xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7 
8 /*
9  * This file initializes the trap entry points
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21 
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29 
30 #include "proto.h"
31 
32 /* Work-around for some SRMs which mishandle opDEC faults.  */
33 
34 static int opDEC_fix;
35 
36 static void
37 opDEC_check(void)
38 {
39 	__asm__ __volatile__ (
40 	/* Load the address of... */
41 	"	br	$16, 1f\n"
42 	/* A stub instruction fault handler.  Just add 4 to the
43 	   pc and continue.  */
44 	"	ldq	$16, 8($sp)\n"
45 	"	addq	$16, 4, $16\n"
46 	"	stq	$16, 8($sp)\n"
47 	"	call_pal %[rti]\n"
48 	/* Install the instruction fault handler.  */
49 	"1:	lda	$17, 3\n"
50 	"	call_pal %[wrent]\n"
51 	/* With that in place, the fault from the round-to-minf fp
52 	   insn will arrive either at the "lda 4" insn (bad) or one
53 	   past that (good).  This places the correct fixup in %0.  */
54 	"	lda %[fix], 0\n"
55 	"	cvttq/svm $f31,$f31\n"
56 	"	lda %[fix], 4"
57 	: [fix] "=r" (opDEC_fix)
58 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60 
61 	if (opDEC_fix)
62 		printk("opDEC fixup enabled.\n");
63 }
64 
65 void
66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
69 	       regs->pc, regs->r26, regs->ps, print_tainted());
70 	printk("pc is at %pSR\n", (void *)regs->pc);
71 	printk("ra is at %pSR\n", (void *)regs->r26);
72 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
73 	       regs->r0, regs->r1, regs->r2);
74 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
75  	       regs->r3, regs->r4, regs->r5);
76 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
77 	       regs->r6, regs->r7, regs->r8);
78 
79 	if (r9_15) {
80 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
81 		       r9_15[9], r9_15[10], r9_15[11]);
82 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
83 		       r9_15[12], r9_15[13], r9_15[14]);
84 		printk("s6 = %016lx\n", r9_15[15]);
85 	}
86 
87 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
88 	       regs->r16, regs->r17, regs->r18);
89 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
90  	       regs->r19, regs->r20, regs->r21);
91  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
92 	       regs->r22, regs->r23, regs->r24);
93 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
94 	       regs->r25, regs->r27, regs->r28);
95 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100 
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107 
108 static void
109 dik_show_code(unsigned int *pc)
110 {
111 	long i;
112 
113 	printk("Code:");
114 	for (i = -6; i < 2; i++) {
115 		unsigned int insn;
116 		if (__get_user(insn, (unsigned int __user *)pc + i))
117 			break;
118 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119 	}
120 	printk("\n");
121 }
122 
123 static void
124 dik_show_trace(unsigned long *sp, const char *loglvl)
125 {
126 	long i = 0;
127 	printk("%sTrace:\n", loglvl);
128 	while (0x1ff8 & (unsigned long) sp) {
129 		extern char _stext[], _etext[];
130 		unsigned long tmp = *sp;
131 		sp++;
132 		if (!is_kernel_text(tmp))
133 			continue;
134 		printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp);
135 		if (i > 40) {
136 			printk("%s ...", loglvl);
137 			break;
138 		}
139 	}
140 	printk("%s\n", loglvl);
141 }
142 
143 static int kstack_depth_to_print = 24;
144 
145 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
146 {
147 	unsigned long *stack;
148 	int i;
149 
150 	/*
151 	 * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the
152 	 * back trace for this cpu.
