xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision 64c70b1c)
1 /*
2  * arch/alpha/kernel/traps.c
3  *
4  * (C) Copyright 1994 Linus Torvalds
5  */
6 
7 /*
8  * This file initializes the trap entry points
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/tty.h>
14 #include <linux/delay.h>
15 #include <linux/smp_lock.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 
20 #include <asm/gentrap.h>
21 #include <asm/uaccess.h>
22 #include <asm/unaligned.h>
23 #include <asm/sysinfo.h>
24 #include <asm/hwrpb.h>
25 #include <asm/mmu_context.h>
26 
27 #include "proto.h"
28 
29 /* Work-around for some SRMs which mishandle opDEC faults.  */
30 
31 static int opDEC_fix;
32 
33 static void __init
34 opDEC_check(void)
35 {
36 	__asm__ __volatile__ (
37 	/* Load the address of... */
38 	"	br	$16, 1f\n"
39 	/* A stub instruction fault handler.  Just add 4 to the
40 	   pc and continue.  */
41 	"	ldq	$16, 8($sp)\n"
42 	"	addq	$16, 4, $16\n"
43 	"	stq	$16, 8($sp)\n"
44 	"	call_pal %[rti]\n"
45 	/* Install the instruction fault handler.  */
46 	"1:	lda	$17, 3\n"
47 	"	call_pal %[wrent]\n"
48 	/* With that in place, the fault from the round-to-minf fp
49 	   insn will arrive either at the "lda 4" insn (bad) or one
50 	   past that (good).  This places the correct fixup in %0.  */
51 	"	lda %[fix], 0\n"
52 	"	cvttq/svm $f31,$f31\n"
53 	"	lda %[fix], 4"
54 	: [fix] "=r" (opDEC_fix)
55 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
56 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
57 
58 	if (opDEC_fix)
59 		printk("opDEC fixup enabled.\n");
60 }
61 
62 void
63 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
64 {
65 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
66 	       regs->pc, regs->r26, regs->ps, print_tainted());
67 	print_symbol("pc is at %s\n", regs->pc);
68 	print_symbol("ra is at %s\n", regs->r26 );
69 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
70 	       regs->r0, regs->r1, regs->r2);
71 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
72  	       regs->r3, regs->r4, regs->r5);
73 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
74 	       regs->r6, regs->r7, regs->r8);
75 
76 	if (r9_15) {
77 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
78 		       r9_15[9], r9_15[10], r9_15[11]);
79 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
80 		       r9_15[12], r9_15[13], r9_15[14]);
81 		printk("s6 = %016lx\n", r9_15[15]);
82 	}
83 
84 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
85 	       regs->r16, regs->r17, regs->r18);
86 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
87  	       regs->r19, regs->r20, regs->r21);
88  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
89 	       regs->r22, regs->r23, regs->r24);
90 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
91 	       regs->r25, regs->r27, regs->r28);
92 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
93 #if 0
94 __halt();
95 #endif
96 }
97 
98 #if 0
99 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
100 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
101 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
102 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
103 #endif
104 
105 static void
106 dik_show_code(unsigned int *pc)
107 {
108 	long i;
109 
110 	printk("Code:");
111 	for (i = -6; i < 2; i++) {
112 		unsigned int insn;
113 		if (__get_user(insn, (unsigned int __user *)pc + i))
114 			break;
115 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
116 	}
117 	printk("\n");
118 }
119 
120 static void
121 dik_show_trace(unsigned long *sp)
122 {
123 	long i = 0;
124 	printk("Trace:\n");
125 	while (0x1ff8 & (unsigned long) sp) {
126 		extern char _stext[], _etext[];
127 		unsigned long tmp = *sp;
128 		sp++;
129 		if (tmp < (unsigned long) &_stext)
130 			continue;
131 		if (tmp >= (unsigned long) &_etext)
132 			continue;
133 		printk("[<%lx>]", tmp);
134 		print_symbol(" %s", tmp);
135 		printk("\n");
136 		if (i > 40) {
137 			printk(" ...");
138 			break;
139 		}
140 	}
141 	printk("\n");
142 }
143 
144 static int kstack_depth_to_print = 24;
145 
146 void show_stack(struct task_struct *task, unsigned long *sp)
147 {
148 	unsigned long *stack;
149 	int i;
150 
151 	/*
152 	 * debugging aid: "show_stack(NULL);" prints the
153 	 * back trace for this cpu.
