xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision 6aa7de05)
1 /*
2  * arch/alpha/kernel/traps.c
3  *
4  * (C) Copyright 1994 Linus Torvalds
5  */
6 
7 /*
8  * This file initializes the trap entry points
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/debug.h>
15 #include <linux/tty.h>
16 #include <linux/delay.h>
17 #include <linux/extable.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
20 
21 #include <asm/gentrap.h>
22 #include <linux/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
28 
29 #include "proto.h"
30 
31 /* Work-around for some SRMs which mishandle opDEC faults.  */
32 
33 static int opDEC_fix;
34 
35 static void
36 opDEC_check(void)
37 {
38 	__asm__ __volatile__ (
39 	/* Load the address of... */
40 	"	br	$16, 1f\n"
41 	/* A stub instruction fault handler.  Just add 4 to the
42 	   pc and continue.  */
43 	"	ldq	$16, 8($sp)\n"
44 	"	addq	$16, 4, $16\n"
45 	"	stq	$16, 8($sp)\n"
46 	"	call_pal %[rti]\n"
47 	/* Install the instruction fault handler.  */
48 	"1:	lda	$17, 3\n"
49 	"	call_pal %[wrent]\n"
50 	/* With that in place, the fault from the round-to-minf fp
51 	   insn will arrive either at the "lda 4" insn (bad) or one
52 	   past that (good).  This places the correct fixup in %0.  */
53 	"	lda %[fix], 0\n"
54 	"	cvttq/svm $f31,$f31\n"
55 	"	lda %[fix], 4"
56 	: [fix] "=r" (opDEC_fix)
57 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
58 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
59 
60 	if (opDEC_fix)
61 		printk("opDEC fixup enabled.\n");
62 }
63 
64 void
65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
66 {
67 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
68 	       regs->pc, regs->r26, regs->ps, print_tainted());
69 	printk("pc is at %pSR\n", (void *)regs->pc);
70 	printk("ra is at %pSR\n", (void *)regs->r26);
71 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
72 	       regs->r0, regs->r1, regs->r2);
73 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
74  	       regs->r3, regs->r4, regs->r5);
75 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
76 	       regs->r6, regs->r7, regs->r8);
77 
78 	if (r9_15) {
79 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
80 		       r9_15[9], r9_15[10], r9_15[11]);
81 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
82 		       r9_15[12], r9_15[13], r9_15[14]);
83 		printk("s6 = %016lx\n", r9_15[15]);
84 	}
85 
86 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
87 	       regs->r16, regs->r17, regs->r18);
88 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
89  	       regs->r19, regs->r20, regs->r21);
90  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
91 	       regs->r22, regs->r23, regs->r24);
92 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
93 	       regs->r25, regs->r27, regs->r28);
94 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
95 #if 0
96 __halt();
97 #endif
98 }
99 
100 #if 0
101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
105 #endif
106 
107 static void
108 dik_show_code(unsigned int *pc)
109 {
110 	long i;
111 
112 	printk("Code:");
113 	for (i = -6; i < 2; i++) {
114 		unsigned int insn;
115 		if (__get_user(insn, (unsigned int __user *)pc + i))
116 			break;
117 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
118 	}
119 	printk("\n");
120 }
121 
122 static void
123 dik_show_trace(unsigned long *sp)
124 {
125 	long i = 0;
126 	printk("Trace:\n");
127 	while (0x1ff8 & (unsigned long) sp) {
128 		extern char _stext[], _etext[];
129 		unsigned long tmp = *sp;
130 		sp++;
131 		if (tmp < (unsigned long) &_stext)
132 			continue;
133 		if (tmp >= (unsigned long) &_etext)
134 			continue;
135 		printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
136 		if (i > 40) {
137 			printk(" ...");
138 			break;
139 		}
140 	}
141 	printk("\n");
142 }
143 
144 static int kstack_depth_to_print = 24;
145 
146 void show_stack(struct task_struct *task, unsigned long *sp)
147 {
148 	unsigned long *stack;
149 	int i;
150 
151 	/*
152 	 * debugging aid: "show_stack(NULL);" prints the
153 	 * back trace for this cpu.