153 	 */
154 	if(sp==NULL)
155 		sp=(unsigned long*)&sp;
156 
157 	stack = sp;
158 	for(i=0; i < kstack_depth_to_print; i++) {
159 		if (((long) stack & (THREAD_SIZE-1)) == 0)
160 			break;
161 		if ((i % 4) == 0) {
162 			if (i)
163 				pr_cont("\n");
164 			printk("%s       ", loglvl);
165 		} else {
166 			pr_cont(" ");
167 		}
168 		pr_cont("%016lx", *stack++);
169 	}
170 	pr_cont("\n");
171 	dik_show_trace(sp, loglvl);
172 }
173 
174 void
175 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
176 {
177 	if (regs->ps & 8)
178 		return;
179 #ifdef CONFIG_SMP
180 	printk("CPU %d ", hard_smp_processor_id());
181 #endif
182 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
183 	dik_show_regs(regs, r9_15);
184 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
185 	dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
186 	dik_show_code((unsigned int *)regs->pc);
187 
188 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
189 		printk("die_if_kernel recursion detected.\n");
190 		local_irq_enable();
191 		while (1);
192 	}
193 	make_task_dead(SIGSEGV);
194 }
195 
196 #ifndef CONFIG_MATHEMU
197 static long dummy_emul(void) { return 0; }
198 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
199   = (void *)dummy_emul;
200 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
201 long (*alpha_fp_emul) (unsigned long pc)
202   = (void *)dummy_emul;
203 EXPORT_SYMBOL_GPL(alpha_fp_emul);
204 #else
205 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
206 long alpha_fp_emul (unsigned long pc);
207 #endif
208 
209 asmlinkage void
210 do_entArith(unsigned long summary, unsigned long write_mask,
211 	    struct pt_regs *regs)
212 {
213 	long si_code = FPE_FLTINV;
214 
215 	if (summary & 1) {
216 		/* Software-completion summary bit is set, so try to
217 		   emulate the instruction.  If the processor supports
218 		   precise exceptions, we don't have to search.  */
219 		if (!amask(AMASK_PRECISE_TRAP))
220 			si_code = alpha_fp_emul(regs->pc - 4);
221 		else
222 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
223 		if (si_code == 0)
224 			return;
225 	}
226 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
227 
228 	send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
229 }
230 
231 asmlinkage void
232 do_entIF(unsigned long type, struct pt_regs *regs)
233 {
234 	int signo, code;
235 
236 	if ((regs->ps & ~IPL_MAX) == 0) {
237 		if (type == 1) {
238 			const unsigned int *data
239 			  = (const unsigned int *) regs->pc;
240 			printk("Kernel bug at %s:%d\n",
241 			       (const char *)(data[1] | (long)data[2] << 32),
242 			       data[0]);
243 		}
244 #ifdef CONFIG_ALPHA_WTINT
245 		if (type == 4) {
246 			/* If CALL_PAL WTINT is totally unsupported by the
247 			   PALcode, e.g. MILO, "emulate" it by overwriting
248 			   the insn.  */
249 			unsigned int *pinsn
250 			  = (unsigned int *) regs->pc - 1;
251 			if (*pinsn == PAL_wtint) {
252 				*pinsn = 0x47e01400; /* mov 0,$0 */
253 				imb();
254 				regs->r0 = 0;
255 				return;
256 			}
257 		}
258 #endif /* ALPHA_WTINT */
259 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
260 			      regs, type, NULL);
261 	}
262 
263 	switch (type) {
264 	      case 0: /* breakpoint */
265 		if (ptrace_cancel_bpt(current)) {
266 			regs->pc -= 4;	/* make pc point to former bpt */
267 		}
268 
269 		send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc,
270 			       current);
271 		return;
272 
273 	      case 1: /* bugcheck */
274 		send_sig_fault_trapno(SIGTRAP, TRAP_UNK,
275 				      (void __user *) regs->pc, 0, current);
276 		return;
277 
278 	      case 2: /* gentrap */
279 		switch ((long) regs->r16) {
280 		case GEN_INTOVF:
281 			signo = SIGFPE;
282 			code = FPE_INTOVF;
283 			break;
284 		case GEN_INTDIV:
285 			signo = SIGFPE;
286 			code = FPE_INTDIV;
287 			break;
288 		case GEN_FLTOVF:
289 			signo = SIGFPE;
290 			code = FPE_FLTOVF;
291 			break;
292 		case GEN_FLTDIV:
293 			signo = SIGFPE;
