 833 "1: ldq_u %1,0(%3)\n" 834 "2: ldq_u %2,1(%3)\n" 835 " extwl %1,%3,%1\n" 836 " extwh %2,%3,%2\n" 837 "3:\n" 838 ".section __ex_table,\"a\"\n" 839 " .long 1b - .\n" 840 " lda %1,3b-1b(%0)\n" 841 " .long 2b - .\n" 842 " lda %2,3b-2b(%0)\n" 843 ".previous" 844 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 845 : "r"(va), "0"(0)); 846 if (error) 847 goto give_sigsegv; 848 *reg_addr = tmp1|tmp2; 849 break; 850 851 case 0x22: /* lds */ 852 __asm__ __volatile__( 853 "1: ldq_u %1,0(%3)\n" 854 "2: ldq_u %2,3(%3)\n" 855 " extll %1,%3,%1\n" 856 " extlh %2,%3,%2\n" 857 "3:\n" 858 ".section __ex_table,\"a\"\n" 859 " .long 1b - .\n" 860 " lda %1,3b-1b(%0)\n" 861 " .long 2b - .\n" 862 " lda %2,3b-2b(%0)\n" 863 ".previous" 864 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 865 : "r"(va), "0"(0)); 866 if (error) 867 goto give_sigsegv; 868 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 869 return; 870 871 case 0x23: /* ldt */ 872 __asm__ __volatile__( 873 "1: ldq_u %1,0(%3)\n" 874 "2: ldq_u %2,7(%3)\n" 875 " extql %1,%3,%1\n" 876 " extqh %2,%3,%2\n" 877 "3:\n" 878 ".section __ex_table,\"a\"\n" 879 " .long 1b - .\n" 880 " lda %1,3b-1b(%0)\n" 881 " .long 2b - .\n" 882 " lda %2,3b-2b(%0)\n" 883 ".previous" 884 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 885 : "r"(va), "0"(0)); 886 if (error) 887 goto give_sigsegv; 888 alpha_write_fp_reg(reg, tmp1|tmp2); 889 return; 890 891 case 0x28: /* ldl */ 892 __asm__ __volatile__( 893 "1: ldq_u %1,0(%3)\n" 894 "2: ldq_u %2,3(%3)\n" 895 " extll %1,%3,%1\n" 896 " extlh %2,%3,%2\n" 897 "3:\n" 898 ".section __ex_table,\"a\"\n" 899 " .long 1b - .\n" 900 " lda %1,3b-1b(%0)\n" 901 " .long 2b - .\n" 902 " lda %2,3b-2b(%0)\n" 903 ".previous" 904 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 905 : "r"(va), "0"(0)); 906 if (error) 907 goto give_sigsegv; 908 *reg_addr = (int)(tmp1|tmp2); 909 break; 910 911 case 0x29: /* ldq */ 912 __asm__ __volatile__( 913 "1: ldq_u %1,0(%3)\n" 914 "2: ldq_u %2,7(%3)\n" 915 " extql %1,%3,%1\n" 916 " extqh %2,%3,%2\n" 917 "3:\n" 918 ".section __ex_table,\"a\"\n" 919 " .long 1b - .\n" 920 " lda %1,3b-1b(%0)\n" 921 " .long 2b - .\n" 922 " lda %2,3b-2b(%0)\n" 923 ".previous" 924 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 925 : "r"(va), "0"(0)); 926 if (error) 927 goto give_sigsegv; 928 *reg_addr = tmp1|tmp2; 929 break; 930 931 /* Note that the store sequences do not indicate that they change 932 memory because it _should_ be affecting nothing in this context. 933 (Otherwise we have other, much larger, problems.) */ 934 case 0x0d: /* stw */ 935 __asm__ __volatile__( 936 "1: ldq_u %2,1(%5)\n" 937 "2: ldq_u %1,0(%5)\n" 938 " inswh %6,%5,%4\n" 939 " inswl %6,%5,%3\n" 940 " mskwh %2,%5,%2\n" 941 " mskwl %1,%5,%1\n" 942 " or %2,%4,%2\n" 943 " or %1,%3,%1\n" 944 "3: stq_u %2,1(%5)\n" 945 "4: stq_u %1,0(%5)\n" 946 "5:\n" 947 ".section __ex_table,\"a\"\n" 948 " .long 1b - .\n" 949 " lda %2,5b-1b(%0)\n" 950 " .long 2b - .\n" 951 " lda %1,5b-2b(%0)\n" 952 " .long 3b - .\n" 953 " lda $31,5b-3b(%0)\n" 954 " .long 4b - .