154 	 */
155 	if(sp==NULL)
156 		sp=(unsigned long*)&sp;
157 
158 	stack = sp;
159 	for(i=0; i < kstack_depth_to_print; i++) {
160 		if (((long) stack & (THREAD_SIZE-1)) == 0)
161 			break;
162 		if (i && ((i % 4) == 0))
163 			printk("\n       ");
164 		printk("%016lx ", *stack++);
165 	}
166 	printk("\n");
167 	dik_show_trace(sp);
168 }
169 
170 void
171 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
172 {
173 	if (regs->ps & 8)
174 		return;
175 #ifdef CONFIG_SMP
176 	printk("CPU %d ", hard_smp_processor_id());
177 #endif
178 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
179 	dik_show_regs(regs, r9_15);
180 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
181 	dik_show_trace((unsigned long *)(regs+1));
182 	dik_show_code((unsigned int *)regs->pc);
183 
184 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
185 		printk("die_if_kernel recursion detected.\n");
186 		local_irq_enable();
187 		while (1);
188 	}
189 	do_exit(SIGSEGV);
190 }
191 
192 #ifndef CONFIG_MATHEMU
193 static long dummy_emul(void) { return 0; }
194 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
195   = (void *)dummy_emul;
196 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
197 long (*alpha_fp_emul) (unsigned long pc)
198   = (void *)dummy_emul;
199 EXPORT_SYMBOL_GPL(alpha_fp_emul);
200 #else
201 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
202 long alpha_fp_emul (unsigned long pc);
203 #endif
204 
205 asmlinkage void
206 do_entArith(unsigned long summary, unsigned long write_mask,
207 	    struct pt_regs *regs)
208 {
209 	long si_code = FPE_FLTINV;
210 	siginfo_t info;
211 
212 	if (summary & 1) {
213 		/* Software-completion summary bit is set, so try to
214 		   emulate the instruction.  If the processor supports
215 		   precise exceptions, we don't have to search.  */
216 		if (!amask(AMASK_PRECISE_TRAP))
217 			si_code = alpha_fp_emul(regs->pc - 4);
218 		else
219 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
220 		if (si_code == 0)
221 			return;
222 	}
223 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
224 
225 	info.si_signo = SIGFPE;
226 	info.si_errno = 0;
227 	info.si_code = si_code;
228 	info.si_addr = (void __user *) regs->pc;
229 	send_sig_info(SIGFPE, &info, current);
230 }
231 
232 asmlinkage void
233 do_entIF(unsigned long type, struct pt_regs *regs)
234 {
235 	siginfo_t info;
236 	int signo, code;
237 
238 	if ((regs->ps & ~IPL_MAX) == 0) {
239 		if (type == 1) {
240 			const unsigned int *data
241 			  = (const unsigned int *) regs->pc;
242 			printk("Kernel bug at %s:%d\n",
243 			       (const char *)(data[1] | (long)data[2] << 32),
244 			       data[0]);
245 		}
246 #ifdef CONFIG_ALPHA_WTINT
247 		if (type == 4) {
248 			/* If CALL_PAL WTINT is totally unsupported by the
249 			   PALcode, e.g. MILO, "emulate" it by overwriting
250 			   the insn.  */
251 			unsigned int *pinsn
252 			  = (unsigned int *) regs->pc - 1;
253 			if (*pinsn == PAL_wtint) {
254 				*pinsn = 0x47e01400; /* mov 0,$0 */
255 				imb();
256 				regs->r0 = 0;
257 				return;
258 			}
259 		}
260 #endif /* ALPHA_WTINT */
261 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
262 			      regs, type, NULL);
263 	}
264 
265 	switch (type) {
266 	      case 0: /* breakpoint */
267 		info.si_signo = SIGTRAP;
268 		info.si_errno = 0;
269 		info.si_code = TRAP_BRKPT;
270 		info.si_trapno = 0;
271 		info.si_addr = (void __user *) regs->pc;
272 
273 		if (ptrace_cancel_bpt(current)) {
274 			regs->pc -= 4;	/* make pc point to former bpt */
275 		}
276 
277 		send_sig_info(SIGTRAP, &info, current);
278 		return;
279 
280 	      case 1: /* bugcheck */
281 		info.si_signo = SIGTRAP;
282 		info.si_errno = 0;
283 		info.si_code = TRAP_FIXME;
284 		info.si_addr = (void __user *) regs->pc;