154 	 */
155 	if(sp==NULL)
156 		sp=(unsigned long*)&sp;
157 
158 	stack = sp;
159 	for(i=0; i < kstack_depth_to_print; i++) {
160 		if (((long) stack & (THREAD_SIZE-1)) == 0)
161 			break;
162 		if (i && ((i % 4) == 0))
163 			printk("\n       ");
164 		printk("%016lx ", *stack++);
165 	}
166 	printk("\n");
167 	dik_show_trace(sp);
168 }
169 
170 void dump_stack(void)
171 {
172 	show_stack(NULL, NULL);
173 }
174 
175 EXPORT_SYMBOL(dump_stack);
176 
177 void
178 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
179 {
180 	if (regs->ps & 8)
181 		return;
182 #ifdef CONFIG_SMP
183 	printk("CPU %d ", hard_smp_processor_id());
184 #endif
185 	printk("%s(%d): %s %ld\n", current->comm, current->pid, str, err);
186 	dik_show_regs(regs, r9_15);
187 	dik_show_trace((unsigned long *)(regs+1));
188 	dik_show_code((unsigned int *)regs->pc);
189 
190 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
191 		printk("die_if_kernel recursion detected.\n");
192 		local_irq_enable();
193 		while (1);
194 	}
195 	do_exit(SIGSEGV);
196 }
197 
198 #ifndef CONFIG_MATHEMU
199 static long dummy_emul(void) { return 0; }
200 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
201   = (void *)dummy_emul;
202 long (*alpha_fp_emul) (unsigned long pc)
203   = (void *)dummy_emul;
204 #else
205 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
206 long alpha_fp_emul (unsigned long pc);
207 #endif
208 
209 asmlinkage void
210 do_entArith(unsigned long summary, unsigned long write_mask,
211 	    struct pt_regs *regs)
212 {
213 	long si_code = FPE_FLTINV;
214 	siginfo_t info;
215 
216 	if (summary & 1) {
217 		/* Software-completion summary bit is set, so try to
218 		   emulate the instruction.  If the processor supports
219 		   precise exceptions, we don't have to search.  */
220 		if (!amask(AMASK_PRECISE_TRAP))
221 			si_code = alpha_fp_emul(regs->pc - 4);
222 		else
223 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
224 		if (si_code == 0)
225 			return;
226 	}
227 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
228 
229 	info.si_signo = SIGFPE;
230 	info.si_errno = 0;
231 	info.si_code = si_code;
232 	info.si_addr = (void __user *) regs->pc;
233 	send_sig_info(SIGFPE, &info, current);
234 }
235 
236 asmlinkage void
237 do_entIF(unsigned long type, struct pt_regs *regs)
238 {
239 	siginfo_t info;
240 	int signo, code;
241 
242 	if ((regs->ps & ~IPL_MAX) == 0) {
243 		if (type == 1) {
244 			const unsigned int *data
245 			  = (const unsigned int *) regs->pc;
246 			printk("Kernel bug at %s:%d\n",
247 			       (const char *)(data[1] | (long)data[2] << 32),
248 			       data[0]);
249 		}
250 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
251 			      regs, type, NULL);
252 	}
253 
254 	switch (type) {
255 	      case 0: /* breakpoint */
256 		info.si_signo = SIGTRAP;
257 		info.si_errno = 0;
258 		info.si_code = TRAP_BRKPT;
259 		info.si_trapno = 0;
260 		info.si_addr = (void __user *) regs->pc;
261 
262 		if (ptrace_cancel_bpt(current)) {
263 			regs->pc -= 4;	/* make pc point to former bpt */
264 		}
265 
266 		send_sig_info(SIGTRAP, &info, current);
267 		return;
268 
269 	      case 1: /* bugcheck */
270 		info.si_signo = SIGTRAP;
271 		info.si_errno = 0;
272 		info.si_code = __SI_FAULT;
273 		info.si_addr = (void __user *) regs->pc;
274 		info.si_trapno = 0;
275 		send_sig_info(SIGTRAP, &info, current);
276 		return;
277 
278 	      case 2: /* gentrap */
279 		info.si_addr = (void __user *) regs->pc;
280 		info.si_trapno = regs->r16;
281 		switch ((long) regs->r16) {
282 		case GEN_INTOVF:
283 			signo = SIGFPE;
284 			code = FPE_INTOVF;
285 			break;
286 		case GEN_INTDIV:
287 			signo = SIGFPE;
288 			code = FPE_INTDIV;
289 			break;
290 		case GEN_FLTOVF:
291 			signo = SIGFPE;
292 			code = FPE_FLTOVF;
293 			break;
294 		case GEN_FLTDIV:
295 			signo = SIGFPE;
296 			code = FPE_FLTDIV;
297 			break;
298 		case GEN_FLTUND:
299 			signo = SIGFPE;
300 			code = FPE_FLTUND;
301 			break;
302 		case GEN_FLTINV:
303 			signo = SIGFPE;
304 			code = FPE_FLTINV;
305 			break;
306 		case GEN_FLTINE:
307 			signo = SIGFPE;
308 			code = FPE_FLTRES;
309 			break;
310 		case GEN_ROPRAND:
311 			signo = SIGFPE;
312 			code = __SI_FAULT;
313 			break;
314 
315 		case GEN_DECOVF:
316 		case GEN_DECDIV:
317 		case GEN_DECINV:
318 		case GEN_ASSERTERR:
319 		case GEN_NULPTRERR:
320 		case GEN_STKOVF:
321 		case GEN_STRLENERR:
322 		case GEN_SUBSTRERR:
323 		case GEN_RANGERR:
324 		case GEN_SUBRNG:
325 		case GEN_SUBRNG1:
326 		case GEN_SUBRNG2:
327 		case GEN_SUBRNG3:
328 		case GEN_SUBRNG4:
329 		case GEN_SUBRNG5:
330 		case GEN_SUBRNG6:
331 		case GEN_SUBRNG7:
332 		default:
333 			signo = SIGTRAP;
334 			code = __SI_FAULT;
335 			break;
336 		}
337 
338 		info.si_signo = signo;
339 		info.si_errno = 0;
340 		info.si_code = code;
341 		info.si_addr = (void __user *) regs->pc;
342 		send_sig_info(signo, &info, current);
343 		return;
344 
345 	      case 4: /* opDEC */
346 		if (implver() == IMPLVER_EV4) {
347 			long si_code;
