xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision 82e6fdd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7 
8 /*
9  * This file initializes the trap entry points
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21 
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29 
30 #include "proto.h"
31 
32 /* Work-around for some SRMs which mishandle opDEC faults.  */
33 
34 static int opDEC_fix;
35 
36 static void
37 opDEC_check(void)
38 {
39 	__asm__ __volatile__ (
40 	/* Load the address of... */
41 	"	br	$16, 1f\n"
42 	/* A stub instruction fault handler.  Just add 4 to the
43 	   pc and continue.  */
44 	"	ldq	$16, 8($sp)\n"
45 	"	addq	$16, 4, $16\n"
46 	"	stq	$16, 8($sp)\n"
47 	"	call_pal %[rti]\n"
48 	/* Install the instruction fault handler.  */
49 	"1:	lda	$17, 3\n"
50 	"	call_pal %[wrent]\n"
51 	/* With that in place, the fault from the round-to-minf fp
52 	   insn will arrive either at the "lda 4" insn (bad) or one
53 	   past that (good).  This places the correct fixup in %0.  */
54 	"	lda %[fix], 0\n"
55 	"	cvttq/svm $f31,$f31\n"
56 	"	lda %[fix], 4"
57 	: [fix] "=r" (opDEC_fix)
58 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60 
61 	if (opDEC_fix)
62 		printk("opDEC fixup enabled.\n");
63 }
64 
65 void
66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
69 	       regs->pc, regs->r26, regs->ps, print_tainted());
70 	printk("pc is at %pSR\n", (void *)regs->pc);
71 	printk("ra is at %pSR\n", (void *)regs->r26);
72 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
73 	       regs->r0, regs->r1, regs->r2);
74 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
75  	       regs->r3, regs->r4, regs->r5);
76 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
77 	       regs->r6, regs->r7, regs->r8);
78 
79 	if (r9_15) {
80 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
81 		       r9_15[9], r9_15[10], r9_15[11]);
82 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
83 		       r9_15[12], r9_15[13], r9_15[14]);
84 		printk("s6 = %016lx\n", r9_15[15]);
85 	}
86 
87 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
88 	       regs->r16, regs->r17, regs->r18);
89 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
90  	       regs->r19, regs->r20, regs->r21);
91  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
92 	       regs->r22, regs->r23, regs->r24);
93 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
94 	       regs->r25, regs->r27, regs->r28);
95 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100 
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107 
108 static void
109 dik_show_code(unsigned int *pc)
110 {
111 	long i;
112 
113 	printk("Code:");
114 	for (i = -6; i < 2; i++) {
115 		unsigned int insn;
116 		if (__get_user(insn, (unsigned int __user *)pc + i))
117 			break;
118 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119 	}
120 	printk("\n");
121 }
122 
123 static void
124 dik_show_trace(unsigned long *sp)
125 {
126 	long i = 0;
127 	printk("Trace:\n");
128 	while (0x1ff8 & (unsigned long) sp) {
129 		extern char _stext[], _etext[];
130 		unsigned long tmp = *sp;
131 		sp++;
132 		if (tmp < (unsigned long) &_stext)
133 			continue;
134 		if (tmp >= (unsigned long) &_etext)
135 			continue;
136 		printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
137 		if (i > 40) {
138 			printk(" ...");
139 			break;
140 		}
141 	}
142 	printk("\n");
143 }
144 
145 static int kstack_depth_to_print = 24;
146 
147 void show_stack(struct task_struct *task, unsigned long *sp)
148 {
149 	unsigned long *stack;
150 	int i;
151 
152 	/*
153 	 * debugging aid: "show_stack(NULL);" prints the
154 	 * back trace for this cpu.
