1 /* 2 * arch/alpha/kernel/traps.c 3 * 4 * (C) Copyright 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file initializes the trap entry points 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/mm.h> 13 #include <linux/sched.h> 14 #include <linux/tty.h> 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kallsyms.h> 19 #include <linux/ratelimit.h> 20 21 #include <asm/gentrap.h> 22 #include <asm/uaccess.h> 23 #include <asm/unaligned.h> 24 #include <asm/sysinfo.h> 25 #include <asm/hwrpb.h> 26 #include <asm/mmu_context.h> 27 28 #include "proto.h" 29 30 /* Work-around for some SRMs which mishandle opDEC faults. */ 31 32 static int opDEC_fix; 33 34 static void __cpuinit 35 opDEC_check(void) 36 { 37 __asm__ __volatile__ ( 38 /* Load the address of... */ 39 " br $16, 1f\n" 40 /* A stub instruction fault handler. Just add 4 to the 41 pc and continue. */ 42 " ldq $16, 8($sp)\n" 43 " addq $16, 4, $16\n" 44 " stq $16, 8($sp)\n" 45 " call_pal %[rti]\n" 46 /* Install the instruction fault handler. */ 47 "1: lda $17, 3\n" 48 " call_pal %[wrent]\n" 49 /* With that in place, the fault from the round-to-minf fp 50 insn will arrive either at the "lda 4" insn (bad) or one 51 past that (good). This places the correct fixup in %0. */ 52 " lda %[fix], 0\n" 53 " cvttq/svm $f31,$f31\n" 54 " lda %[fix], 4" 55 : [fix] "=r" (opDEC_fix) 56 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 57 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 58 59 if (opDEC_fix) 60 printk("opDEC fixup enabled.\n"); 61 } 62 63 void 64 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 65 { 66 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 67 regs->pc, regs->r26, regs->ps, print_tainted()); 68 print_symbol("pc is at %s\n", regs->pc); 69 print_symbol("ra is at %s\n", regs->r26 ); 70 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 71 regs->r0, regs->r1, regs->r2); 72 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 73 regs->r3, regs->r4, regs->r5); 74 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 75 regs->r6, regs->r7, regs->r8); 76 77 if (r9_15) { 78 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 79 r9_15[9], r9_15[10], r9_15[11]); 80 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 81 r9_15[12], r9_15[13], r9_15[14]); 82 printk("s6 = %016lx\n", r9_15[15]); 83 } 84 85 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 86 regs->r16, regs->r17, regs->r18); 87 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 88 regs->r19, regs->r20, regs->r21); 89 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 90 regs->r22, regs->r23, regs->r24); 91 printk("t11= %016lx pv = %016lx at = %016lx\n", 92 regs->r25, regs->r27, regs->r28); 93 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 94 #if 0 95 __halt(); 96 #endif 97 } 98 99 #if 0 100 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 101 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 102 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 103 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 104 #endif 105 106 static void 107 dik_show_code(unsigned int *pc) 108 { 109 long i; 110 111 printk("Code:"); 112 for (i = -6; i < 2; i++) { 113 unsigned int insn; 114 if (__get_user(insn, (unsigned int __user *)pc + i)) 115 break; 116 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 117 } 118 printk("\n"); 119 } 120 121 static void 122 dik_show_trace(unsigned long *sp) 123 { 124 long i = 0; 125 printk("Trace:\n"); 126 while (0x1ff8 & (unsigned long) sp) { 127 extern char _stext[], _etext[]; 128 unsigned long tmp = *sp; 129 sp++; 130 if (tmp < (unsigned long) &_stext) 