348 
349 			/* The some versions of SRM do not handle
350 			   the opDEC properly - they return the PC of the
351 			   opDEC fault, not the instruction after as the
352 			   Alpha architecture requires.  Here we fix it up.
353 			   We do this by intentionally causing an opDEC
354 			   fault during the boot sequence and testing if
355 			   we get the correct PC.  If not, we set a flag
356 			   to correct it every time through.  */
357 			regs->pc += opDEC_fix;
358 
359 			/* EV4 does not implement anything except normal
360 			   rounding.  Everything else will come here as
361 			   an illegal instruction.  Emulate them.  */
362 			si_code = alpha_fp_emul(regs->pc - 4);
363 			if (si_code == 0)
364 				return;
365 			if (si_code > 0) {
366 				info.si_signo = SIGFPE;
367 				info.si_errno = 0;
368 				info.si_code = si_code;
369 				info.si_addr = (void __user *) regs->pc;
370 				send_sig_info(SIGFPE, &info, current);
371 				return;
372 			}
373 		}
374 		break;
375 
376 	      case 3: /* FEN fault */
377 		/* Irritating users can call PAL_clrfen to disable the
378 		   FPU for the process.  The kernel will then trap in
379 		   do_switch_stack and undo_switch_stack when we try
380 		   to save and restore the FP registers.
381 
382 		   Given that GCC by default generates code that uses the
383 		   FP registers, PAL_clrfen is not useful except for DoS
384 		   attacks.  So turn the bleeding FPU back on and be done
385 		   with it.  */
386 		current_thread_info()->pcb.flags |= 1;
387 		__reload_thread(&current_thread_info()->pcb);
388 		return;
389 
390 	      case 5: /* illoc */
391 	      default: /* unexpected instruction-fault type */
392 		      ;
393 	}
394 
395 	info.si_signo = SIGILL;
396 	info.si_errno = 0;
397 	info.si_code = ILL_ILLOPC;
398 	info.si_addr = (void __user *) regs->pc;
399 	send_sig_info(SIGILL, &info, current);
400 }
401 
402 /* There is an ifdef in the PALcode in MILO that enables a
403    "kernel debugging entry point" as an unprivileged call_pal.
404 
405    We don't want to have anything to do with it, but unfortunately
406    several versions of MILO included in distributions have it enabled,
407    and if we don't put something on the entry point we'll oops.  */
408 
409 asmlinkage void
410 do_entDbg(struct pt_regs *regs)
411 {
412 	siginfo_t info;
413 
414 	die_if_kernel("Instruction fault", regs, 0, NULL);
415 
416 	info.si_signo = SIGILL;
417 	info.si_errno = 0;
418 	info.si_code = ILL_ILLOPC;
419 	info.si_addr = (void __user *) regs->pc;
420 	force_sig_info(SIGILL, &info, current);
421 }
422 
423 
424 /*
425  * entUna has a different register layout to be reasonably simple. It
426  * needs access to all the integer registers (the kernel doesn't use
427  * fp-regs), and it needs to have them in order for simpler access.
428  *
429  * Due to the non-standard register layout (and because we don't want
430  * to handle floating-point regs), user-mode unaligned accesses are
431  * handled separately by do_entUnaUser below.
432  *
433  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
434  * on a gp-register unaligned load/store, something is _very_ wrong
435  * in the kernel anyway..