285 		info.si_trapno = 0;
286 		send_sig_info(SIGTRAP, &info, current);
287 		return;
288 
289 	      case 2: /* gentrap */
290 		info.si_addr = (void __user *) regs->pc;
291 		info.si_trapno = regs->r16;
292 		switch ((long) regs->r16) {
293 		case GEN_INTOVF:
294 			signo = SIGFPE;
295 			code = FPE_INTOVF;
296 			break;
297 		case GEN_INTDIV:
298 			signo = SIGFPE;
299 			code = FPE_INTDIV;
300 			break;
301 		case GEN_FLTOVF:
302 			signo = SIGFPE;
303 			code = FPE_FLTOVF;
304 			break;
305 		case GEN_FLTDIV:
306 			signo = SIGFPE;
307 			code = FPE_FLTDIV;
308 			break;
309 		case GEN_FLTUND:
310 			signo = SIGFPE;
311 			code = FPE_FLTUND;
312 			break;
313 		case GEN_FLTINV:
314 			signo = SIGFPE;
315 			code = FPE_FLTINV;
316 			break;
317 		case GEN_FLTINE:
318 			signo = SIGFPE;
319 			code = FPE_FLTRES;
320 			break;
321 		case GEN_ROPRAND:
322 			signo = SIGFPE;
323 			code = FPE_FIXME;
324 			break;
325 
326 		case GEN_DECOVF:
327 		case GEN_DECDIV:
328 		case GEN_DECINV:
329 		case GEN_ASSERTERR:
330 		case GEN_NULPTRERR:
331 		case GEN_STKOVF:
332 		case GEN_STRLENERR:
333 		case GEN_SUBSTRERR:
334 		case GEN_RANGERR:
335 		case GEN_SUBRNG:
336 		case GEN_SUBRNG1:
337 		case GEN_SUBRNG2:
338 		case GEN_SUBRNG3:
339 		case GEN_SUBRNG4:
340 		case GEN_SUBRNG5:
341 		case GEN_SUBRNG6:
342 		case GEN_SUBRNG7:
343 		default:
344 			signo = SIGTRAP;
345 			code = TRAP_FIXME;
346 			break;
347 		}
348 
349 		info.si_signo = signo;
350 		info.si_errno = 0;
351 		info.si_code = code;
352 		info.si_addr = (void __user *) regs->pc;
353 		send_sig_info(signo, &info, current);
354 		return;
355 
356 	      case 4: /* opDEC */
357 		if (implver() == IMPLVER_EV4) {
358 			long si_code;
359 
360 			/* The some versions of SRM do not handle
361 			   the opDEC properly - they return the PC of the
362 			   opDEC fault, not the instruction after as the
363 			   Alpha architecture requires.  Here we fix it up.
364 			   We do this by intentionally causing an opDEC
365 			   fault during the boot sequence and testing if
366 			   we get the correct PC.  If not, we set a flag
367 			   to correct it every time through.  */
368 			regs->pc += opDEC_fix;
369 
370 			/* EV4 does not implement anything except normal
371 			   rounding.  Everything else will come here as
372 			   an illegal instruction.  Emulate them.  */
373 			si_code = alpha_fp_emul(regs->pc - 4);
374 			if (si_code == 0)
375 				return;
376 			if (si_code > 0) {
377 				info.si_signo = SIGFPE;
378 				info.si_errno = 0;
379 				info.si_code = si_code;
380 				info.si_addr = (void __user *) regs->pc;
381 				send_sig_info(SIGFPE, &info, current);
382 				return;
383 			}
384 		}
385 		break;
386 
387 	      case 3: /* FEN fault */
388 		/* Irritating users can call PAL_clrfen to disable the
389 		   FPU for the process.  The kernel will then trap in
390 		   do_switch_stack and undo_switch_stack when we try
391 		   to save and restore the FP registers.
392 
393 		   Given that GCC by default generates code that uses the
394 		   FP registers, PAL_clrfen is not useful except for DoS
395 		   attacks.  So turn the bleeding FPU back on and be done
396 		   with it.  */
397 		current_thread_info()->pcb.flags |= 1;
398 		__reload_thread(&current_thread_info()->pcb);
399 		return;
400 
401 	      case 5: /* illoc */
402 	      default: /* unexpected instruction-fault type */
403 		      ;
404 	}
405 
406 	info.si_signo = SIGILL;
407 	info.si_errno = 0;
408 	info.si_code = ILL_ILLOPC;
409 	info.si_addr = (void __user *) regs->pc;
410 	send_sig_info(SIGILL, &info, current);
411 }
412 
413 /* There is an ifdef in the PALcode in MILO that enables a
414    "kernel debugging entry point" as an unprivileged call_pal.