294 			code = FPE_FLTDIV;
295 			break;
296 		case GEN_FLTUND:
297 			signo = SIGFPE;
298 			code = FPE_FLTUND;
299 			break;
300 		case GEN_FLTINV:
301 			signo = SIGFPE;
302 			code = FPE_FLTINV;
303 			break;
304 		case GEN_FLTINE:
305 			signo = SIGFPE;
306 			code = FPE_FLTRES;
307 			break;
308 		case GEN_ROPRAND:
309 			signo = SIGFPE;
310 			code = FPE_FLTUNK;
311 			break;
312 
313 		case GEN_DECOVF:
314 		case GEN_DECDIV:
315 		case GEN_DECINV:
316 		case GEN_ASSERTERR:
317 		case GEN_NULPTRERR:
318 		case GEN_STKOVF:
319 		case GEN_STRLENERR:
320 		case GEN_SUBSTRERR:
321 		case GEN_RANGERR:
322 		case GEN_SUBRNG:
323 		case GEN_SUBRNG1:
324 		case GEN_SUBRNG2:
325 		case GEN_SUBRNG3:
326 		case GEN_SUBRNG4:
327 		case GEN_SUBRNG5:
328 		case GEN_SUBRNG6:
329 		case GEN_SUBRNG7:
330 		default:
331 			signo = SIGTRAP;
332 			code = TRAP_UNK;
333 			break;
334 		}
335 
336 		send_sig_fault_trapno(signo, code, (void __user *) regs->pc,
337 				      regs->r16, current);
338 		return;
339 
340 	      case 4: /* opDEC */
341 		if (implver() == IMPLVER_EV4) {
342 			long si_code;
343 
344 			/* The some versions of SRM do not handle
345 			   the opDEC properly - they return the PC of the
346 			   opDEC fault, not the instruction after as the
347 			   Alpha architecture requires.  Here we fix it up.
348 			   We do this by intentionally causing an opDEC
349 			   fault during the boot sequence and testing if
350 			   we get the correct PC.  If not, we set a flag
351 			   to correct it every time through.  */
352 			regs->pc += opDEC_fix;
353 
354 			/* EV4 does not implement anything except normal
355 			   rounding.  Everything else will come here as
356 			   an illegal instruction.  Emulate them.  */
357 			si_code = alpha_fp_emul(regs->pc - 4);
358 			if (si_code == 0)
359 				return;
360 			if (si_code > 0) {
361 				send_sig_fault_trapno(SIGFPE, si_code,
362 						      (void __user *) regs->pc,
363 						      0, current);
364 				return;
365 			}
366 		}
367 		break;
368 
369 	      case 3: /* FEN fault */
370 		/* Irritating users can call PAL_clrfen to disable the
371 		   FPU for the process.  The kernel will then trap in
372 		   do_switch_stack and undo_switch_stack when we try
373 		   to save and restore the FP registers.
374 
375 		   Given that GCC by default generates code that uses the
376 		   FP registers, PAL_clrfen is not useful except for DoS
377 		   attacks.  So turn the bleeding FPU back on and be done
378 		   with it.  */
379 		current_thread_info()->pcb.flags |= 1;
380 		__reload_thread(&current_thread_info()->pcb);
381 		return;
382 
383 	      case 5: /* illoc */
384 	      default: /* unexpected instruction-fault type */
385 		      ;
386 	}
387 
388 	send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current);
389 }
390 
391 /* There is an ifdef in the PALcode in MILO that enables a
392    "kernel debugging entry point" as an unprivileged call_pal.
393 
394    We don't want to have anything to do with it, but unfortunately
395    several versions of MILO included in distributions have it enabled,
396    and if we don't put something on the entry point we'll oops.  */
397 
398 asmlinkage void
399 do_entDbg(struct pt_regs *regs)
400 {
401 	die_if_kernel("Instruction fault", regs, 0, NULL);
402 
403 	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc);
404 }
405 
406 
407 /*
408  * entUna has a different register layout to be reasonably simple. It
409  * needs access to all the integer registers (the kernel doesn't use
410  * fp-regs), and it needs to have them in order for simpler access.
411  *
412  * Due to the non-standard register layout (and because we don't want
413  * to handle floating-point regs), user-mode unaligned accesses are
414  * handled separately by do_entUnaUser below.
415  *
416  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
417  * on a gp-register unaligned load/store, something is _very_ wrong
418  * in the kernel anyway..