436  */
437 struct allregs {
438 	unsigned long regs[32];
439 	unsigned long ps, pc, gp, a0, a1, a2;
440 };
441 
442 struct unaligned_stat {
443 	unsigned long count, va, pc;
444 } unaligned[2];
445 
446 
447 /* Macro for exception fixup code to access integer registers.  */
448 #define una_reg(r)  (regs->regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
449 
450 
451 asmlinkage void
452 do_entUna(void * va, unsigned long opcode, unsigned long reg,
453 	  struct allregs *regs)
454 {
455 	long error, tmp1, tmp2, tmp3, tmp4;
456 	unsigned long pc = regs->pc - 4;
457 	const struct exception_table_entry *fixup;
458 
459 	unaligned[0].count++;
460 	unaligned[0].va = (unsigned long) va;
461 	unaligned[0].pc = pc;
462 
463 	/* We don't want to use the generic get/put unaligned macros as
464 	   we want to trap exceptions.  Only if we actually get an
465 	   exception will we decide whether we should have caught it.  */
466 
467 	switch (opcode) {
468 	case 0x0c: /* ldwu */
469 		__asm__ __volatile__(
470 		"1:	ldq_u %1,0(%3)\n"
471 		"2:	ldq_u %2,1(%3)\n"
472 		"	extwl %1,%3,%1\n"
473 		"	extwh %2,%3,%2\n"
474 		"3:\n"
475 		".section __ex_table,\"a\"\n"
476 		"	.long 1b - .\n"
477 		"	lda %1,3b-1b(%0)\n"
478 		"	.long 2b - .\n"
479 		"	lda %2,3b-2b(%0)\n"
480 		".previous"
481 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
482 			: "r"(va), "0"(0));
483 		if (error)
484 			goto got_exception;
485 		una_reg(reg) = tmp1|tmp2;
486 		return;
487 
488 	case 0x28: /* ldl */
489 		__asm__ __volatile__(
490 		"1:	ldq_u %1,0(%3)\n"
491 		"2:	ldq_u %2,3(%3)\n"
492 		"	extll %1,%3,%1\n"
493 		"	extlh %2,%3,%2\n"
494 		"3:\n"
495 		".section __ex_table,\"a\"\n"
496 		"	.long 1b - .\n"
497 		"	lda %1,3b-1b(%0)\n"
498 		"	.long 2b - .\n"
499 		"	lda %2,3b-2b(%0)\n"
500 		".previous"
501 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
502 			: "r"(va), "0"(0));
503 		if (error)
504 			goto got_exception;
505 		una_reg(reg) = (int)(tmp1|tmp2);
506 		return;
507 
508 	case 0x29: /* ldq */
509 		__asm__ __volatile__(
510 		"1:	ldq_u %1,0(%3)\n"
511 		"2:	ldq_u %2,7(%3)\n"
512 		"	extql %1,%3,%1\n"
513 		"	extqh %2,%3,%2\n"
514 		"3:\n"
515 		".section __ex_table,\"a\"\n"
516 		"	.long 1b - .\n"
517 		"	lda %1,3b-1b(%0)\n"
518 		"	.long 2b - .\n"
519 		"	lda %2,3b-2b(%0)\n"
520 		".previous"
521 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
522 			: "r"(va), "0"(0));
523 		if (error)
524 			goto got_exception;
525 		una_reg(reg) = tmp1|tmp2;
526 		return;
527 
528 	/* Note that the store sequences do not indicate that they change
529 	   memory because it _should_ be affecting nothing in this context.
530 	   (Otherwise we have other, much larger, problems.)  */
531 	case 0x0d: /* stw */
532 		__asm__ __volatile__(
533 		"1:	ldq_u %2,1(%5)\n"
534 		"2:	ldq_u %1,0(%5)\n"
535 		"	inswh %6,%5,%4\n"
536 		"	inswl %6,%5,%3\n"
537 		"	mskwh %2,%5,%2\n"
538 		"	mskwl %1,%5,%1\n"
539 		"	or %2,%4,%2\n"
540 		"	or %1,%3,%1\n"
541 		"3:	stq_u %2,1(%5)\n"
542 		"4:	stq_u %1,0(%5)\n"
543 		"5:\n"
544 		".section __ex_table,\"a\"\n"
545 		"	.long 1b - .\n"
546 		"	lda %2,5b-1b(%0)\n"
547 		"	.long 2b - .\n"
548 		"	lda %1,5b-2b(%0)\n"
549 		"	.long 3b - .\n"
550 		"	lda $31,5b-3b(%0)\n"
551 		"	.long 4b - .\n"
552 		"	lda $31,5b-4b(%0)\n"
553 		".previous"
554 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
555 			  "=&r"(tmp3), "=&r"(tmp4)
556 			: "r"(va), "r"(una_reg(reg)), "0"(0));
557 		if (error)
558 			goto got_exception;
559 		return;
560 
561 	case 0x2c: /* stl */
562 		__asm__ __volatile__(
563 		"1:	ldq_u %2,3(%5)\n"
564 		"2:	ldq_u %1,0(%5)\n"
565 		"	inslh %6,%5,%4\n"
566 		"	insll %6,%5,%3\n"
567 		"	msklh %2,%5,%2\n"
568 		"	mskll %1,%5,%1\n"
569 		"	or %2,%4,%2\n"
570 		"	or %1,%3,%1\n"
571 		"3:	stq_u %2,3(%5)\n"
572 		"4:	stq_u %1,0(%5)\n"
573 		"5:\n"
574 		".section __ex_table,\"a\"\n"
575 		"	.long 1b - .\n"
576 		"	lda %2,5b-1b(%0)\n"
577 		"	.long 2b - .\n"
578 		"	lda %1,5b-2b(%0)\n"
579 		"	.long 3b - .\n"
580 		"	lda $31,5b-3b(%0)\n"
581 		"	.long 4b - .\n"
582 		"	lda $31,5b-4b(%0)\n"
583 		".previous"
584 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
585 			  "=&r"(tmp3), "=&r"(tmp4)