415 
416    We don't want to have anything to do with it, but unfortunately
417    several versions of MILO included in distributions have it enabled,
418    and if we don't put something on the entry point we'll oops.  */
419 
420 asmlinkage void
421 do_entDbg(struct pt_regs *regs)
422 {
423 	siginfo_t info;
424 
425 	die_if_kernel("Instruction fault", regs, 0, NULL);
426 
427 	info.si_signo = SIGILL;
428 	info.si_errno = 0;
429 	info.si_code = ILL_ILLOPC;
430 	info.si_addr = (void __user *) regs->pc;
431 	force_sig_info(SIGILL, &info, current);
432 }
433 
434 
435 /*
436  * entUna has a different register layout to be reasonably simple. It
437  * needs access to all the integer registers (the kernel doesn't use
438  * fp-regs), and it needs to have them in order for simpler access.
439  *
440  * Due to the non-standard register layout (and because we don't want
441  * to handle floating-point regs), user-mode unaligned accesses are
442  * handled separately by do_entUnaUser below.
443  *
444  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
445  * on a gp-register unaligned load/store, something is _very_ wrong
446  * in the kernel anyway..
447  */
448 struct allregs {
449 	unsigned long regs[32];
450 	unsigned long ps, pc, gp, a0, a1, a2;
451 };
452 
453 struct unaligned_stat {
454 	unsigned long count, va, pc;
455 } unaligned[2];
456 
457 
458 /* Macro for exception fixup code to access integer registers.  */
459 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
460 
461 
462 asmlinkage void
463 do_entUna(void * va, unsigned long opcode, unsigned long reg,
464 	  struct allregs *regs)
465 {
466 	long error, tmp1, tmp2, tmp3, tmp4;
467 	unsigned long pc = regs->pc - 4;
468 	unsigned long *_regs = regs->regs;
469 	const struct exception_table_entry *fixup;
470 
471 	unaligned[0].count++;
472 	unaligned[0].va = (unsigned long) va;
473 	unaligned[0].pc = pc;
474 
475 	/* We don't want to use the generic get/put unaligned macros as
476 	   we want to trap exceptions.  Only if we actually get an
477 	   exception will we decide whether we should have caught it.  */
478 
479 	switch (opcode) {
480 	case 0x0c: /* ldwu */
481 		__asm__ __volatile__(
482 		"1:	ldq_u %1,0(%3)\n"
483 		"2:	ldq_u %2,1(%3)\n"
484 		"	extwl %1,%3,%1\n"
485 		"	extwh %2,%3,%2\n"
486 		"3:\n"
487 		EXC(1b,3b,%1,%0)
488 		EXC(2b,3b,%2,%0)
489 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
490 			: "r"(va), "0"(0));
491 		if (error)
492 			goto got_exception;
493 		una_reg(reg) = tmp1|tmp2;
494 		return;
495 
496 	case 0x28: /* ldl */
497 		__asm__ __volatile__(
498 		"1:	ldq_u %1,0(%3)\n"
499 		"2:	ldq_u %2,3(%3)\n"
500 		"	extll %1,%3,%1\n"
501 		"	extlh %2,%3,%2\n"
502 		"3:\n"
503 		EXC(1b,3b,%1,%0)
504 		EXC(2b,3b,%2,%0)
505 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
506 			: "r"(va), "0"(0));
507 		if (error)
508 			goto got_exception;
509 		una_reg(reg) = (int)(tmp1|tmp2);
510 		return;
511 
512 	case 0x29: /* ldq */
513 		__asm__ __volatile__(
514 		"1:	ldq_u %1,0(%3)\n"
515 		"2:	ldq_u %2,7(%3)\n"
516 		"	extql %1,%3,%1\n"
517 		"	extqh %2,%3,%2\n"
518 		"3:\n"
519 		EXC(1b,3b,%1,%0)
520 		EXC(2b,3b,%2,%0)
521 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
522 			: "r"(va), "0"(0));
523 		if (error)
524 			goto got_exception;
525 		una_reg(reg) = tmp1|tmp2;
526 		return;
527 
528 	/* Note that the store sequences do not indicate that they change
529 	   memory because it _should_ be affecting nothing in this context.