131 continue; 132 if (tmp >= (unsigned long) &_etext) 133 continue; 134 printk("[<%lx>]", tmp); 135 print_symbol(" %s", tmp); 136 printk("\n"); 137 if (i > 40) { 138 printk(" ..."); 139 break; 140 } 141 } 142 printk("\n"); 143 } 144 145 static int kstack_depth_to_print = 24; 146 147 void show_stack(struct task_struct *task, unsigned long *sp) 148 { 149 unsigned long *stack; 150 int i; 151 152 /* 153 * debugging aid: "show_stack(NULL);" prints the 154 * back trace for this cpu. 155 */ 156 if(sp==NULL) 157 sp=(unsigned long*)&sp; 158 159 stack = sp; 160 for(i=0; i < kstack_depth_to_print; i++) { 161 if (((long) stack & (THREAD_SIZE-1)) == 0) 162 break; 163 if (i && ((i % 4) == 0)) 164 printk("\n "); 165 printk("%016lx ", *stack++); 166 } 167 printk("\n"); 168 dik_show_trace(sp); 169 } 170 171 void dump_stack(void) 172 { 173 show_stack(NULL, NULL); 174 } 175 176 EXPORT_SYMBOL(dump_stack); 177 178 void 179 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 180 { 181 if (regs->ps & 8) 182 return; 183 #ifdef CONFIG_SMP 184 printk("CPU %d ", hard_smp_processor_id()); 185 #endif 186 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 187 dik_show_regs(regs, r9_15); 188 add_taint(TAINT_DIE); 189 dik_show_trace((unsigned long *)(regs+1)); 190 dik_show_code((unsigned int *)regs->pc); 191 192 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 193 printk("die_if_kernel recursion detected.\n"); 194 local_irq_enable(); 195 while (1); 196 } 197 do_exit(SIGSEGV); 198 } 199 200 #ifndef CONFIG_MATHEMU 201 static long dummy_emul(void) { return 0; } 202 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 203 = (void *)dummy_emul; 204 long (*alpha_fp_emul) (unsigned long pc) 205 = (void *)dummy_emul; 206 #else 207 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 208 long alpha_fp_emul (unsigned long pc); 209 #endif 210 211 asmlinkage void 212 do_entArith(unsigned long summary, unsigned long write_mask, 213 struct pt_regs *regs) 214 { 215 long si_code = FPE_FLTINV; 216 siginfo_t info; 217 218 if (summary & 1) { 219 /* Software-completion summary bit is set, so try to 220 emulate the instruction. If the processor supports 221 precise exceptions, we don't have to search. */ 222 if (!amask(AMASK_PRECISE_TRAP)) 223 si_code = alpha_fp_emul(regs->pc - 4); 224 else 225 si_code = alpha_fp_emul_imprecise(regs, write_mask); 226 if (si_code == 0) 227 return; 228 } 229 die_if_kernel("Arithmetic fault", regs, 0, NULL); 230 231 info.si_signo = SIGFPE; 232 info.si_errno = 0; 233 info.si_code = si_code; 234 info.si_addr = (void __user *) regs->pc; 235 send_sig_info(SIGFPE, &info, current); 236 } 237 238 asmlinkage void 239 do_entIF(unsigned long type, struct pt_regs *regs) 240 { 241 siginfo_t info; 242 int signo, code; 243 244 if ((regs->ps & ~IPL_MAX) == 0) { 245 if (type == 1) { 246 const unsigned int *data 247 = (const unsigned int *) regs->pc; 248 printk("Kernel bug at %s:%d\n", 249 (const char *)(data[1] | (long)data[2] << 32), 250 data[0]); 251 } 252 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 253 regs, type, NULL); 254 } 255 256 switch (type) { 257 case 0: /* breakpoint */ 258 info.si_signo = SIGTRAP; 259 info.si_errno = 0; 260 info.si_code = TRAP_BRKPT; 261 info.si_trapno = 0; 262 info.si_addr = (void __user *) regs->pc; 263 264 if (ptrace_cancel_bpt(current)) { 265 regs->pc -= 4; /* make pc point to former bpt */ 266 } 267 268 send_sig_info(SIGTRAP, &info, current); 269 return; 270 271 case 1: /* bugcheck */ 272 info.si_signo = SIGTRAP; 273 info.si_errno = 0; 274 info.si_code = __SI_FAULT; 275 info.si_addr = (void __user *) regs->pc; 