586 			: "r"(va), "r"(una_reg(reg)), "0"(0));
587 		if (error)
588 			goto got_exception;
589 		return;
590 
591 	case 0x2d: /* stq */
592 		__asm__ __volatile__(
593 		"1:	ldq_u %2,7(%5)\n"
594 		"2:	ldq_u %1,0(%5)\n"
595 		"	insqh %6,%5,%4\n"
596 		"	insql %6,%5,%3\n"
597 		"	mskqh %2,%5,%2\n"
598 		"	mskql %1,%5,%1\n"
599 		"	or %2,%4,%2\n"
600 		"	or %1,%3,%1\n"
601 		"3:	stq_u %2,7(%5)\n"
602 		"4:	stq_u %1,0(%5)\n"
603 		"5:\n"
604 		".section __ex_table,\"a\"\n\t"
605 		"	.long 1b - .\n"
606 		"	lda %2,5b-1b(%0)\n"
607 		"	.long 2b - .\n"
608 		"	lda %1,5b-2b(%0)\n"
609 		"	.long 3b - .\n"
610 		"	lda $31,5b-3b(%0)\n"
611 		"	.long 4b - .\n"
612 		"	lda $31,5b-4b(%0)\n"
613 		".previous"
614 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
615 			  "=&r"(tmp3), "=&r"(tmp4)
616 			: "r"(va), "r"(una_reg(reg)), "0"(0));
617 		if (error)
618 			goto got_exception;
619 		return;
620 	}
621 
622 	lock_kernel();
623 	printk("Bad unaligned kernel access at %016lx: %p %lx %ld\n",
624 		pc, va, opcode, reg);
625 	do_exit(SIGSEGV);
626 
627 got_exception:
628 	/* Ok, we caught the exception, but we don't want it.  Is there
629 	   someone to pass it along to?  */
630 	if ((fixup = search_exception_tables(pc)) != 0) {
631 		unsigned long newpc;
632 		newpc = fixup_exception(una_reg, fixup, pc);
633 
634 		printk("Forwarding unaligned exception at %lx (%lx)\n",
635 		       pc, newpc);
636 
637 		regs->pc = newpc;
638 		return;
639 	}
640 
641 	/*
642 	 * Yikes!  No one to forward the exception to.
643 	 * Since the registers are in a weird format, dump them ourselves.
644  	 */
645 	lock_kernel();
646 
647 	printk("%s(%d): unhandled unaligned exception\n",
648 	       current->comm, current->pid);
649 
650 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
651 	       pc, una_reg(26), regs->ps);
652 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
653 	       una_reg(0), una_reg(1), una_reg(2));
654 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
655  	       una_reg(3), una_reg(4), una_reg(5));
656 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
657 	       una_reg(6), una_reg(7), una_reg(8));
658 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
659 	       una_reg(9), una_reg(10), una_reg(11));
660 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
661 	       una_reg(12), una_reg(13), una_reg(14));
662 	printk("r15= %016lx\n", una_reg(15));
663 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
664 	       una_reg(16), una_reg(17), una_reg(18));
665 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
666  	       una_reg(19), una_reg(20), una_reg(21));
667  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
668 	       una_reg(22), una_reg(23), una_reg(24));
669 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
670 	       una_reg(25), una_reg(27), una_reg(28));
671 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
672 
673 	dik_show_code((unsigned int *)pc);
674 	dik_show_trace((unsigned long *)(regs+1));
675 
676 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
677 		printk("die_if_kernel recursion detected.\n");
678 		local_irq_enable();
679 		while (1);
680 	}
681 	do_exit(SIGSEGV);
682 }
683 
684 /*
685  * Convert an s-floating point value in memory format to the
686  * corresponding value in register format.  The exponent
687  * needs to be remapped to preserve non-finite values
688  * (infinities, not-a-numbers, denormals).
689  */
690 static inline unsigned long
691 s_mem_to_reg (unsigned long s_mem)
692 {
693 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
694 	unsigned long sign    = (s_mem >> 31) & 0x1;
695 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
696 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
697 	unsigned long exp;
698 
699 	exp = (exp_msb << 10) | exp_low;	/* common case */
700 	if (exp_msb) {
701 		if (exp_low == 0x7f) {
702 			exp = 0x7ff;
703 		}
704 	} else {
705 		if (exp_low == 0x00) {
706 			exp = 0x000;
707 		} else {
708 			exp |= (0x7 << 7);
709 		}
710 	}
711 	return (sign << 63) | (exp << 52) | (frac << 29);
712 }
713 
714 /*
715  * Convert an s-floating point value in register format to the
716  * corresponding value in memory format.