530 	   (Otherwise we have other, much larger, problems.)  */
531 	case 0x0d: /* stw */
532 		__asm__ __volatile__(
533 		"1:	ldq_u %2,1(%5)\n"
534 		"2:	ldq_u %1,0(%5)\n"
535 		"	inswh %6,%5,%4\n"
536 		"	inswl %6,%5,%3\n"
537 		"	mskwh %2,%5,%2\n"
538 		"	mskwl %1,%5,%1\n"
539 		"	or %2,%4,%2\n"
540 		"	or %1,%3,%1\n"
541 		"3:	stq_u %2,1(%5)\n"
542 		"4:	stq_u %1,0(%5)\n"
543 		"5:\n"
544 		EXC(1b,5b,%2,%0)
545 		EXC(2b,5b,%1,%0)
546 		EXC(3b,5b,$31,%0)
547 		EXC(4b,5b,$31,%0)
548 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
549 			  "=&r"(tmp3), "=&r"(tmp4)
550 			: "r"(va), "r"(una_reg(reg)), "0"(0));
551 		if (error)
552 			goto got_exception;
553 		return;
554 
555 	case 0x2c: /* stl */
556 		__asm__ __volatile__(
557 		"1:	ldq_u %2,3(%5)\n"
558 		"2:	ldq_u %1,0(%5)\n"
559 		"	inslh %6,%5,%4\n"
560 		"	insll %6,%5,%3\n"
561 		"	msklh %2,%5,%2\n"
562 		"	mskll %1,%5,%1\n"
563 		"	or %2,%4,%2\n"
564 		"	or %1,%3,%1\n"
565 		"3:	stq_u %2,3(%5)\n"
566 		"4:	stq_u %1,0(%5)\n"
567 		"5:\n"
568 		EXC(1b,5b,%2,%0)
569 		EXC(2b,5b,%1,%0)
570 		EXC(3b,5b,$31,%0)
571 		EXC(4b,5b,$31,%0)
572 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
573 			  "=&r"(tmp3), "=&r"(tmp4)
574 			: "r"(va), "r"(una_reg(reg)), "0"(0));
575 		if (error)
576 			goto got_exception;
577 		return;
578 
579 	case 0x2d: /* stq */
580 		__asm__ __volatile__(
581 		"1:	ldq_u %2,7(%5)\n"
582 		"2:	ldq_u %1,0(%5)\n"
583 		"	insqh %6,%5,%4\n"
584 		"	insql %6,%5,%3\n"
585 		"	mskqh %2,%5,%2\n"
586 		"	mskql %1,%5,%1\n"
587 		"	or %2,%4,%2\n"
588 		"	or %1,%3,%1\n"
589 		"3:	stq_u %2,7(%5)\n"
590 		"4:	stq_u %1,0(%5)\n"
591 		"5:\n"
592 		EXC(1b,5b,%2,%0)
593 		EXC(2b,5b,%1,%0)
594 		EXC(3b,5b,$31,%0)
595 		EXC(4b,5b,$31,%0)
596 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
597 			  "=&r"(tmp3), "=&r"(tmp4)
598 			: "r"(va), "r"(una_reg(reg)), "0"(0));
599 		if (error)
600 			goto got_exception;
601 		return;
602 	}
603 
604 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
605 		pc, va, opcode, reg);
606 	do_exit(SIGSEGV);
607 
608 got_exception:
609 	/* Ok, we caught the exception, but we don't want it.  Is there
610 	   someone to pass it along to?  */
611 	if ((fixup = search_exception_tables(pc)) != 0) {
612 		unsigned long newpc;
613 		newpc = fixup_exception(una_reg, fixup, pc);
614 
615 		printk("Forwarding unaligned exception at %lx (%lx)\n",
616 		       pc, newpc);
617 
618 		regs->pc = newpc;
619 		return;
620 	}
621 
622 	/*
623 	 * Yikes!  No one to forward the exception to.
624 	 * Since the registers are in a weird format, dump them ourselves.
625  	 */
626 
627 	printk("%s(%d): unhandled unaligned exception\n",
628 	       current->comm, task_pid_nr(current));
629 
630 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
631 	       pc, una_reg(26), regs->ps);
632 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
633 	       una_reg(0), una_reg(1), una_reg(2));
634 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
635  	       una_reg(3), una_reg(4), una_reg(5));
636 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
637 	       una_reg(6), una_reg(7), una_reg(8));
638 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
639 	       una_reg(9), una_reg(10), una_reg(11));
640 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
641 	       una_reg(12), una_reg(13), una_reg(14));
642 	printk("r15= %016lx\n", una_reg(15));
643 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
644 	       una_reg(16), una_reg(17), una_reg(18));
645 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
646  	       una_reg(19), una_reg(20), una_reg(21));
647  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
648 	       una_reg(22), una_reg(23), una_reg(24));
649 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
650 	       una_reg(25), una_reg(27), una_reg(28));
651 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
652 
653 	dik_show_code((unsigned int *)pc);
654 	dik_show_trace((unsigned long *)(regs+1));
655 
656 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
657 		printk("die_if_kernel recursion detected.\n");
658 		local_irq_enable();
659 		while (1);
660 	}
661 	do_exit(SIGSEGV);
662 }
663 
664 /*
665  * Convert an s-floating point value in memory format to the
666  * corresponding value in register format.  The exponent
667  * needs to be remapped to preserve non-finite values
668  * (infinities, not-a-numbers, denormals).