276 info.si_trapno = 0; 277 send_sig_info(SIGTRAP, &info, current); 278 return; 279 280 case 2: /* gentrap */ 281 info.si_addr = (void __user *) regs->pc; 282 info.si_trapno = regs->r16; 283 switch ((long) regs->r16) { 284 case GEN_INTOVF: 285 signo = SIGFPE; 286 code = FPE_INTOVF; 287 break; 288 case GEN_INTDIV: 289 signo = SIGFPE; 290 code = FPE_INTDIV; 291 break; 292 case GEN_FLTOVF: 293 signo = SIGFPE; 294 code = FPE_FLTOVF; 295 break; 296 case GEN_FLTDIV: 297 signo = SIGFPE; 298 code = FPE_FLTDIV; 299 break; 300 case GEN_FLTUND: 301 signo = SIGFPE; 302 code = FPE_FLTUND; 303 break; 304 case GEN_FLTINV: 305 signo = SIGFPE; 306 code = FPE_FLTINV; 307 break; 308 case GEN_FLTINE: 309 signo = SIGFPE; 310 code = FPE_FLTRES; 311 break; 312 case GEN_ROPRAND: 313 signo = SIGFPE; 314 code = __SI_FAULT; 315 break; 316 317 case GEN_DECOVF: 318 case GEN_DECDIV: 319 case GEN_DECINV: 320 case GEN_ASSERTERR: 321 case GEN_NULPTRERR: 322 case GEN_STKOVF: 323 case GEN_STRLENERR: 324 case GEN_SUBSTRERR: 325 case GEN_RANGERR: 326 case GEN_SUBRNG: 327 case GEN_SUBRNG1: 328 case GEN_SUBRNG2: 329 case GEN_SUBRNG3: 330 case GEN_SUBRNG4: 331 case GEN_SUBRNG5: 332 case GEN_SUBRNG6: 333 case GEN_SUBRNG7: 334 default: 335 signo = SIGTRAP; 336 code = __SI_FAULT; 337 break; 338 } 339 340 info.si_signo = signo; 341 info.si_errno = 0; 342 info.si_code = code; 343 info.si_addr = (void __user *) regs->pc; 344 send_sig_info(signo, &info, current); 345 return; 346 347 case 4: /* opDEC */ 348 if (implver() == IMPLVER_EV4) { 349 long si_code; 350 351 /* The some versions of SRM do not handle 352 the opDEC properly - they return the PC of the 353 opDEC fault, not the instruction after as the 354 Alpha architecture requires. Here we fix it up. 355 We do this by intentionally causing an opDEC 356 fault during the boot sequence and testing if 357 we get the correct PC. If not, we set a flag 358 to correct it every time through. */ 359 regs->pc += opDEC_fix; 360 361 /* EV4 does not implement anything except normal 362 rounding. Everything else will come here as 363 an illegal instruction. Emulate them. */ 364 si_code = alpha_fp_emul(regs->pc - 4); 365 if (si_code == 0) 366 return; 367 if (si_code > 0) { 368 info.si_signo = SIGFPE; 369 info.si_errno = 0; 370 info.si_code = si_code; 371 info.si_addr = (void __user *) regs->pc; 372 send_sig_info(SIGFPE, &info, current); 373 return; 374 } 375 } 376 break; 377 378 case 3: /* FEN fault */ 379 /* Irritating users can call PAL_clrfen to disable the 380 FPU for the process. The kernel will then trap in 381 do_switch_stack and undo_switch_stack when we try 382 to save and restore the FP registers. 383 384 Given that GCC by default generates code that uses the 385 FP registers, PAL_clrfen is not useful except for DoS 386 attacks. So turn the bleeding FPU back on and be done 387 with it. */ 388 current_thread_info()->pcb.flags |= 1; 389 __reload_thread(¤t_thread_info()->pcb); 390 return; 391 392 case 5: /* illoc */ 393 default: /* unexpected instruction-fault type */ 394 ; 395 } 396 397 info.si_signo = SIGILL; 398 info.si_errno = 0; 399 info.si_code = ILL_ILLOPC; 400 info.si_addr = (void __user *) regs->pc; 401 send_sig_info(SIGILL, &info, current); 402 } 403 404 /* There is an ifdef in the PALcode in MILO that enables a 405 "kernel debugging entry point" as an unprivileged call_pal. 406 407 We don't want to have anything to do with it, but unfortunately 408 several versions of MILO included in distributions have it enabled, 409 and if we don't put something on the entry point we'll oops. */ 410 411 asmlinkage void 412 do_entDbg(struct pt_regs *regs) 413 { 414 siginfo_t info; 415 416 die_if_kernel("Instruction fault", regs, 0, NULL); 417 418 info.si_signo = SIGILL; 419 info.si_errno = 0; 420 info.si_code = ILL_ILLOPC; 421 info.si_addr = (void __user *) regs->pc; 422 force_sig_info(SIGILL, &info, current); 423 } 424 425 426 /* 427 * entUna has a different register layout to be reasonably simple. It 428 * needs access to all the integer registers (the kernel doesn't use 429 * fp-regs), and it needs to have them in order for simpler access. 