419  */
420 struct allregs {
421 	unsigned long regs[32];
422 	unsigned long ps, pc, gp, a0, a1, a2;
423 };
424 
425 struct unaligned_stat {
426 	unsigned long count, va, pc;
427 } unaligned[2];
428 
429 
430 /* Macro for exception fixup code to access integer registers.  */
431 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
432 
433 
434 asmlinkage void
435 do_entUna(void * va, unsigned long opcode, unsigned long reg,
436 	  struct allregs *regs)
437 {
438 	long error, tmp1, tmp2, tmp3, tmp4;
439 	unsigned long pc = regs->pc - 4;
440 	unsigned long *_regs = regs->regs;
441 	const struct exception_table_entry *fixup;
442 
443 	unaligned[0].count++;
444 	unaligned[0].va = (unsigned long) va;
445 	unaligned[0].pc = pc;
446 
447 	/* We don't want to use the generic get/put unaligned macros as
448 	   we want to trap exceptions.  Only if we actually get an
449 	   exception will we decide whether we should have caught it.  */
450 
451 	switch (opcode) {
452 	case 0x0c: /* ldwu */
453 		__asm__ __volatile__(
454 		"1:	ldq_u %1,0(%3)\n"
455 		"2:	ldq_u %2,1(%3)\n"
456 		"	extwl %1,%3,%1\n"
457 		"	extwh %2,%3,%2\n"
458 		"3:\n"
459 		EXC(1b,3b,%1,%0)
460 		EXC(2b,3b,%2,%0)
461 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
462 			: "r"(va), "0"(0));
463 		if (error)
464 			goto got_exception;
465 		una_reg(reg) = tmp1|tmp2;
466 		return;
467 
468 	case 0x28: /* ldl */
469 		__asm__ __volatile__(
470 		"1:	ldq_u %1,0(%3)\n"
471 		"2:	ldq_u %2,3(%3)\n"
472 		"	extll %1,%3,%1\n"
473 		"	extlh %2,%3,%2\n"
474 		"3:\n"
475 		EXC(1b,3b,%1,%0)
476 		EXC(2b,3b,%2,%0)
477 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
478 			: "r"(va), "0"(0));
479 		if (error)
480 			goto got_exception;
481 		una_reg(reg) = (int)(tmp1|tmp2);
482 		return;
483 
484 	case 0x29: /* ldq */
485 		__asm__ __volatile__(
486 		"1:	ldq_u %1,0(%3)\n"
487 		"2:	ldq_u %2,7(%3)\n"
488 		"	extql %1,%3,%1\n"
489 		"	extqh %2,%3,%2\n"
490 		"3:\n"
491 		EXC(1b,3b,%1,%0)
492 		EXC(2b,3b,%2,%0)
493 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
494 			: "r"(va), "0"(0));
495 		if (error)
496 			goto got_exception;
497 		una_reg(reg) = tmp1|tmp2;
498 		return;
499 
500 	/* Note that the store sequences do not indicate that they change
501 	   memory because it _should_ be affecting nothing in this context.
502 	   (Otherwise we have other, much larger, problems.)  */
503 	case 0x0d: /* stw */
504 		__asm__ __volatile__(
505 		"1:	ldq_u %2,1(%5)\n"
506 		"2:	ldq_u %1,0(%5)\n"
507 		"	inswh %6,%5,%4\n"
508 		"	inswl %6,%5,%3\n"
509 		"	mskwh %2,%5,%2\n"
510 		"	mskwl %1,%5,%1\n"
511 		"	or %2,%4,%2\n"
512 		"	or %1,%3,%1\n"
513 		"3:	stq_u %2,1(%5)\n"
514 		"4:	stq_u %1,0(%5)\n"
515 		"5:\n"
516 		EXC(1b,5b,%2,%0)
517 		EXC(2b,5b,%1,%0)
518 		EXC(3b,5b,$31,%0)
519 		EXC(4b,5b,$31,%0)
520 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
521 			  "=&r"(tmp3), "=&r"(tmp4)
522 			: "r"(va), "r"(una_reg(reg)), "0"(0));
523 		if (error)
524 			goto got_exception;
525 		return;
526 
527 	case 0x2c: /* stl */
528 		__asm__ __volatile__(
529 		"1:	ldq_u %2,3(%5)\n"
530 		"2:	ldq_u %1,0(%5)\n"
531 		"	inslh %6,%5,%4\n"
532 		"	insll %6,%5,%3\n"
533 		"	msklh %2,%5,%2\n"
534 		"	mskll %1,%5,%1\n"
535 		"	or %2,%4,%2\n"
536 		"	or %1,%3,%1\n"
537 		"3:	stq_u %2,3(%5)\n"
538 		"4:	stq_u %1,0(%5)\n"
539 		"5:\n"
540 		EXC(1b,5b,%2,%0)
541 		EXC(2b,5b,%1,%0)