669  */
670 static inline unsigned long
671 s_mem_to_reg (unsigned long s_mem)
672 {
673 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
674 	unsigned long sign    = (s_mem >> 31) & 0x1;
675 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
676 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
677 	unsigned long exp;
678 
679 	exp = (exp_msb << 10) | exp_low;	/* common case */
680 	if (exp_msb) {
681 		if (exp_low == 0x7f) {
682 			exp = 0x7ff;
683 		}
684 	} else {
685 		if (exp_low == 0x00) {
686 			exp = 0x000;
687 		} else {
688 			exp |= (0x7 << 7);
689 		}
690 	}
691 	return (sign << 63) | (exp << 52) | (frac << 29);
692 }
693 
694 /*
695  * Convert an s-floating point value in register format to the
696  * corresponding value in memory format.
697  */
698 static inline unsigned long
699 s_reg_to_mem (unsigned long s_reg)
700 {
701 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
702 }
703 
704 /*
705  * Handle user-level unaligned fault.  Handling user-level unaligned
706  * faults is *extremely* slow and produces nasty messages.  A user
707  * program *should* fix unaligned faults ASAP.
708  *
709  * Notice that we have (almost) the regular kernel stack layout here,
710  * so finding the appropriate registers is a little more difficult
711  * than in the kernel case.
712  *
713  * Finally, we handle regular integer load/stores only.  In
714  * particular, load-linked/store-conditionally and floating point
715  * load/stores are not supported.  The former make no sense with
716  * unaligned faults (they are guaranteed to fail) and I don't think
717  * the latter will occur in any decent program.
718  *
719  * Sigh. We *do* have to handle some FP operations, because GCC will
720  * uses them as temporary storage for integer memory to memory copies.
721  * However, we need to deal with stt/ldt and sts/lds only.
722  */
723 
724 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
725 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
726 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
727 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
728 
729 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
730 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
731 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
732 
733 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
734 
735 static int unauser_reg_offsets[32] = {
736 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
737 	/* r9 ... r15 are stored in front of regs.  */
738 	-56, -48, -40, -32, -24, -16, -8,
739 	R(r16), R(r17), R(r18),
740 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
741 	R(r27), R(r28), R(gp),
742 	0, 0
743 };
744 
745 #undef R
746 
747 asmlinkage void
748 do_entUnaUser(void __user * va, unsigned long opcode,
749 	      unsigned long reg, struct pt_regs *regs)
750 {
751 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
752 
753 	unsigned long tmp1, tmp2, tmp3, tmp4;
754 	unsigned long fake_reg, *reg_addr = &fake_reg;
755 	siginfo_t info;
756 	long error;
757 
758 	/* Check the UAC bits to decide what the user wants us to do
759 	   with the unaliged access.  */
760 
761 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
762 		if (__ratelimit(&ratelimit)) {
763 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
764 			       current->comm, task_pid_nr(current),
765 			       regs->pc - 4, va, opcode, reg);