430 * 431 * Due to the non-standard register layout (and because we don't want 432 * to handle floating-point regs), user-mode unaligned accesses are 433 * handled separately by do_entUnaUser below. 434 * 435 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 436 * on a gp-register unaligned load/store, something is _very_ wrong 437 * in the kernel anyway.. 438 */ 439 struct allregs { 440 unsigned long regs[32]; 441 unsigned long ps, pc, gp, a0, a1, a2; 442 }; 443 444 struct unaligned_stat { 445 unsigned long count, va, pc; 446 } unaligned[2]; 447 448 449 /* Macro for exception fixup code to access integer registers. */ 450 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 451 452 453 asmlinkage void 454 do_entUna(void * va, unsigned long opcode, unsigned long reg, 455 struct allregs *regs) 456 { 457 long error, tmp1, tmp2, tmp3, tmp4; 458 unsigned long pc = regs->pc - 4; 459 unsigned long *_regs = regs->regs; 460 const struct exception_table_entry *fixup; 461 462 unaligned[0].count++; 463 unaligned[0].va = (unsigned long) va; 464 unaligned[0].pc = pc; 465 466 /* We don't want to use the generic get/put unaligned macros as 467 we want to trap exceptions. Only if we actually get an 468 exception will we decide whether we should have caught it. */ 469 470 switch (opcode) { 471 case 0x0c: /* ldwu */ 472 __asm__ __volatile__( 473 "1: ldq_u %1,0(%3)\n" 474 "2: ldq_u %2,1(%3)\n" 475 " extwl %1,%3,%1\n" 476 " extwh %2,%3,%2\n" 477 "3:\n" 478 ".section __ex_table,\"a\"\n" 479 " .long 1b - .\n" 480 " lda %1,3b-1b(%0)\n" 481 " .long 2b - .\n" 482 " lda %2,3b-2b(%0)\n" 483 ".previous" 484 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 485 : "r"(va), "0"(0)); 486 if (error) 487 goto got_exception; 488 una_reg(reg) = tmp1|tmp2; 489 return; 490 491 case 0x28: /* ldl */ 492 __asm__ __volatile__( 493 "1: ldq_u %1,0(%3)\n" 494 "2: ldq_u %2,3(%3)\n" 495 " extll %1,%3,%1\n" 496 " extlh %2,%3,%2\n" 497 "3:\n" 498 ".section __ex_table,\"a\"\n" 499 " .long 1b - .\n" 500 " lda %1,3b-1b(%0)\n" 501 " .long 2b - .\n" 502 " lda %2,3b-2b(%0)\n" 503 ".previous" 504 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 505 : "r"(va), "0"(0)); 506 if (error) 507 goto got_exception; 508 una_reg(reg) = (int)(tmp1|tmp2); 509 return; 510 511 case 0x29: /* ldq */ 512 __asm__ __volatile__( 513 "1: ldq_u %1,0(%3)\n" 514 "2: ldq_u %2,7(%3)\n" 515 " extql %1,%3,%1\n" 516 " extqh %2,%3,%2\n" 517 "3:\n" 518 ".section __ex_table,\"a\"\n" 519 " .long 1b - .\n" 520 " lda %1,3b-1b(%0)\n" 521 " .long 2b - .\n" 522 " lda %2,3b-2b(%0)\n" 523 ".previous" 524 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 525 : "r"(va), "0"(0)); 526 if (error) 527 goto got_exception; 528 una_reg(reg) = tmp1|tmp2; 529 return; 530 531 /* Note that the store sequences do not indicate that they change 532 memory because it _should_ be affecting nothing in this context. 533 (Otherwise we have other, much larger, problems.) */ 534 case 0x0d: /* stw */ 535 __asm__ __volatile__( 536 "1: ldq_u %2,1(%5)\n" 537 "2: ldq_u %1,0(%5)\n" 538 " inswh %6,%5,%4\n" 539 " inswl %6,%5,%3\n" 540 " mskwh %2,%5,%2\n" 541 " mskwl %1,%5,%1\n" 542 " or %2,%4,%2\n" 543 " or %1,%3,%1\n" 544 "3: stq_u %2,1(%5)\n" 545 "4: stq_u %1,0(%5)\n" 546 "5:\n" 547 ".section __ex_table,\"a\"\n" 548 " .long 1b - .