717  */
718 static inline unsigned long
719 s_reg_to_mem (unsigned long s_reg)
720 {
721 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
722 }
723 
724 /*
725  * Handle user-level unaligned fault.  Handling user-level unaligned
726  * faults is *extremely* slow and produces nasty messages.  A user
727  * program *should* fix unaligned faults ASAP.
728  *
729  * Notice that we have (almost) the regular kernel stack layout here,
730  * so finding the appropriate registers is a little more difficult
731  * than in the kernel case.
732  *
733  * Finally, we handle regular integer load/stores only.  In
734  * particular, load-linked/store-conditionally and floating point
735  * load/stores are not supported.  The former make no sense with
736  * unaligned faults (they are guaranteed to fail) and I don't think
737  * the latter will occur in any decent program.
738  *
739  * Sigh. We *do* have to handle some FP operations, because GCC will
740  * uses them as temporary storage for integer memory to memory copies.
741  * However, we need to deal with stt/ldt and sts/lds only.
742  */
743 
744 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
745 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
746 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
747 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
748 
749 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
750 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
751 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
752 
753 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
754 
755 static int unauser_reg_offsets[32] = {
756 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
757 	/* r9 ... r15 are stored in front of regs.  */
758 	-56, -48, -40, -32, -24, -16, -8,
759 	R(r16), R(r17), R(r18),
760 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
761 	R(r27), R(r28), R(gp),
762 	0, 0
763 };
764 
765 #undef R
766 
767 asmlinkage void
768 do_entUnaUser(void __user * va, unsigned long opcode,
769 	      unsigned long reg, struct pt_regs *regs)
770 {
771 	static int cnt = 0;
772 	static long last_time = 0;
773 
774 	unsigned long tmp1, tmp2, tmp3, tmp4;
775 	unsigned long fake_reg, *reg_addr = &fake_reg;
776 	siginfo_t info;
777 	long error;
778 
779 	/* Check the UAC bits to decide what the user wants us to do
780 	   with the unaliged access.  */
781 
782 	if (!test_thread_flag (TIF_UAC_NOPRINT)) {
783 		if (cnt >= 5 && jiffies - last_time > 5*HZ) {
784 			cnt = 0;
785 		}
786 		if (++cnt < 5) {
787 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
788 			       current->comm, current->pid,
789 			       regs->pc - 4, va, opcode, reg);
790 		}
791 		last_time = jiffies;
792 	}
793 	if (test_thread_flag (TIF_UAC_SIGBUS))
794 		goto give_sigbus;
795 	/* Not sure why you'd want to use this, but... */
796 	if (test_thread_flag (TIF_UAC_NOFIX))
797 		return;
798 
799 	/* Don't bother reading ds in the access check since we already
800 	   know that this came from the user.  Also rely on the fact that
801 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
802 	if (!__access_ok((unsigned long)va, 0, USER_DS))
803 		goto give_sigsegv;
804 
805 	++unaligned[1].count;
806 	unaligned[1].va = (unsigned long)va;
807 	unaligned[1].pc = regs->pc - 4;
808 
809 	if ((1L << opcode) & OP_INT_MASK) {
810 		/* it's an integer load/store */
811 		if (reg < 30) {
812 			reg_addr = (unsigned long *)
813 			  ((char *)regs + unauser_reg_offsets[reg]);
814 		} else if (reg == 30) {
815 			/* usp in PAL regs */
816 			fake_reg = rdusp();
817 		} else {
818 			/* zero "register" */
819 			fake_reg = 0;
820 		}
821 	}
822 