766 		}
767 	}
768 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
769 		goto give_sigbus;
770 	/* Not sure why you'd want to use this, but... */
771 	if ((current_thread_info()->status & TS_UAC_NOFIX))
772 		return;
773 
774 	/* Don't bother reading ds in the access check since we already
775 	   know that this came from the user.  Also rely on the fact that
776 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
777 	if ((unsigned long)va >= TASK_SIZE)
778 		goto give_sigsegv;
779 
780 	++unaligned[1].count;
781 	unaligned[1].va = (unsigned long)va;
782 	unaligned[1].pc = regs->pc - 4;
783 
784 	if ((1L << opcode) & OP_INT_MASK) {
785 		/* it's an integer load/store */
786 		if (reg < 30) {
787 			reg_addr = (unsigned long *)
788 			  ((char *)regs + unauser_reg_offsets[reg]);
789 		} else if (reg == 30) {
790 			/* usp in PAL regs */
791 			fake_reg = rdusp();
792 		} else {
793 			/* zero "register" */
794 			fake_reg = 0;
795 		}
796 	}
797 
798 	/* We don't want to use the generic get/put unaligned macros as
799 	   we want to trap exceptions.  Only if we actually get an
800 	   exception will we decide whether we should have caught it.  */
801 
802 	switch (opcode) {
803 	case 0x0c: /* ldwu */
804 		__asm__ __volatile__(
805 		"1:	ldq_u %1,0(%3)\n"
806 		"2:	ldq_u %2,1(%3)\n"
807 		"	extwl %1,%3,%1\n"
808 		"	extwh %2,%3,%2\n"
809 		"3:\n"
810 		EXC(1b,3b,%1,%0)
811 		EXC(2b,3b,%2,%0)
812 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
813 			: "r"(va), "0"(0));
814 		if (error)
815 			goto give_sigsegv;
816 		*reg_addr = tmp1|tmp2;
817 		break;
818 
819 	case 0x22: /* lds */
820 		__asm__ __volatile__(
821 		"1:	ldq_u %1,0(%3)\n"
822 		"2:	ldq_u %2,3(%3)\n"
823 		"	extll %1,%3,%1\n"
824 		"	extlh %2,%3,%2\n"
825 		"3:\n"
826 		EXC(1b,3b,%1,%0)
827 		EXC(2b,3b,%2,%0)
828 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
829 			: "r"(va), "0"(0));
830 		if (error)
831 			goto give_sigsegv;
832 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
833 		return;
834 
835 	case 0x23: /* ldt */
836 		__asm__ __volatile__(
837 		"1:	ldq_u %1,0(%3)\n"
838 		"2:	ldq_u %2,7(%3)\n"
839 		"	extql %1,%3,%1\n"
840 		"	extqh %2,%3,%2\n"
841 		"3:\n"
842 		EXC(1b,3b,%1,%0)
843 		EXC(2b,3b,%2,%0)
844 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
845 			: "r"(va), "0"(0));
846 		if (error)
847 			goto give_sigsegv;
848 		alpha_write_fp_reg(reg, tmp1|tmp2);
849 		return;
850 
851 	case 0x28: /* ldl */
852 		__asm__ __volatile__(
853 		"1:	ldq_u %1,0(%3)\n"
854 		"2:	ldq_u %2,3(%3)\n"
855 		"	extll %1,%3,%1\n"
856 		"	extlh %2,%3,%2\n"
857 		"3:\n"
858 		EXC(1b,3b,%1,%0)
859 		EXC(2b,3b,%2,%0)
860 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
861 			: "r"(va), "0"(0));
862 		if (error)
863 			goto give_sigsegv;
864 		*reg_addr = (int)(tmp1|tmp2);
865 		break;
866 
867 	case 0x29: /* ldq */
868 		__asm__ __volatile__(
869 		"1:	ldq_u %1,0(%3)\n"
870 		"2:	ldq_u %2,7(%3)\n"
871 		"	extql %1,%3,%1\n"
872 		"	extqh %2,%3,%2\n"
873 		"3:\n"
874 		EXC(1b,3b,%1,%0)
875 		EXC(2b,3b,%2,%0)
876 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
877 			: "r"(va), "0"(0));
878 		if (error)
879 			goto give_sigsegv;
880 		*reg_addr = tmp1|tmp2;
881 		break;
882 
883 	/* Note that the store sequences do not indicate that they change
884 	   memory because it _should_ be affecting nothing in this context.