542 		EXC(3b,5b,$31,%0)
543 		EXC(4b,5b,$31,%0)
544 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
545 			  "=&r"(tmp3), "=&r"(tmp4)
546 			: "r"(va), "r"(una_reg(reg)), "0"(0));
547 		if (error)
548 			goto got_exception;
549 		return;
550 
551 	case 0x2d: /* stq */
552 		__asm__ __volatile__(
553 		"1:	ldq_u %2,7(%5)\n"
554 		"2:	ldq_u %1,0(%5)\n"
555 		"	insqh %6,%5,%4\n"
556 		"	insql %6,%5,%3\n"
557 		"	mskqh %2,%5,%2\n"
558 		"	mskql %1,%5,%1\n"
559 		"	or %2,%4,%2\n"
560 		"	or %1,%3,%1\n"
561 		"3:	stq_u %2,7(%5)\n"
562 		"4:	stq_u %1,0(%5)\n"
563 		"5:\n"
564 		EXC(1b,5b,%2,%0)
565 		EXC(2b,5b,%1,%0)
566 		EXC(3b,5b,$31,%0)
567 		EXC(4b,5b,$31,%0)
568 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
569 			  "=&r"(tmp3), "=&r"(tmp4)
570 			: "r"(va), "r"(una_reg(reg)), "0"(0));
571 		if (error)
572 			goto got_exception;
573 		return;
574 	}
575 
576 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
577 		pc, va, opcode, reg);
578 	make_task_dead(SIGSEGV);
579 
580 got_exception:
581 	/* Ok, we caught the exception, but we don't want it.  Is there
582 	   someone to pass it along to?  */
583 	if ((fixup = search_exception_tables(pc)) != 0) {
584 		unsigned long newpc;
585 		newpc = fixup_exception(una_reg, fixup, pc);
586 
587 		printk("Forwarding unaligned exception at %lx (%lx)\n",
588 		       pc, newpc);
589 
590 		regs->pc = newpc;
591 		return;
592 	}
593 
594 	/*
595 	 * Yikes!  No one to forward the exception to.
596 	 * Since the registers are in a weird format, dump them ourselves.
597  	 */
598 
599 	printk("%s(%d): unhandled unaligned exception\n",
600 	       current->comm, task_pid_nr(current));
601 
602 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
603 	       pc, una_reg(26), regs->ps);
604 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
605 	       una_reg(0), una_reg(1), una_reg(2));
606 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
607  	       una_reg(3), una_reg(4), una_reg(5));
608 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
609 	       una_reg(6), una_reg(7), una_reg(8));
610 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
611 	       una_reg(9), una_reg(10), una_reg(11));
612 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
613 	       una_reg(12), una_reg(13), una_reg(14));
614 	printk("r15= %016lx\n", una_reg(15));
615 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
616 	       una_reg(16), una_reg(17), una_reg(18));
617 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
618  	       una_reg(19), una_reg(20), una_reg(21));
619  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
620 	       una_reg(22), una_reg(23), una_reg(24));
621 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
622 	       una_reg(25), una_reg(27), una_reg(28));
623 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
624 
625 	dik_show_code((unsigned int *)pc);
626 	dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
627 
628 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
629 		printk("die_if_kernel recursion detected.\n");
630 		local_irq_enable();
631 		while (1);
632 	}
633 	make_task_dead(SIGSEGV);
634 }
635 
636 /*
637  * Convert an s-floating point value in memory format to the
638  * corresponding value in register format.  The exponent
639  * needs to be remapped to preserve non-finite values
640  * (infinities, not-a-numbers, denormals).