823 	/* We don't want to use the generic get/put unaligned macros as
824 	   we want to trap exceptions.  Only if we actually get an
825 	   exception will we decide whether we should have caught it.  */
826 
827 	switch (opcode) {
828 	case 0x0c: /* ldwu */
829 		__asm__ __volatile__(
830 		"1:	ldq_u %1,0(%3)\n"
831 		"2:	ldq_u %2,1(%3)\n"
832 		"	extwl %1,%3,%1\n"
833 		"	extwh %2,%3,%2\n"
834 		"3:\n"
835 		".section __ex_table,\"a\"\n"
836 		"	.long 1b - .\n"
837 		"	lda %1,3b-1b(%0)\n"
838 		"	.long 2b - .\n"
839 		"	lda %2,3b-2b(%0)\n"
840 		".previous"
841 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
842 			: "r"(va), "0"(0));
843 		if (error)
844 			goto give_sigsegv;
845 		*reg_addr = tmp1|tmp2;
846 		break;
847 
848 	case 0x22: /* lds */
849 		__asm__ __volatile__(
850 		"1:	ldq_u %1,0(%3)\n"
851 		"2:	ldq_u %2,3(%3)\n"
852 		"	extll %1,%3,%1\n"
853 		"	extlh %2,%3,%2\n"
854 		"3:\n"
855 		".section __ex_table,\"a\"\n"
856 		"	.long 1b - .\n"
857 		"	lda %1,3b-1b(%0)\n"
858 		"	.long 2b - .\n"
859 		"	lda %2,3b-2b(%0)\n"
860 		".previous"
861 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
862 			: "r"(va), "0"(0));
863 		if (error)
864 			goto give_sigsegv;
865 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
866 		return;
867 
868 	case 0x23: /* ldt */
869 		__asm__ __volatile__(
870 		"1:	ldq_u %1,0(%3)\n"
871 		"2:	ldq_u %2,7(%3)\n"
872 		"	extql %1,%3,%1\n"
873 		"	extqh %2,%3,%2\n"
874 		"3:\n"
875 		".section __ex_table,\"a\"\n"
876 		"	.long 1b - .\n"
877 		"	lda %1,3b-1b(%0)\n"
878 		"	.long 2b - .\n"
879 		"	lda %2,3b-2b(%0)\n"
880 		".previous"
881 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
882 			: "r"(va), "0"(0));
883 		if (error)
884 			goto give_sigsegv;
885 		alpha_write_fp_reg(reg, tmp1|tmp2);
886 		return;
887 
888 	case 0x28: /* ldl */
889 		__asm__ __volatile__(
890 		"1:	ldq_u %1,0(%3)\n"
891 		"2:	ldq_u %2,3(%3)\n"
892 		"	extll %1,%3,%1\n"
893 		"	extlh %2,%3,%2\n"
894 		"3:\n"
895 		".section __ex_table,\"a\"\n"
896 		"	.long 1b - .\n"
897 		"	lda %1,3b-1b(%0)\n"
898 		"	.long 2b - .\n"
899 		"	lda %2,3b-2b(%0)\n"
900 		".previous"
901 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
902 			: "r"(va), "0"(0));
903 		if (error)
904 			goto give_sigsegv;
905 		*reg_addr = (int)(tmp1|tmp2);
906 		break;
907 
908 	case 0x29: /* ldq */
909 		__asm__ __volatile__(
910 		"1:	ldq_u %1,0(%3)\n"
911 		"2:	ldq_u %2,7(%3)\n"
912 		"	extql %1,%3,%1\n"
913 		"	extqh %2,%3,%2\n"
914 		"3:\n"
915 		".section __ex_table,\"a\"\n"
916 		"	.long 1b - .\n"
917 		"	lda %1,3b-1b(%0)\n"
918 		"	.long 2b - .\n"
919 		"	lda %2,3b-2b(%0)\n"
920 		".previous"
921 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
922 			: "r"(va), "0"(0));
923 		if (error)
924 			goto give_sigsegv;
925 		*reg_addr = tmp1|tmp2;
926 		break;
927 
928 	/* Note that the store sequences do not indicate that they change
929 	   memory because it _should_ be affecting nothing in this context.
930 	   (Otherwise we have other, much larger, problems.)  */
931 	case 0x0d: /* stw */
932 		__asm__ __volatile__(
933 		"1:	ldq_u %2,1(%5)\n"
934 		"2:	ldq_u %1,0(%5)\n"
935 		"	inswh %6,%5,%4\n"
936 		"	inswl %6,%5,%3\n"
937 		"	mskwh %2,%5,%2\n"
938 		"	mskwl %1,%5,%1\n"
939 		"	or %2,%4,%2\n"
940 		"	or %1,%3,%1\n"
941 		"3:	stq_u %2,1(%5)\n"
942 		"4:	stq_u %1,0(%5)\n"
943 		"5:\n"
944 		".section __ex_table,\"a\"\n"
945 		"	.long 1b - .\n"
946 		"	lda %2,5b-1b(%0)\n"
947 		"	.long 2b - .\n"
948 		"	lda %1,5b-2b(%0)\n"
949 		"	.long 3b - .\n"
950 		"	lda $31,5b-3b(%0)\n"
951 		"	.long 4b - .\n"
952 		"	lda $31,5b-4b(%0)\n"
953 		".previous"
954 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
955 			  "=&r"(tmp3), "=&r"(tmp4)