\n" 549 " lda %2,5b-1b(%0)\n" 550 " .long 2b - .\n" 551 " lda %1,5b-2b(%0)\n" 552 " .long 3b - .\n" 553 " lda $31,5b-3b(%0)\n" 554 " .long 4b - .\n" 555 " lda $31,5b-4b(%0)\n" 556 ".previous" 557 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 558 "=&r"(tmp3), "=&r"(tmp4) 559 : "r"(va), "r"(una_reg(reg)), "0"(0)); 560 if (error) 561 goto got_exception; 562 return; 563 564 case 0x2c: /* stl */ 565 __asm__ __volatile__( 566 "1: ldq_u %2,3(%5)\n" 567 "2: ldq_u %1,0(%5)\n" 568 " inslh %6,%5,%4\n" 569 " insll %6,%5,%3\n" 570 " msklh %2,%5,%2\n" 571 " mskll %1,%5,%1\n" 572 " or %2,%4,%2\n" 573 " or %1,%3,%1\n" 574 "3: stq_u %2,3(%5)\n" 575 "4: stq_u %1,0(%5)\n" 576 "5:\n" 577 ".section __ex_table,\"a\"\n" 578 " .long 1b - .\n" 579 " lda %2,5b-1b(%0)\n" 580 " .long 2b - .\n" 581 " lda %1,5b-2b(%0)\n" 582 " .long 3b - .\n" 583 " lda $31,5b-3b(%0)\n" 584 " .long 4b - .\n" 585 " lda $31,5b-4b(%0)\n" 586 ".previous" 587 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 588 "=&r"(tmp3), "=&r"(tmp4) 589 : "r"(va), "r"(una_reg(reg)), "0"(0)); 590 if (error) 591 goto got_exception; 592 return; 593 594 case 0x2d: /* stq */ 595 __asm__ __volatile__( 596 "1: ldq_u %2,7(%5)\n" 597 "2: ldq_u %1,0(%5)\n" 598 " insqh %6,%5,%4\n" 599 " insql %6,%5,%3\n" 600 " mskqh %2,%5,%2\n" 601 " mskql %1,%5,%1\n" 602 " or %2,%4,%2\n" 603 " or %1,%3,%1\n" 604 "3: stq_u %2,7(%5)\n" 605 "4: stq_u %1,0(%5)\n" 606 "5:\n" 607 ".section __ex_table,\"a\"\n\t" 608 " .long 1b - .\n" 609 " lda %2,5b-1b(%0)\n" 610 " .long 2b - .\n" 611 " lda %1,5b-2b(%0)\n" 612 " .long 3b - .\n" 613 " lda $31,5b-3b(%0)\n" 614 " .long 4b - .\n" 615 " lda $31,5b-4b(%0)\n" 616 ".previous" 617 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 618 "=&r"(tmp3), "=&r"(tmp4) 619 : "r"(va), "r"(una_reg(reg)), "0"(0)); 620 if (error) 621 goto got_exception; 622 return; 623 } 624 625 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 626 pc, va, opcode, reg); 627 do_exit(SIGSEGV); 628 629 got_exception: 630 /* Ok, we caught the exception, but we don't want it. Is there 631 someone to pass it along to? */ 632 if ((fixup = search_exception_tables(pc)) != 0) { 633 unsigned long newpc; 634 newpc = fixup_exception(una_reg, fixup, pc); 635 636 printk("Forwarding unaligned exception at %lx (%lx)\n", 637 pc, newpc); 638 639 regs->pc = newpc; 640 return; 641 } 642 643 /* 644 * Yikes! No one to forward the exception to. 645 * Since the registers are in a weird format, dump them ourselves. 646 */ 647 648 printk("%s(%d): unhandled unaligned exception\n", 649 current->comm, task_pid_nr(current)); 650 651 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 652 pc, una_reg(26), regs->ps); 653 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 654 una_reg(0), una_reg(1), una_reg(2)); 655 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 656 una_reg(3), una_reg(4), una_reg(5)); 657 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 658 una_reg(6), una_reg(7), una_reg(8)); 659 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 660 una_reg(9), una_reg(10), una_reg(11)); 661 printk("r12= %016lx r13= %016lx r14= %016lx\n", 662 una_reg(12), una_reg(13), una_reg(14)); 663 printk("r15= %016lx\n", una_reg(15)); 664 printk("r16= %016lx r17= %016lx r18= %016lx\n", 665 una_reg(16), una_reg(17), una_reg(18)); 666 printk("r19= %016lx r20= %016lx r21= %016lx\n", 667 una_reg(19), una_reg(20), una_reg(21)); 668 printk("r22= %016lx r23= %016lx r24= %016lx\n", 669 una_reg(22), una_reg(23), una_reg(24)); 670 printk("r25= %016lx r27= %016lx r28= %016lx\n", 671 una_reg(25), una_reg(27), una_reg(28)); 672 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 673 674 dik_show_code((unsigned int *)pc); 675 dik_show_trace((unsigned long *)(regs+1)); 676 677 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 678 printk("die_if_kernel recursion detected.