155 	 */
156 	if(sp==NULL)
157 		sp=(unsigned long*)&sp;
158 
159 	stack = sp;
160 	for(i=0; i < kstack_depth_to_print; i++) {
161 		if (((long) stack & (THREAD_SIZE-1)) == 0)
162 			break;
163 		if ((i % 4) == 0) {
164 			if (i)
165 				pr_cont("\n");
166 			printk("       ");
167 		} else {
168 			pr_cont(" ");
169 		}
170 		pr_cont("%016lx", *stack++);
171 	}
172 	pr_cont("\n");
173 	dik_show_trace(sp);
174 }
175 
176 void
177 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
178 {
179 	if (regs->ps & 8)
180 		return;
181 #ifdef CONFIG_SMP
182 	printk("CPU %d ", hard_smp_processor_id());
183 #endif
184 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
185 	dik_show_regs(regs, r9_15);
186 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
187 	dik_show_trace((unsigned long *)(regs+1));
188 	dik_show_code((unsigned int *)regs->pc);
189 
190 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
191 		printk("die_if_kernel recursion detected.\n");
192 		local_irq_enable();
193 		while (1);
194 	}
195 	do_exit(SIGSEGV);
196 }
197 
198 #ifndef CONFIG_MATHEMU
199 static long dummy_emul(void) { return 0; }
200 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
201   = (void *)dummy_emul;
202 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
203 long (*alpha_fp_emul) (unsigned long pc)
204   = (void *)dummy_emul;
205 EXPORT_SYMBOL_GPL(alpha_fp_emul);
206 #else
207 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
208 long alpha_fp_emul (unsigned long pc);
209 #endif
210 
211 asmlinkage void
212 do_entArith(unsigned long summary, unsigned long write_mask,
213 	    struct pt_regs *regs)
214 {
215 	long si_code = FPE_FLTINV;
216 	siginfo_t info;
217 
218 	if (summary & 1) {
219 		/* Software-completion summary bit is set, so try to
220 		   emulate the instruction.  If the processor supports
221 		   precise exceptions, we don't have to search.  */
222 		if (!amask(AMASK_PRECISE_TRAP))
223 			si_code = alpha_fp_emul(regs->pc - 4);
224 		else
225 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
226 		if (si_code == 0)
227 			return;
228 	}
229 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
230 
231 	info.si_signo = SIGFPE;
232 	info.si_errno = 0;
233 	info.si_code = si_code;
234 	info.si_addr = (void __user *) regs->pc;
235 	send_sig_info(SIGFPE, &info, current);
236 }
237 
238 asmlinkage void
239 do_entIF(unsigned long type, struct pt_regs *regs)
240 {
241 	siginfo_t info;
242 	int signo, code;
243 
244 	if ((regs->ps & ~IPL_MAX) == 0) {
245 		if (type == 1) {
246 			const unsigned int *data
247 			  = (const unsigned int *) regs->pc;
248 			printk("Kernel bug at %s:%d\n",
249 			       (const char *)(data[1] | (long)data[2] << 32),
250 			       data[0]);
251 		}
252 #ifdef CONFIG_ALPHA_WTINT
253 		if (type == 4) {
254 			/* If CALL_PAL WTINT is totally unsupported by the
255 			   PALcode, e.g. MILO, "emulate" it by overwriting
256 			   the insn.  */
257 			unsigned int *pinsn
258 			  = (unsigned int *) regs->pc - 1;
259 			if (*pinsn == PAL_wtint) {
260 				*pinsn = 0x47e01400; /* mov 0,$0 */
261 				imb();
262 				regs->r0 = 0;
263 				return;
264 			}
265 		}
266 #endif /* ALPHA_WTINT */
267 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
268 			      regs, type, NULL);
269 	}
270 
271 	switch (type) {
272 	      case 0: /* breakpoint */
273 		info.si_signo = SIGTRAP;
274 		info.si_errno = 0;
275 		info.si_code = TRAP_BRKPT;
276 		info.si_trapno = 0;
277 		info.si_addr = (void __user *) regs->pc;
278 
279 		if (ptrace_cancel_bpt(current)) {
280 			regs->pc -= 4;	/* make pc point to former bpt */
281 		}
282 
283 		send_sig_info(SIGTRAP, &info, current);
284 		return;
285 
286 	      case 1: /* bugcheck */
287 		info.si_signo = SIGTRAP;
288 		info.si_errno = 0;
289 		info.si_code = TRAP_FIXME;
290 		info.si_addr = (void __user *) regs->pc;
291 		info.si_trapno = 0;
292 		send_sig_info(SIGTRAP, &info, current);
293 		return;
294 
295 	      case 2: /* gentrap */
296 		info.si_addr = (void __user *) regs->pc;
297 		info.si_trapno = regs->r16;
298 		switch ((long) regs->r16) {
299 		case GEN_INTOVF:
300 			signo = SIGFPE;
301 			code = FPE_INTOVF;
302 			break;
303 		case GEN_INTDIV:
304 			signo = SIGFPE;
305 			code = FPE_INTDIV;
306 			break;
307 		case GEN_FLTOVF:
308 			signo = SIGFPE;
309 			code = FPE_FLTOVF;
310 			break;
311 		case GEN_FLTDIV:
312 			signo = SIGFPE;
313 			code = FPE_FLTDIV;
314 			break;
315 		case GEN_FLTUND:
316 			signo = SIGFPE;
317 			code = FPE_FLTUND;
318 			break;
319 		case GEN_FLTINV:
320 			signo = SIGFPE;
321 			code = FPE_FLTINV;
322 			break;
323 		case GEN_FLTINE:
324 			signo = SIGFPE;
325 			code = FPE_FLTRES;
326 			break;
327 		case GEN_ROPRAND:
328 			signo = SIGFPE;
329 			code = FPE_FIXME;
330 			break;
331 
332 		case GEN_DECOVF:
333 		case GEN_DECDIV:
334 		case GEN_DECINV:
335 		case GEN_ASSERTERR:
336 		case GEN_NULPTRERR:
337 		case GEN_STKOVF:
338 		case GEN_STRLENERR:
339 		case GEN_SUBSTRERR:
340 		case GEN_RANGERR:
341 		case GEN_SUBRNG:
342 		case GEN_SUBRNG1:
343 		case GEN_SUBRNG2:
344 		case GEN_SUBRNG3:
345 		case GEN_SUBRNG4:
346 		case GEN_SUBRNG5:
347 		case GEN_SUBRNG6:
348 		case GEN_SUBRNG7:
349 		default:
350 			signo = SIGTRAP;
351 			code = TRAP_FIXME;
352 			break;
353 		}
354 
355 		info.si_signo = signo;
356 		info.si_errno = 0;
357 		info.si_code = code;
358 		info.si_addr = (void __user *) regs->pc;
359 		send_sig_info(signo, &info, current);
360 		return;
361 
362 	      case 4: /* opDEC */
363 		if (implver() == IMPLVER_EV4) {
364 			long si_code;
365 
366 			/* The some versions of SRM do not handle
367 			   the opDEC properly - they return the PC of the
368 			   opDEC fault, not the instruction after as the
369 			   Alpha architecture requires.  Here we fix it up.
370 			   We do this by intentionally causing an opDEC
371 			   fault during the boot sequence and testing if
372 			   we get the correct PC.  If not, we set a flag
373 			   to correct it every time through.  */
374 			regs->pc += opDEC_fix;
375 
376 			/* EV4 does not implement anything except normal
377 			   rounding.  Everything else will come here as
378 			   an illegal instruction.  Emulate them.  */
379 			si_code = alpha_fp_emul(regs->pc - 4);
380 			if (si_code == 0)
381 				return;
382 			if (si_code > 0) {
383 				info.si_signo = SIGFPE;
384 				info.si_errno = 0;
385 				info.si_code = si_code;
386 				info.si_addr = (void __user *) regs->pc;
387 				send_sig_info(SIGFPE, &info, current);
388 				return;
389 			}
390 		}
391 		break;
392 
393 	      case 3: /* FEN fault */
394 		/* Irritating users can call PAL_clrfen to disable the
395 		   FPU for the process.  The kernel will then trap in
396 		   do_switch_stack and undo_switch_stack when we try
397 		   to save and restore the FP registers.
398 
399 		   Given that GCC by default generates code that uses the
400 		   FP registers, PAL_clrfen is not useful except for DoS
401 		   attacks.  So turn the bleeding FPU back on and be done
402 		   with it.  */
403 		current_thread_info()->pcb.flags |= 1;
404 		__reload_thread(&current_thread_info()->pcb);
405 		return;
406 
407 	      case 5: /* illoc */
408 	      default: /* unexpected instruction-fault type */
409 		      ;
410 	}
411 
412 	info.si_signo = SIGILL;
413 	info.si_errno = 0;
414 	info.si_code = ILL_ILLOPC;
415 	info.si_addr = (void __user *) regs->pc;
416 	send_sig_info(SIGILL, &info, current);
417 }
418 
419 /* There is an ifdef in the PALcode in MILO that enables a
420    "kernel debugging entry point" as an unprivileged call_pal.
421 
422    We don't want to have anything to do with it, but unfortunately
423    several versions of MILO included in distributions have it enabled,
424    and if we don't put something on the entry point we'll oops.  */
425 
426 asmlinkage void
427 do_entDbg(struct pt_regs *regs)
428 {
429 	siginfo_t info;
430 
431 	die_if_kernel("Instruction fault", regs, 0, NULL);
432 
433 	info.si_signo = SIGILL;
434 	info.si_errno = 0;
435 	info.si_code = ILL_ILLOPC;
436 	info.si_addr = (void __user *) regs->pc;
437 	force_sig_info(SIGILL, &info, current);
438 }
439 
440 
441 /*
442  * entUna has a different register layout to be reasonably simple. It
443  * needs access to all the integer registers (the kernel doesn't use
444  * fp-regs), and it needs to have them in order for simpler access.