\n" 955 " lda $31,5b-4b(%0)\n" 956 ".previous" 957 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 958 "=&r"(tmp3), "=&r"(tmp4) 959 : "r"(va), "r"(*reg_addr), "0"(0)); 960 if (error) 961 goto give_sigsegv; 962 return; 963 964 case 0x26: /* sts */ 965 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 966 /* FALLTHRU */ 967 968 case 0x2c: /* stl */ 969 __asm__ __volatile__( 970 "1: ldq_u %2,3(%5)\n" 971 "2: ldq_u %1,0(%5)\n" 972 " inslh %6,%5,%4\n" 973 " insll %6,%5,%3\n" 974 " msklh %2,%5,%2\n" 975 " mskll %1,%5,%1\n" 976 " or %2,%4,%2\n" 977 " or %1,%3,%1\n" 978 "3: stq_u %2,3(%5)\n" 979 "4: stq_u %1,0(%5)\n" 980 "5:\n" 981 ".section __ex_table,\"a\"\n" 982 " .long 1b - .\n" 983 " lda %2,5b-1b(%0)\n" 984 " .long 2b - .\n" 985 " lda %1,5b-2b(%0)\n" 986 " .long 3b - .\n" 987 " lda $31,5b-3b(%0)\n" 988 " .long 4b - .\n" 989 " lda $31,5b-4b(%0)\n" 990 ".previous" 991 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 992 "=&r"(tmp3), "=&r"(tmp4) 993 : "r"(va), "r"(*reg_addr), "0"(0)); 994 if (error) 995 goto give_sigsegv; 996 return; 997 998 case 0x27: /* stt */ 999 fake_reg = alpha_read_fp_reg(reg); 1000 /* FALLTHRU */ 1001 1002 case 0x2d: /* stq */ 1003 __asm__ __volatile__( 1004 "1: ldq_u %2,7(%5)\n" 1005 "2: ldq_u %1,0(%5)\n" 1006 " insqh %6,%5,%4\n" 1007 " insql %6,%5,%3\n" 1008 " mskqh %2,%5,%2\n" 1009 " mskql %1,%5,%1\n" 1010 " or %2,%4,%2\n" 1011 " or %1,%3,%1\n" 1012 "3: stq_u %2,7(%5)\n" 1013 "4: stq_u %1,0(%5)\n" 1014 "5:\n" 1015 ".section __ex_table,\"a\"\n\t" 1016 " .long 1b - .\n" 1017 " lda %2,5b-1b(%0)\n" 1018 " .long 2b - .\n" 1019 " lda %1,5b-2b(%0)\n" 1020 " .long 3b - .\n" 1021 " lda $31,5b-3b(%0)\n" 1022 " .long 4b - .\n" 1023 " lda $31,5b-4b(%0)\n" 1024 ".previous" 1025 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 1026 "=&r"(tmp3), "=&r"(tmp4) 1027 : "r"(va), "r"(*reg_addr), "0"(0)); 1028 if (error) 1029 goto give_sigsegv; 1030 return; 1031 1032 default: 1033 /* What instruction were you trying to use, exactly? */ 1034 goto give_sigbus; 1035 } 1036 1037 /* Only integer loads should get here; everyone else returns early. */ 1038 if (reg == 30) 1039 wrusp(fake_reg); 1040 return; 1041 1042 give_sigsegv: 1043 regs->pc -= 4; /* make pc point to faulting insn */ 1044 info.si_signo = SIGSEGV; 1045 info.si_errno = 0; 1046 1047 /* We need to replicate some of the logic in mm/fault.c, 1048 since we don't have access to the fault code in the 1049 exception handling return path. */ 1050 if (!__access_ok((unsigned long)va, 0, USER_DS)) 1051 info.si_code = SEGV_ACCERR; 1052 else { 1053 struct mm_struct *mm = current->mm; 1054 down_read(&mm->mmap_sem); 1055 if (find_vma(mm, (unsigned long)va)) 1056 info.si_code = SEGV_ACCERR; 1057 else 1058 info.si_code = SEGV_MAPERR; 1059 up_read(&mm->mmap_sem); 1060 } 1061 info.si_addr = va; 1062 send_sig_info(SIGSEGV, &info, current); 1063 return; 1064 1065 give_sigbus: 1066 regs->pc -= 4; 1067 info.si_signo = SIGBUS; 1068 info.si_errno = 0; 1069 info.si_code = BUS_ADRALN; 1070 info.si_addr = va; 1071 send_sig_info(SIGBUS, &info, current); 1072 return; 1073 } 1074 1075 void 1076 trap_init(void) 1077 { 1078 /* Tell PAL-code what global pointer we want in the kernel. */ 1079 register unsigned long gptr __asm__("$29"); 1080 wrkgp(gptr); 1081 1082 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 1083 a bug in the handling of the opDEC fault. Fix it up if so. */ 1084 if (implver() == IMPLVER_EV4) 1085 opDEC_check(); 1086 1087 wrent(entArith, 1); 1088 wrent(entMM, 2); 1089 wrent(entIF, 3); 1090 wrent(entUna, 4); 1091 wrent(entSys, 5); 1092 wrent(entDbg, 6); 1093 } 1094