\n"); 679 local_irq_enable(); 680 while (1); 681 } 682 do_exit(SIGSEGV); 683 } 684 685 /* 686 * Convert an s-floating point value in memory format to the 687 * corresponding value in register format. The exponent 688 * needs to be remapped to preserve non-finite values 689 * (infinities, not-a-numbers, denormals). 690 */ 691 static inline unsigned long 692 s_mem_to_reg (unsigned long s_mem) 693 { 694 unsigned long frac = (s_mem >> 0) & 0x7fffff; 695 unsigned long sign = (s_mem >> 31) & 0x1; 696 unsigned long exp_msb = (s_mem >> 30) & 0x1; 697 unsigned long exp_low = (s_mem >> 23) & 0x7f; 698 unsigned long exp; 699 700 exp = (exp_msb << 10) | exp_low; /* common case */ 701 if (exp_msb) { 702 if (exp_low == 0x7f) { 703 exp = 0x7ff; 704 } 705 } else { 706 if (exp_low == 0x00) { 707 exp = 0x000; 708 } else { 709 exp |= (0x7 << 7); 710 } 711 } 712 return (sign << 63) | (exp << 52) | (frac << 29); 713 } 714 715 /* 716 * Convert an s-floating point value in register format to the 717 * corresponding value in memory format. 718 */ 719 static inline unsigned long 720 s_reg_to_mem (unsigned long s_reg) 721 { 722 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 723 } 724 725 /* 726 * Handle user-level unaligned fault. Handling user-level unaligned 727 * faults is *extremely* slow and produces nasty messages. A user 728 * program *should* fix unaligned faults ASAP. 729 * 730 * Notice that we have (almost) the regular kernel stack layout here, 731 * so finding the appropriate registers is a little more difficult 732 * than in the kernel case. 733 * 734 * Finally, we handle regular integer load/stores only. In 735 * particular, load-linked/store-conditionally and floating point 736 * load/stores are not supported. The former make no sense with 737 * unaligned faults (they are guaranteed to fail) and I don't think 738 * the latter will occur in any decent program. 739 * 740 * Sigh. We *do* have to handle some FP operations, because GCC will 741 * uses them as temporary storage for integer memory to memory copies. 742 * However, we need to deal with stt/ldt and sts/lds only. 743 */ 744 745 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 746 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 747 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 748 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 749 750 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 751 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 752 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 753 754 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 755 756 static int unauser_reg_offsets[32] = { 757 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 758 /* r9 ... r15 are stored in front of regs. */ 759 -56, -48, -40, -32, -24, -16, -8, 760 R(r16), R(r17), R(r18), 761 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 762 R(r27), R(r28), R(gp), 763 0, 0 764 }; 765 766 #undef R 767 768 asmlinkage void 769 do_entUnaUser(void __user * va, unsigned long opcode, 770 unsigned long reg, struct pt_regs *regs) 771 { 772 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 773 774 unsigned long tmp1, tmp2, tmp3, tmp4; 