445  *
446  * Due to the non-standard register layout (and because we don't want
447  * to handle floating-point regs), user-mode unaligned accesses are
448  * handled separately by do_entUnaUser below.
449  *
450  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
451  * on a gp-register unaligned load/store, something is _very_ wrong
452  * in the kernel anyway..
453  */
454 struct allregs {
455 	unsigned long regs[32];
456 	unsigned long ps, pc, gp, a0, a1, a2;
457 };
458 
459 struct unaligned_stat {
460 	unsigned long count, va, pc;
461 } unaligned[2];
462 
463 
464 /* Macro for exception fixup code to access integer registers.  */
465 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
466 
467 
468 asmlinkage void
469 do_entUna(void * va, unsigned long opcode, unsigned long reg,
470 	  struct allregs *regs)
471 {
472 	long error, tmp1, tmp2, tmp3, tmp4;
473 	unsigned long pc = regs->pc - 4;
474 	unsigned long *_regs = regs->regs;
475 	const struct exception_table_entry *fixup;
476 
477 	unaligned[0].count++;
478 	unaligned[0].va = (unsigned long) va;
479 	unaligned[0].pc = pc;
480 
481 	/* We don't want to use the generic get/put unaligned macros as
482 	   we want to trap exceptions.  Only if we actually get an
483 	   exception will we decide whether we should have caught it.  */
484 
485 	switch (opcode) {
486 	case 0x0c: /* ldwu */
487 		__asm__ __volatile__(
488 		"1:	ldq_u %1,0(%3)\n"
489 		"2:	ldq_u %2,1(%3)\n"
490 		"	extwl %1,%3,%1\n"
491 		"	extwh %2,%3,%2\n"
492 		"3:\n"
493 		EXC(1b,3b,%1,%0)
494 		EXC(2b,3b,%2,%0)
495 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
496 			: "r"(va), "0"(0));
497 		if (error)
498 			goto got_exception;
499 		una_reg(reg) = tmp1|tmp2;
500 		return;
501 
502 	case 0x28: /* ldl */
503 		__asm__ __volatile__(
504 		"1:	ldq_u %1,0(%3)\n"
505 		"2:	ldq_u %2,3(%3)\n"
506 		"	extll %1,%3,%1\n"
507 		"	extlh %2,%3,%2\n"
508 		"3:\n"
509 		EXC(1b,3b,%1,%0)
510 		EXC(2b,3b,%2,%0)
511 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
512 			: "r"(va), "0"(0));
513 		if (error)
514 			goto got_exception;
515 		una_reg(reg) = (int)(tmp1|tmp2);
516 		return;
517 
518 	case 0x29: /* ldq */
519 		__asm__ __volatile__(
520 		"1:	ldq_u %1,0(%3)\n"
521 		"2:	ldq_u %2,7(%3)\n"
522 		"	extql %1,%3,%1\n"
523 		"	extqh %2,%3,%2\n"
524 		"3:\n"
525 		EXC(1b,3b,%1,%0)
526 		EXC(2b,3b,%2,%0)
527 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
528 			: "r"(va), "0"(0));
529 		if (error)
530 			goto got_exception;
531 		una_reg(reg) = tmp1|tmp2;
532 		return;
533 
534 	/* Note that the store sequences do not indicate that they change
535 	   memory because it _should_ be affecting nothing in this context.