641  */
642 static inline unsigned long
643 s_mem_to_reg (unsigned long s_mem)
644 {
645 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
646 	unsigned long sign    = (s_mem >> 31) & 0x1;
647 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
648 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
649 	unsigned long exp;
650 
651 	exp = (exp_msb << 10) | exp_low;	/* common case */
652 	if (exp_msb) {
653 		if (exp_low == 0x7f) {
654 			exp = 0x7ff;
655 		}
656 	} else {
657 		if (exp_low == 0x00) {
658 			exp = 0x000;
659 		} else {
660 			exp |= (0x7 << 7);
661 		}
662 	}
663 	return (sign << 63) | (exp << 52) | (frac << 29);
664 }
665 
666 /*
667  * Convert an s-floating point value in register format to the
668  * corresponding value in memory format.
669  */
670 static inline unsigned long
671 s_reg_to_mem (unsigned long s_reg)
672 {
673 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
674 }
675 
676 /*
677  * Handle user-level unaligned fault.  Handling user-level unaligned
678  * faults is *extremely* slow and produces nasty messages.  A user
679  * program *should* fix unaligned faults ASAP.
680  *
681  * Notice that we have (almost) the regular kernel stack layout here,
682  * so finding the appropriate registers is a little more difficult
683  * than in the kernel case.
684  *
685  * Finally, we handle regular integer load/stores only.  In
686  * particular, load-linked/store-conditionally and floating point
687  * load/stores are not supported.  The former make no sense with
688  * unaligned faults (they are guaranteed to fail) and I don't think
689  * the latter will occur in any decent program.
690  *
691  * Sigh. We *do* have to handle some FP operations, because GCC will
692  * uses them as temporary storage for integer memory to memory copies.
693  * However, we need to deal with stt/ldt and sts/lds only.
694  */
695 
696 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
697 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
698 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
699 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
700 
701 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
702 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
703 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
704 
705 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
706 
707 static int unauser_reg_offsets[32] = {
708 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
709 	/* r9 ... r15 are stored in front of regs.  */
710 	-56, -48, -40, -32, -24, -16, -8,
711 	R(r16), R(r17), R(r18),
712 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
713 	R(r27), R(r28), R(gp),
714 	0, 0
715 };
716 
717 #undef R
718 
719 asmlinkage void
720 do_entUnaUser(void __user * va, unsigned long opcode,
721 	      unsigned long reg, struct pt_regs *regs)
722 {
723 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
724 
725 	unsigned long tmp1, tmp2, tmp3, tmp4;
726 	unsigned long fake_reg, *reg_addr = &fake_reg;
727 	int si_code;
728 	long error;
729 
730 	/* Check the UAC bits to decide what the user wants us to do
731 	   with the unaligned access.  */
732 
733 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
734 		if (__ratelimit(&ratelimit)) {
735 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
736 			       current->comm, task_pid_nr(current),
737 			       regs->pc - 4, va, opcode, reg);