885 	   (Otherwise we have other, much larger, problems.)  */
886 	case 0x0d: /* stw */
887 		__asm__ __volatile__(
888 		"1:	ldq_u %2,1(%5)\n"
889 		"2:	ldq_u %1,0(%5)\n"
890 		"	inswh %6,%5,%4\n"
891 		"	inswl %6,%5,%3\n"
892 		"	mskwh %2,%5,%2\n"
893 		"	mskwl %1,%5,%1\n"
894 		"	or %2,%4,%2\n"
895 		"	or %1,%3,%1\n"
896 		"3:	stq_u %2,1(%5)\n"
897 		"4:	stq_u %1,0(%5)\n"
898 		"5:\n"
899 		EXC(1b,5b,%2,%0)
900 		EXC(2b,5b,%1,%0)
901 		EXC(3b,5b,$31,%0)
902 		EXC(4b,5b,$31,%0)
903 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
904 			  "=&r"(tmp3), "=&r"(tmp4)
905 			: "r"(va), "r"(*reg_addr), "0"(0));
906 		if (error)
907 			goto give_sigsegv;
908 		return;
909 
910 	case 0x26: /* sts */
911 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
912 		/* FALLTHRU */
913 
914 	case 0x2c: /* stl */
915 		__asm__ __volatile__(
916 		"1:	ldq_u %2,3(%5)\n"
917 		"2:	ldq_u %1,0(%5)\n"
918 		"	inslh %6,%5,%4\n"
919 		"	insll %6,%5,%3\n"
920 		"	msklh %2,%5,%2\n"
921 		"	mskll %1,%5,%1\n"
922 		"	or %2,%4,%2\n"
923 		"	or %1,%3,%1\n"
924 		"3:	stq_u %2,3(%5)\n"
925 		"4:	stq_u %1,0(%5)\n"
926 		"5:\n"
927 		EXC(1b,5b,%2,%0)
928 		EXC(2b,5b,%1,%0)
929 		EXC(3b,5b,$31,%0)
930 		EXC(4b,5b,$31,%0)
931 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
932 			  "=&r"(tmp3), "=&r"(tmp4)
933 			: "r"(va), "r"(*reg_addr), "0"(0));
934 		if (error)
935 			goto give_sigsegv;
936 		return;
937 
938 	case 0x27: /* stt */
939 		fake_reg = alpha_read_fp_reg(reg);
940 		/* FALLTHRU */
941 
942 	case 0x2d: /* stq */
943 		__asm__ __volatile__(
944 		"1:	ldq_u %2,7(%5)\n"
945 		"2:	ldq_u %1,0(%5)\n"
946 		"	insqh %6,%5,%4\n"
947 		"	insql %6,%5,%3\n"
948 		"	mskqh %2,%5,%2\n"
949 		"	mskql %1,%5,%1\n"
950 		"	or %2,%4,%2\n"
951 		"	or %1,%3,%1\n"
952 		"3:	stq_u %2,7(%5)\n"
953 		"4:	stq_u %1,0(%5)\n"
954 		"5:\n"
955 		EXC(1b,5b,%2,%0)
956 		EXC(2b,5b,%1,%0)
957 		EXC(3b,5b,$31,%0)
958 		EXC(4b,5b,$31,%0)
959 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
960 			  "=&r"(tmp3), "=&r"(tmp4)
961 			: "r"(va), "r"(*reg_addr), "0"(0));
962 		if (error)
963 			goto give_sigsegv;
964 		return;
965 
966 	default:
967 		/* What instruction were you trying to use, exactly?  */
968 		goto give_sigbus;
969 	}
970 
971 	/* Only integer loads should get here; everyone else returns early. */
972 	if (reg == 30)
973 		wrusp(fake_reg);
974 	return;
975 
976 give_sigsegv:
977 	regs->pc -= 4;  /* make pc point to faulting insn */
978 	info.si_signo = SIGSEGV;
979 	info.si_errno = 0;
980 
981 	/* We need to replicate some of the logic in mm/fault.c,
982 	   since we don't have access to the fault code in the
983 	   exception handling return path.  */
984 	if ((unsigned long)va >= TASK_SIZE)
985 		info.si_code = SEGV_ACCERR;
986 	else {
987 		struct mm_struct *mm = current->mm;
988 		down_read(&mm->mmap_sem);
989 		if (find_vma(mm, (unsigned long)va))
990 			info.si_code = SEGV_ACCERR;
991 		else
992 			info.si_code = SEGV_MAPERR;
993 		up_read(&mm->mmap_sem);
994 	}
995 	info.si_addr = va;
996 	send_sig_info(SIGSEGV, &info, current);
997 	return;
998 
999 give_sigbus:
1000 	regs->pc -= 4;
1001 	info.si_signo = SIGBUS;
1002 	info.si_errno = 0;
1003 	info.si_code = BUS_ADRALN;
1004 	info.si_addr = va;
1005 	send_sig_info(SIGBUS, &info, current);
1006 	return;
1007 }
1008 
1009 void
1010 trap_init(void)
1011 {
1012 	/* Tell PAL-code what global pointer we want in the kernel.  */
1013 	register unsigned long gptr __asm__("$29");
1014 	wrkgp(gptr);
1015 
1016 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1017 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1018 	if (implver() == IMPLVER_EV4)
1019 		opDEC_check();
1020 
1021 	wrent(entArith, 1);
1022 	wrent(entMM, 2);
1023 	wrent(entIF, 3);
1024 	wrent(entUna, 4);
1025 	wrent(entSys, 5);
1026 	wrent(entDbg, 6);
1027 }
1028