775 unsigned long fake_reg, *reg_addr = &fake_reg; 776 siginfo_t info; 777 long error; 778 779 /* Check the UAC bits to decide what the user wants us to do 780 with the unaliged access. */ 781 782 if (!test_thread_flag (TIF_UAC_NOPRINT)) { 783 if (__ratelimit(&ratelimit)) { 784 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 785 current->comm, task_pid_nr(current), 786 regs->pc - 4, va, opcode, reg); 787 } 788 } 789 if (test_thread_flag (TIF_UAC_SIGBUS)) 790 goto give_sigbus; 791 /* Not sure why you'd want to use this, but... */ 792 if (test_thread_flag (TIF_UAC_NOFIX)) 793 return; 794 795 /* Don't bother reading ds in the access check since we already 796 know that this came from the user. Also rely on the fact that 797 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 798 if (!__access_ok((unsigned long)va, 0, USER_DS)) 799 goto give_sigsegv; 800 801 ++unaligned[1].count; 802 unaligned[1].va = (unsigned long)va; 803 unaligned[1].pc = regs->pc - 4; 804 805 if ((1L << opcode) & OP_INT_MASK) { 806 /* it's an integer load/store */ 807 if (reg < 30) { 808 reg_addr = (unsigned long *) 809 ((char *)regs + unauser_reg_offsets[reg]); 810 } else if (reg == 30) { 811 /* usp in PAL regs */ 812 fake_reg = rdusp(); 813 } else { 814 /* zero "register" */ 815 fake_reg = 0; 816 } 817 } 818 819 /* We don't want to use the generic get/put unaligned macros as 820 we want to trap exceptions. Only if we actually get an 821 exception will we decide whether we should have caught it. */ 822 823 switch (opcode) { 824 case 0x0c: /* ldwu */ 825 __asm__ __volatile__( 826 "1: ldq_u %1,0(%3)\n" 827 "2: ldq_u %2,1(%3)\n" 828 " extwl %1,%3,%1\n" 829 " extwh %2,%3,%2\n" 830 "3:\n" 831 ".section __ex_table,\"a\"\n" 832 " .long 1b - .\n" 833 " lda %1,3b-1b(%0)\n" 834 " .long 2b - .\n" 835 " lda %2,3b-2b(%0)\n" 836 ".previous" 837 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 838 : "r"(va), "0"(0)); 839 if (error) 840 goto give_sigsegv; 841 *reg_addr = tmp1|tmp2; 842 break; 843 844 case 0x22: /* lds */ 845 __asm__ __volatile__( 846 "1: ldq_u %1,0(%3)\n" 847 "2: ldq_u %2,3(%3)\n" 848 " extll %1,%3,%1\n" 849 " extlh %2,%3,%2\n" 850 "3:\n" 851 ".section __ex_table,\"a\"\n" 852 " .long 1b - .\n" 853 " lda %1,3b-1b(%0)\n" 854 " .long 2b - .\n" 855 " lda %2,3b-2b(%0)\n" 856 ".previous" 857 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 858 : "r"(va), "0"(0)); 859 if (error) 860 goto give_sigsegv; 861 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 862 return; 863 864 case 0x23: /* ldt */ 865 __asm__ __volatile__( 866 "1: ldq_u %1,0(%3)\n" 867 "2: ldq_u %2,7(%3)\n" 868 " extql %1,%3,%1\n" 869 " extqh %2,%3,%2\n" 870 "3:\n" 871 ".section __ex_table,\"a\"\n" 872 " .long 1b - .\n" 873 " lda %1,3b-1b(%0)\n" 874 " .long 2b - .\n" 875 " lda %2,3b-2b(%0)\n" 876 ".previous" 877 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 878 : "r"(va), "0"(0)); 879 if (error) 880 goto give_sigsegv; 881 alpha_write_fp_reg(reg, tmp1|tmp2); 882 return; 883 884 case 0x28: /* ldl */ 885 __asm__ __volatile__( 886 "1: ldq_u %1,0(%3)\n" 887 "2: ldq_u %2,3(%3)\n" 888 " extll %1,%3,%1\n" 889 " extlh %2,%3,%2\n" 890 "3:\n" 891 ".section __ex_table,\"a\"\n" 892 " .long 1b - .\n" 893 " lda %1,3b-1b(%0)\n" 894 " .long 2b - .\n" 895 " lda %2,3b-2b(%0)\n" 896 ".previous" 897 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 898 : "r"(va), "0"(0)); 899 if (error) 900 goto give_sigsegv; 901 *reg_addr = (int)(tmp1|tmp2); 902 break; 903 904 case 0x29: /* ldq */ 905 __asm__ __volatile__( 906 "1: ldq_u %1,0(%3)\n" 907 "2: ldq_u %2,7(%3)\n" 908 " extql %1,%3,%1\n" 909 " extqh %2,%3,%2\n" 910 "3:\n" 911 ".section __ex_table,\"a\"\n" 912 " .long 1b - .