536 	   (Otherwise we have other, much larger, problems.)  */
537 	case 0x0d: /* stw */
538 		__asm__ __volatile__(
539 		"1:	ldq_u %2,1(%5)\n"
540 		"2:	ldq_u %1,0(%5)\n"
541 		"	inswh %6,%5,%4\n"
542 		"	inswl %6,%5,%3\n"
543 		"	mskwh %2,%5,%2\n"
544 		"	mskwl %1,%5,%1\n"
545 		"	or %2,%4,%2\n"
546 		"	or %1,%3,%1\n"
547 		"3:	stq_u %2,1(%5)\n"
548 		"4:	stq_u %1,0(%5)\n"
549 		"5:\n"
550 		EXC(1b,5b,%2,%0)
551 		EXC(2b,5b,%1,%0)
552 		EXC(3b,5b,$31,%0)
553 		EXC(4b,5b,$31,%0)
554 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
555 			  "=&r"(tmp3), "=&r"(tmp4)
556 			: "r"(va), "r"(una_reg(reg)), "0"(0));
557 		if (error)
558 			goto got_exception;
559 		return;
560 
561 	case 0x2c: /* stl */
562 		__asm__ __volatile__(
563 		"1:	ldq_u %2,3(%5)\n"
564 		"2:	ldq_u %1,0(%5)\n"
565 		"	inslh %6,%5,%4\n"
566 		"	insll %6,%5,%3\n"
567 		"	msklh %2,%5,%2\n"
568 		"	mskll %1,%5,%1\n"
569 		"	or %2,%4,%2\n"
570 		"	or %1,%3,%1\n"
571 		"3:	stq_u %2,3(%5)\n"
572 		"4:	stq_u %1,0(%5)\n"
573 		"5:\n"
574 		EXC(1b,5b,%2,%0)
575 		EXC(2b,5b,%1,%0)
576 		EXC(3b,5b,$31,%0)
577 		EXC(4b,5b,$31,%0)
578 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
579 			  "=&r"(tmp3), "=&r"(tmp4)
580 			: "r"(va), "r"(una_reg(reg)), "0"(0));
581 		if (error)
582 			goto got_exception;
583 		return;
584 
585 	case 0x2d: /* stq */
586 		__asm__ __volatile__(
587 		"1:	ldq_u %2,7(%5)\n"
588 		"2:	ldq_u %1,0(%5)\n"
589 		"	insqh %6,%5,%4\n"
590 		"	insql %6,%5,%3\n"
591 		"	mskqh %2,%5,%2\n"
592 		"	mskql %1,%5,%1\n"
593 		"	or %2,%4,%2\n"
594 		"	or %1,%3,%1\n"
595 		"3:	stq_u %2,7(%5)\n"
596 		"4:	stq_u %1,0(%5)\n"
597 		"5:\n"
598 		EXC(1b,5b,%2,%0)
599 		EXC(2b,5b,%1,%0)
600 		EXC(3b,5b,$31,%0)
601 		EXC(4b,5b,$31,%0)
602 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
603 			  "=&r"(tmp3), "=&r"(tmp4)
604 			: "r"(va), "r"(una_reg(reg)), "0"(0));
605 		if (error)
606 			goto got_exception;
607 		return;
608 	}
609 
610 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
611 		pc, va, opcode, reg);
612 	do_exit(SIGSEGV);
613 
614 got_exception:
615 	/* Ok, we caught the exception, but we don't want it.  Is there
616 	   someone to pass it along to?  */
617 	if ((fixup = search_exception_tables(pc)) != 0) {
618 		unsigned long newpc;
619 		newpc = fixup_exception(una_reg, fixup, pc);
620 
621 		printk("Forwarding unaligned exception at %lx (%lx)\n",
622 		       pc, newpc);
623 
624 		regs->pc = newpc;
625 		return;
626 	}
627 
628 	/*
629 	 * Yikes!  No one to forward the exception to.
630 	 * Since the registers are in a weird format, dump them ourselves.
631  	 */
632 
633 	printk("%s(%d): unhandled unaligned exception\n",
634 	       current->comm, task_pid_nr(current));
635 
636 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
637 	       pc, una_reg(26), regs->ps);
638 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
639 	       una_reg(0), una_reg(1), una_reg(2));
640 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
641  	       una_reg(3), una_reg(4), una_reg(5));
642 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
643 	       una_reg(6), una_reg(7), una_reg(8));
644 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
645 	       una_reg(9), una_reg(10), una_reg(11));
646 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
647 	       una_reg(12), una_reg(13), una_reg(14));
648 	printk("r15= %016lx\n", una_reg(15));
649 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
650 	       una_reg(16), una_reg(17), una_reg(18));
651 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
652  	       una_reg(19), una_reg(20), una_reg(21));
653  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
654 	       una_reg(22), una_reg(23), una_reg(24));
655 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
656 	       una_reg(25), una_reg(27), una_reg(28));
657 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
658 
659 	dik_show_code((unsigned int *)pc);
660 	dik_show_trace((unsigned long *)(regs+1));
661 
662 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
663 		printk("die_if_kernel recursion detected.\n");
664 		local_irq_enable();
665 		while (1);
666 	}
667 	do_exit(SIGSEGV);
668 }
669 
670 /*
671  * Convert an s-floating point value in memory format to the
672  * corresponding value in register format.  The exponent
673  * needs to be remapped to preserve non-finite values
674  * (infinities, not-a-numbers, denormals).