738 		}
739 	}
740 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
741 		goto give_sigbus;
742 	/* Not sure why you'd want to use this, but... */
743 	if ((current_thread_info()->status & TS_UAC_NOFIX))
744 		return;
745 
746 	/* Don't bother reading ds in the access check since we already
747 	   know that this came from the user.  Also rely on the fact that
748 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
749 	if ((unsigned long)va >= TASK_SIZE)
750 		goto give_sigsegv;
751 
752 	++unaligned[1].count;
753 	unaligned[1].va = (unsigned long)va;
754 	unaligned[1].pc = regs->pc - 4;
755 
756 	if ((1L << opcode) & OP_INT_MASK) {
757 		/* it's an integer load/store */
758 		if (reg < 30) {
759 			reg_addr = (unsigned long *)
760 			  ((char *)regs + unauser_reg_offsets[reg]);
761 		} else if (reg == 30) {
762 			/* usp in PAL regs */
763 			fake_reg = rdusp();
764 		} else {
765 			/* zero "register" */
766 			fake_reg = 0;
767 		}
768 	}
769 
770 	/* We don't want to use the generic get/put unaligned macros as
771 	   we want to trap exceptions.  Only if we actually get an
772 	   exception will we decide whether we should have caught it.  */
773 
774 	switch (opcode) {
775 	case 0x0c: /* ldwu */
776 		__asm__ __volatile__(
777 		"1:	ldq_u %1,0(%3)\n"
778 		"2:	ldq_u %2,1(%3)\n"
779 		"	extwl %1,%3,%1\n"
780 		"	extwh %2,%3,%2\n"
781 		"3:\n"
782 		EXC(1b,3b,%1,%0)
783 		EXC(2b,3b,%2,%0)
784 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
785 			: "r"(va), "0"(0));
786 		if (error)
787 			goto give_sigsegv;
788 		*reg_addr = tmp1|tmp2;
789 		break;
790 
791 	case 0x22: /* lds */
792 		__asm__ __volatile__(
793 		"1:	ldq_u %1,0(%3)\n"
794 		"2:	ldq_u %2,3(%3)\n"
795 		"	extll %1,%3,%1\n"
796 		"	extlh %2,%3,%2\n"
797 		"3:\n"
798 		EXC(1b,3b,%1,%0)
799 		EXC(2b,3b,%2,%0)
800 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
801 			: "r"(va), "0"(0));
802 		if (error)
803 			goto give_sigsegv;
804 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
805 		return;
806 
807 	case 0x23: /* ldt */
808 		__asm__ __volatile__(
809 		"1:	ldq_u %1,0(%3)\n"
810 		"2:	ldq_u %2,7(%3)\n"
811 		"	extql %1,%3,%1\n"
812 		"	extqh %2,%3,%2\n"
813 		"3:\n"
814 		EXC(1b,3b,%1,%0)
815 		EXC(2b,3b,%2,%0)
816 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
817 			: "r"(va), "0"(0));
818 		if (error)
819 			goto give_sigsegv;
820 		alpha_write_fp_reg(reg, tmp1|tmp2);
821 		return;
822 
823 	case 0x28: /* ldl */
824 		__asm__ __volatile__(
825 		"1:	ldq_u %1,0(%3)\n"
826 		"2:	ldq_u %2,3(%3)\n"
827 		"	extll %1,%3,%1\n"
828 		"	extlh %2,%3,%2\n"
829 		"3:\n"
830 		EXC(1b,3b,%1,%0)
831 		EXC(2b,3b,%2,%0)
832 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
833 			: "r"(va), "0"(0));
834 		if (error)
835 			goto give_sigsegv;
836 		*reg_addr = (int)(tmp1|tmp2);
837 		break;
838 
839 	case 0x29: /* ldq */
840 		__asm__ __volatile__(
841 		"1:	ldq_u %1,0(%3)\n"
842 		"2:	ldq_u %2,7(%3)\n"
843 		"	extql %1,%3,%1\n"
844 		"	extqh %2,%3,%2\n"
845 		"3:\n"
846 		EXC(1b,3b,%1,%0)
847 		EXC(2b,3b,%2,%0)
848 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
849 			: "r"(va), "0"(0));
850 		if (error)
851 			goto give_sigsegv;
852 		*reg_addr = tmp1|tmp2;
853 		break;
854 
855 	/* Note that the store sequences do not indicate that they change
856 	   memory because it _should_ be affecting nothing in this context.