956 			: "r"(va), "r"(*reg_addr), "0"(0));
957 		if (error)
958 			goto give_sigsegv;
959 		return;
960 
961 	case 0x26: /* sts */
962 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
963 		/* FALLTHRU */
964 
965 	case 0x2c: /* stl */
966 		__asm__ __volatile__(
967 		"1:	ldq_u %2,3(%5)\n"
968 		"2:	ldq_u %1,0(%5)\n"
969 		"	inslh %6,%5,%4\n"
970 		"	insll %6,%5,%3\n"
971 		"	msklh %2,%5,%2\n"
972 		"	mskll %1,%5,%1\n"
973 		"	or %2,%4,%2\n"
974 		"	or %1,%3,%1\n"
975 		"3:	stq_u %2,3(%5)\n"
976 		"4:	stq_u %1,0(%5)\n"
977 		"5:\n"
978 		".section __ex_table,\"a\"\n"
979 		"	.long 1b - .\n"
980 		"	lda %2,5b-1b(%0)\n"
981 		"	.long 2b - .\n"
982 		"	lda %1,5b-2b(%0)\n"
983 		"	.long 3b - .\n"
984 		"	lda $31,5b-3b(%0)\n"
985 		"	.long 4b - .\n"
986 		"	lda $31,5b-4b(%0)\n"
987 		".previous"
988 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
989 			  "=&r"(tmp3), "=&r"(tmp4)
990 			: "r"(va), "r"(*reg_addr), "0"(0));
991 		if (error)
992 			goto give_sigsegv;
993 		return;
994 
995 	case 0x27: /* stt */
996 		fake_reg = alpha_read_fp_reg(reg);
997 		/* FALLTHRU */
998 
999 	case 0x2d: /* stq */
1000 		__asm__ __volatile__(
1001 		"1:	ldq_u %2,7(%5)\n"
1002 		"2:	ldq_u %1,0(%5)\n"
1003 		"	insqh %6,%5,%4\n"
1004 		"	insql %6,%5,%3\n"
1005 		"	mskqh %2,%5,%2\n"
1006 		"	mskql %1,%5,%1\n"
1007 		"	or %2,%4,%2\n"
1008 		"	or %1,%3,%1\n"
1009 		"3:	stq_u %2,7(%5)\n"
1010 		"4:	stq_u %1,0(%5)\n"
1011 		"5:\n"
1012 		".section __ex_table,\"a\"\n\t"
1013 		"	.long 1b - .\n"
1014 		"	lda %2,5b-1b(%0)\n"
1015 		"	.long 2b - .\n"
1016 		"	lda %1,5b-2b(%0)\n"
1017 		"	.long 3b - .\n"
1018 		"	lda $31,5b-3b(%0)\n"
1019 		"	.long 4b - .\n"
1020 		"	lda $31,5b-4b(%0)\n"
1021 		".previous"
1022 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1023 			  "=&r"(tmp3), "=&r"(tmp4)
1024 			: "r"(va), "r"(*reg_addr), "0"(0));
1025 		if (error)
1026 			goto give_sigsegv;
1027 		return;
1028 
1029 	default:
1030 		/* What instruction were you trying to use, exactly?  */
1031 		goto give_sigbus;
1032 	}
1033 
1034 	/* Only integer loads should get here; everyone else returns early. */
1035 	if (reg == 30)
1036 		wrusp(fake_reg);
1037 	return;
1038 
1039 give_sigsegv:
1040 	regs->pc -= 4;  /* make pc point to faulting insn */
1041 	info.si_signo = SIGSEGV;
1042 	info.si_errno = 0;
1043 
1044 	/* We need to replicate some of the logic in mm/fault.c,
1045 	   since we don't have access to the fault code in the
1046 	   exception handling return path.  */
1047 	if (!__access_ok((unsigned long)va, 0, USER_DS))
1048 		info.si_code = SEGV_ACCERR;
1049 	else {
1050 		struct mm_struct *mm = current->mm;
1051 		down_read(&mm->mmap_sem);
1052 		if (find_vma(mm, (unsigned long)va))
1053 			info.si_code = SEGV_ACCERR;
1054 		else
1055 			info.si_code = SEGV_MAPERR;
1056 		up_read(&mm->mmap_sem);
1057 	}
1058 	info.si_addr = va;
1059 	send_sig_info(SIGSEGV, &info, current);
1060 	return;
1061 
1062 give_sigbus:
1063 	regs->pc -= 4;
1064 	info.si_signo = SIGBUS;
1065 	info.si_errno = 0;
1066 	info.si_code = BUS_ADRALN;
1067 	info.si_addr = va;
1068 	send_sig_info(SIGBUS, &info, current);
1069 	return;
1070 }
1071 
1072 void __init
1073 trap_init(void)
1074 {
1075 	/* Tell PAL-code what global pointer we want in the kernel.  */
1076 	register unsigned long gptr __asm__("$29");
1077 	wrkgp(gptr);
1078 
1079 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1080 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1081 	if (implver() == IMPLVER_EV4)
1082 		opDEC_check();
1083 
1084 	wrent(entArith, 1);
1085 	wrent(entMM, 2);
1086 	wrent(entIF, 3);
1087 	wrent(entUna, 4);
1088 	wrent(entSys, 5);
1089 	wrent(entDbg, 6);
1090 }
1091