675  */
676 static inline unsigned long
677 s_mem_to_reg (unsigned long s_mem)
678 {
679 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
680 	unsigned long sign    = (s_mem >> 31) & 0x1;
681 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
682 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
683 	unsigned long exp;
684 
685 	exp = (exp_msb << 10) | exp_low;	/* common case */
686 	if (exp_msb) {
687 		if (exp_low == 0x7f) {
688 			exp = 0x7ff;
689 		}
690 	} else {
691 		if (exp_low == 0x00) {
692 			exp = 0x000;
693 		} else {
694 			exp |= (0x7 << 7);
695 		}
696 	}
697 	return (sign << 63) | (exp << 52) | (frac << 29);
698 }
699 
700 /*
701  * Convert an s-floating point value in register format to the
702  * corresponding value in memory format.
703  */
704 static inline unsigned long
705 s_reg_to_mem (unsigned long s_reg)
706 {
707 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
708 }
709 
710 /*
711  * Handle user-level unaligned fault.  Handling user-level unaligned
712  * faults is *extremely* slow and produces nasty messages.  A user
713  * program *should* fix unaligned faults ASAP.
714  *
715  * Notice that we have (almost) the regular kernel stack layout here,
716  * so finding the appropriate registers is a little more difficult
717  * than in the kernel case.
718  *
719  * Finally, we handle regular integer load/stores only.  In
720  * particular, load-linked/store-conditionally and floating point
721  * load/stores are not supported.  The former make no sense with
722  * unaligned faults (they are guaranteed to fail) and I don't think
723  * the latter will occur in any decent program.
724  *
725  * Sigh. We *do* have to handle some FP operations, because GCC will
726  * uses them as temporary storage for integer memory to memory copies.
727  * However, we need to deal with stt/ldt and sts/lds only.
728  */
729 
730 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
731 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
732 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
733 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
734 
735 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
736 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
737 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
738 
739 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
740 
741 static int unauser_reg_offsets[32] = {
742 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
743 	/* r9 ... r15 are stored in front of regs.  */
744 	-56, -48, -40, -32, -24, -16, -8,
745 	R(r16), R(r17), R(r18),
746 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
747 	R(r27), R(r28), R(gp),
748 	0, 0
749 };
750 
751 #undef R
752 
753 asmlinkage void
754 do_entUnaUser(void __user * va, unsigned long opcode,
755 	      unsigned long reg, struct pt_regs *regs)
756 {
757 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
758 
759 	unsigned long tmp1, tmp2, tmp3, tmp4;
760 	unsigned long fake_reg, *reg_addr = &fake_reg;
761 	siginfo_t info;
762 	long error;
763 
764 	/* Check the UAC bits to decide what the user wants us to do
765 	   with the unaliged access.  */
766 
767 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
768 		if (__ratelimit(&ratelimit)) {
769 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
770 			       current->comm, task_pid_nr(current),
771 			       regs->pc - 4, va, opcode, reg);