857 	   (Otherwise we have other, much larger, problems.)  */
858 	case 0x0d: /* stw */
859 		__asm__ __volatile__(
860 		"1:	ldq_u %2,1(%5)\n"
861 		"2:	ldq_u %1,0(%5)\n"
862 		"	inswh %6,%5,%4\n"
863 		"	inswl %6,%5,%3\n"
864 		"	mskwh %2,%5,%2\n"
865 		"	mskwl %1,%5,%1\n"
866 		"	or %2,%4,%2\n"
867 		"	or %1,%3,%1\n"
868 		"3:	stq_u %2,1(%5)\n"
869 		"4:	stq_u %1,0(%5)\n"
870 		"5:\n"
871 		EXC(1b,5b,%2,%0)
872 		EXC(2b,5b,%1,%0)
873 		EXC(3b,5b,$31,%0)
874 		EXC(4b,5b,$31,%0)
875 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
876 			  "=&r"(tmp3), "=&r"(tmp4)
877 			: "r"(va), "r"(*reg_addr), "0"(0));
878 		if (error)
879 			goto give_sigsegv;
880 		return;
881 
882 	case 0x26: /* sts */
883 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
884 		fallthrough;
885 
886 	case 0x2c: /* stl */
887 		__asm__ __volatile__(
888 		"1:	ldq_u %2,3(%5)\n"
889 		"2:	ldq_u %1,0(%5)\n"
890 		"	inslh %6,%5,%4\n"
891 		"	insll %6,%5,%3\n"
892 		"	msklh %2,%5,%2\n"
893 		"	mskll %1,%5,%1\n"
894 		"	or %2,%4,%2\n"
895 		"	or %1,%3,%1\n"
896 		"3:	stq_u %2,3(%5)\n"
897 		"4:	stq_u %1,0(%5)\n"
898 		"5:\n"
899 		EXC(1b,5b,%2,%0)
900 		EXC(2b,5b,%1,%0)
901 		EXC(3b,5b,$31,%0)
902 		EXC(4b,5b,$31,%0)
903 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
904 			  "=&r"(tmp3), "=&r"(tmp4)
905 			: "r"(va), "r"(*reg_addr), "0"(0));
906 		if (error)
907 			goto give_sigsegv;
908 		return;
909 
910 	case 0x27: /* stt */
911 		fake_reg = alpha_read_fp_reg(reg);
912 		fallthrough;
913 
914 	case 0x2d: /* stq */
915 		__asm__ __volatile__(
916 		"1:	ldq_u %2,7(%5)\n"
917 		"2:	ldq_u %1,0(%5)\n"
918 		"	insqh %6,%5,%4\n"
919 		"	insql %6,%5,%3\n"
920 		"	mskqh %2,%5,%2\n"
921 		"	mskql %1,%5,%1\n"
922 		"	or %2,%4,%2\n"
923 		"	or %1,%3,%1\n"
924 		"3:	stq_u %2,7(%5)\n"
925 		"4:	stq_u %1,0(%5)\n"
926 		"5:\n"
927 		EXC(1b,5b,%2,%0)
928 		EXC(2b,5b,%1,%0)
929 		EXC(3b,5b,$31,%0)
930 		EXC(4b,5b,$31,%0)
931 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
932 			  "=&r"(tmp3), "=&r"(tmp4)
933 			: "r"(va), "r"(*reg_addr), "0"(0));
934 		if (error)
935 			goto give_sigsegv;
936 		return;
937 
938 	default:
939 		/* What instruction were you trying to use, exactly?  */
940 		goto give_sigbus;
941 	}
942 
943 	/* Only integer loads should get here; everyone else returns early. */
944 	if (reg == 30)
945 		wrusp(fake_reg);
946 	return;
947 
948 give_sigsegv:
949 	regs->pc -= 4;  /* make pc point to faulting insn */
950 
951 	/* We need to replicate some of the logic in mm/fault.c,
952 	   since we don't have access to the fault code in the
953 	   exception handling return path.  */
954 	if ((unsigned long)va >= TASK_SIZE)
955 		si_code = SEGV_ACCERR;
956 	else {
957 		struct mm_struct *mm = current->mm;
958 		mmap_read_lock(mm);
959 		if (find_vma(mm, (unsigned long)va))
960 			si_code = SEGV_ACCERR;
961 		else
962 			si_code = SEGV_MAPERR;
963 		mmap_read_unlock(mm);
964 	}
965 	send_sig_fault(SIGSEGV, si_code, va, current);
966 	return;
967 
968 give_sigbus:
969 	regs->pc -= 4;
970 	send_sig_fault(SIGBUS, BUS_ADRALN, va, current);
971 	return;
972 }
973 
974 void
975 trap_init(void)
976 {
977 	/* Tell PAL-code what global pointer we want in the kernel.  */
978 	register unsigned long gptr __asm__("$29");
979 	wrkgp(gptr);
980 
981 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
982 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
983 	if (implver() == IMPLVER_EV4)
984 		opDEC_check();
985 
986 	wrent(entArith, 1);
987 	wrent(entMM, 2);
988 	wrent(entIF, 3);
989 	wrent(entUna, 4);
990 	wrent(entSys, 5);
991 	wrent(entDbg, 6);
992 }
993