772 		}
773 	}
774 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
775 		goto give_sigbus;
776 	/* Not sure why you'd want to use this, but... */
777 	if ((current_thread_info()->status & TS_UAC_NOFIX))
778 		return;
779 
780 	/* Don't bother reading ds in the access check since we already
781 	   know that this came from the user.  Also rely on the fact that
782 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
783 	if ((unsigned long)va >= TASK_SIZE)
784 		goto give_sigsegv;
785 
786 	++unaligned[1].count;
787 	unaligned[1].va = (unsigned long)va;
788 	unaligned[1].pc = regs->pc - 4;
789 
790 	if ((1L << opcode) & OP_INT_MASK) {
791 		/* it's an integer load/store */
792 		if (reg < 30) {
793 			reg_addr = (unsigned long *)
794 			  ((char *)regs + unauser_reg_offsets[reg]);
795 		} else if (reg == 30) {
796 			/* usp in PAL regs */
797 			fake_reg = rdusp();
798 		} else {
799 			/* zero "register" */
800 			fake_reg = 0;
801 		}
802 	}
803 
804 	/* We don't want to use the generic get/put unaligned macros as
805 	   we want to trap exceptions.  Only if we actually get an
806 	   exception will we decide whether we should have caught it.  */
807 
808 	switch (opcode) {
809 	case 0x0c: /* ldwu */
810 		__asm__ __volatile__(
811 		"1:	ldq_u %1,0(%3)\n"
812 		"2:	ldq_u %2,1(%3)\n"
813 		"	extwl %1,%3,%1\n"
814 		"	extwh %2,%3,%2\n"
815 		"3:\n"
816 		EXC(1b,3b,%1,%0)
817 		EXC(2b,3b,%2,%0)
818 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
819 			: "r"(va), "0"(0));
820 		if (error)
821 			goto give_sigsegv;
822 		*reg_addr = tmp1|tmp2;
823 		break;
824 
825 	case 0x22: /* lds */
826 		__asm__ __volatile__(
827 		"1:	ldq_u %1,0(%3)\n"
828 		"2:	ldq_u %2,3(%3)\n"
829 		"	extll %1,%3,%1\n"
830 		"	extlh %2,%3,%2\n"
831 		"3:\n"
832 		EXC(1b,3b,%1,%0)
833 		EXC(2b,3b,%2,%0)
834 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
835 			: "r"(va), "0"(0));
836 		if (error)
837 			goto give_sigsegv;
838 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
839 		return;
840 
841 	case 0x23: /* ldt */
842 		__asm__ __volatile__(
843 		"1:	ldq_u %1,0(%3)\n"
844 		"2:	ldq_u %2,7(%3)\n"
845 		"	extql %1,%3,%1\n"
846 		"	extqh %2,%3,%2\n"
847 		"3:\n"
848 		EXC(1b,3b,%1,%0)
849 		EXC(2b,3b,%2,%0)
850 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
851 			: "r"(va), "0"(0));
852 		if (error)
853 			goto give_sigsegv;
854 		alpha_write_fp_reg(reg, tmp1|tmp2);
855 		return;
856 
857 	case 0x28: /* ldl */
858 		__asm__ __volatile__(
859 		"1:	ldq_u %1,0(%3)\n"
860 		"2:	ldq_u %2,3(%3)\n"
861 		"	extll %1,%3,%1\n"
862 		"	extlh %2,%3,%2\n"
863 		"3:\n"
864 		EXC(1b,3b,%1,%0)
865 		EXC(2b,3b,%2,%0)
866 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
867 			: "r"(va), "0"(0));
868 		if (error)
869 			goto give_sigsegv;
870 		*reg_addr = (int)(tmp1|tmp2);
871 		break;
872 
873 	case 0x29: /* ldq */
874 		__asm__ __volatile__(
875 		"1:	ldq_u %1,0(%3)\n"
876 		"2:	ldq_u %2,7(%3)\n"
877 		"	extql %1,%3,%1\n"
878 		"	extqh %2,%3,%2\n"
879 		"3:\n"
880 		EXC(1b,3b,%1,%0)
881 		EXC(2b,3b,%2,%0)
882 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
883 			: "r"(va), "0"(0));
884 		if (error)
885 			goto give_sigsegv;
886 		*reg_addr = tmp1|tmp2;
887 		break;
888 
889 	/* Note that the store sequences do not indicate that they change
890 	   memory because it _should_ be affecting nothing in this context.
891 	   (Otherwise we have other, much larger, problems.)  */
892 	case 0x0d: /* stw */
893 		__asm__ __volatile__(
894 		"1:	ldq_u %2,1(%5)\n"
895 		"2:	ldq_u %1,0(%5)\n"
896 		"	inswh %6,%5,%4\n"
897 		"	inswl %6,%5,%3\n"
898 		"	mskwh %2,%5,%2\n"
899 		"	mskwl %1,%5,%1\n"
900 		"	or %2,%4,%2\n"
901 		"	or %1,%3,%1\n"
902 		"3:	stq_u %2,1(%5)\n"
903 		"4:	stq_u %1,0(%5)\n"
904 		"5:\n"
905 		EXC(1b,5b,%2,%0)
906 		EXC(2b,5b,%1,%0)
907 		EXC(3b,5b,$31,%0)
908 		EXC(4b,5b,$31,%0)
909 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
910 			  "=&r"(tmp3), "=&r"(tmp4)
911 			: "r"(va), "r"(*reg_addr), "0"(0));
912 		if (error)
913 			goto give_sigsegv;
914 		return;
915 
916 	case 0x26: /* sts */
917 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
918 		/* FALLTHRU */
919 
920 	case 0x2c: /* stl */
921 		__asm__ __volatile__(
922 		"1:	ldq_u %2,3(%5)\n"
923 		"2:	ldq_u %1,0(%5)\n"
924 		"	inslh %6,%5,%4\n"
925 		"	insll %6,%5,%3\n"
926 		"	msklh %2,%5,%2\n"
927 		"	mskll %1,%5,%1\n"
928 		"	or %2,%4,%2\n"
929 		"	or %1,%3,%1\n"
930 		"3:	stq_u %2,3(%5)\n"
931 		"4:	stq_u %1,0(%5)\n"
932 		"5:\n"
933 		EXC(1b,5b,%2,%0)
934 		EXC(2b,5b,%1,%0)
935 		EXC(3b,5b,$31,%0)
936 		EXC(4b,5b,$31,%0)
937 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
938 			  "=&r"(tmp3), "=&r"(tmp4)
939 			: "r"(va), "r"(*reg_addr), "0"(0));
940 		if (error)
941 			goto give_sigsegv;
942 		return;
943 
944 	case 0x27: /* stt */
945 		fake_reg = alpha_read_fp_reg(reg);
946 		/* FALLTHRU */
947 
948 	case 0x2d: /* stq */
949 		__asm__ __volatile__(
950 		"1:	ldq_u %2,7(%5)\n"
951 		"2:	ldq_u %1,0(%5)\n"
952 		"	insqh %6,%5,%4\n"
953 		"	insql %6,%5,%3\n"
954 		"	mskqh %2,%5,%2\n"
955 		"	mskql %1,%5,%1\n"
956 		"	or %2,%4,%2\n"
957 		"	or %1,%3,%1\n"
958 		"3:	stq_u %2,7(%5)\n"
959 		"4:	stq_u %1,0(%5)\n"
960 		"5:\n"
961 		EXC(1b,5b,%2,%0)
962 		EXC(2b,5b,%1,%0)
963 		EXC(3b,5b,$31,%0)
964 		EXC(4b,5b,$31,%0)
965 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
966 			  "=&r"(tmp3), "=&r"(tmp4)
967 			: "r"(va), "r"(*reg_addr), "0"(0));
968 		if (error)
969 			goto give_sigsegv;
970 		return;
971 
972 	default:
973 		/* What instruction were you trying to use, exactly?  */
974 		goto give_sigbus;
975 	}
976 
977 	/* Only integer loads should get here; everyone else returns early. */
978 	if (reg == 30)
979 		wrusp(fake_reg);
980 	return;
981 
982 give_sigsegv:
983 	regs->pc -= 4;  /* make pc point to faulting insn */
984 	info.si_signo = SIGSEGV;
985 	info.si_errno = 0;
986 
987 	/* We need to replicate some of the logic in mm/fault.c,
988 	   since we don't have access to the fault code in the
989 	   exception handling return path.  */
990 	if ((unsigned long)va >= TASK_SIZE)
991 		info.si_code = SEGV_ACCERR;
992 	else {
993 		struct mm_struct *mm = current->mm;
994 		down_read(&mm->mmap_sem);
995 		if (find_vma(mm, (unsigned long)va))
996 			info.si_code = SEGV_ACCERR;
997 		else
998 			info.si_code = SEGV_MAPERR;
999 		up_read(&mm->mmap_sem);
1000 	}
1001 	info.si_addr = va;
1002 	send_sig_info(SIGSEGV, &info, current);
1003 	return;
1004 
1005 give_sigbus:
1006 	regs->pc -= 4;
1007 	info.si_signo = SIGBUS;
1008 	info.si_errno = 0;
1009 	info.si_code = BUS_ADRALN;
1010 	info.si_addr = va;
1011 	send_sig_info(SIGBUS, &info, current);
1012 	return;
1013 }
1014 
1015 void
1016 trap_init(void)
1017 {
1018 	/* Tell PAL-code what global pointer we want in the kernel.  */
1019 	register unsigned long gptr __asm__("$29");
1020 	wrkgp(gptr);
1021 
1022 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1023 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1024 	if (implver() == IMPLVER_EV4)
1025 		opDEC_check();
1026 
1027 	wrent(entArith, 1);
1028 	wrent(entMM, 2);
1029 	wrent(entIF, 3);
1030 	wrent(entUna, 4);
1031 	wrent(entSys, 5);
1032 	wrent(entDbg, 6);
1033 }
1034