\n" 913 " lda %1,3b-1b(%0)\n" 914 " .long 2b - .\n" 915 " lda %2,3b-2b(%0)\n" 916 ".previous" 917 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 918 : "r"(va), "0"(0)); 919 if (error) 920 goto give_sigsegv; 921 *reg_addr = tmp1|tmp2; 922 break; 923 924 /* Note that the store sequences do not indicate that they change 925 memory because it _should_ be affecting nothing in this context. 926 (Otherwise we have other, much larger, problems.) */ 927 case 0x0d: /* stw */ 928 __asm__ __volatile__( 929 "1: ldq_u %2,1(%5)\n" 930 "2: ldq_u %1,0(%5)\n" 931 " inswh %6,%5,%4\n" 932 " inswl %6,%5,%3\n" 933 " mskwh %2,%5,%2\n" 934 " mskwl %1,%5,%1\n" 935 " or %2,%4,%2\n" 936 " or %1,%3,%1\n" 937 "3: stq_u %2,1(%5)\n" 938 "4: stq_u %1,0(%5)\n" 939 "5:\n" 940 ".section __ex_table,\"a\"\n" 941 " .long 1b - .\n" 942 " lda %2,5b-1b(%0)\n" 943 " .long 2b - .\n" 944 " lda %1,5b-2b(%0)\n" 945 " .long 3b - .\n" 946 " lda $31,5b-3b(%0)\n" 947 " .long 4b - .\n" 948 " lda $31,5b-4b(%0)\n" 949 ".previous" 950 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 951 "=&r"(tmp3), "=&r"(tmp4) 952 : "r"(va), "r"(*reg_addr), "0"(0)); 953 if (error) 954 goto give_sigsegv; 955 return; 956 957 case 0x26: /* sts */ 958 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 959 /* FALLTHRU */ 960 961 case 0x2c: /* stl */ 962 __asm__ __volatile__( 963 "1: ldq_u %2,3(%5)\n" 964 "2: ldq_u %1,0(%5)\n" 965 " inslh %6,%5,%4\n" 966 " insll %6,%5,%3\n" 967 " msklh %2,%5,%2\n" 968 " mskll %1,%5,%1\n" 969 " or %2,%4,%2\n" 970 " or %1,%3,%1\n" 971 "3: stq_u %2,3(%5)\n" 972 "4: stq_u %1,0(%5)\n" 973 "5:\n" 974 ".section __ex_table,\"a\"\n" 975 " .long 1b - .\n" 976 " lda %2,5b-1b(%0)\n" 977 " .long 2b - .\n" 978 " lda %1,5b-2b(%0)\n" 979 " .long 3b - .\n" 980 " lda $31,5b-3b(%0)\n" 981 " .long 4b - .\n" 982 " lda $31,5b-4b(%0)\n" 983 ".previous" 984 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 985 "=&r"(tmp3), "=&r"(tmp4) 986 : "r"(va), "r"(*reg_addr), "0"(0)); 987 if (error) 988 goto give_sigsegv; 989 return; 990 991 case 0x27: /* stt */ 992 fake_reg = alpha_read_fp_reg(reg); 993 /* FALLTHRU */ 994 995 case 0x2d: /* stq */ 996 __asm__ __volatile__( 997 "1: ldq_u %2,7(%5)\n" 998 "2: ldq_u %1,0(%5)\n" 999 " insqh %6,%5,%4\n" 1000 " insql %6,%5,%3\n" 1001 " mskqh %2,%5,%2\n" 1002 " mskql %1,%5,%1\n" 1003 " or %2,%4,%2\n" 1004 " or %1,%3,%1\n" 1005 "3: stq_u %2,7(%5)\n" 1006 "4: stq_u %1,0(%5)\n" 1007 "5:\n" 1008 ".section __ex_table,\"a\"\n\t" 1009 " .long 1b - .\n" 1010 " lda %2,5b-1b(%0)\n" 1011 " .long 2b - .\n" 1012 " lda %1,5b-2b(%0)\n" 1013 " .long 3b - .\n" 1014 " lda $31,5b-3b(%0)\n" 1015 " .long 4b - .\n" 1016 " lda $31,5b-4b(%0)\n" 1017 ".previous" 1018 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 1019 "=&r"(tmp3), "=&r"(tmp4) 1020 : "r"(va), "r"(*reg_addr), "0"(0)); 1021 if (error) 1022 goto give_sigsegv; 1023 return; 1024 1025 default: 1026 /* What instruction were you trying to use, exactly? */ 1027 goto give_sigbus; 1028 } 1029 1030 /* Only integer loads should get here; everyone else returns early. */ 1031 if (reg == 30) 1032 wrusp(fake_reg); 1033 return; 1034 1035 give_sigsegv: 1036 regs->pc -= 4; /* make pc point to faulting insn */ 1037 info.si_signo = SIGSEGV; 1038 info.si_errno = 0; 1039 1040 /* We need to replicate some of the logic in mm/fault.c, 1041 since we don't have access to the fault code in the 1042 exception handling return path. */ 1043 if (!__access_ok((unsigned long)va, 0, USER_DS)) 1044 info.si_code = SEGV_ACCERR; 1045 else { 1046 struct mm_struct *mm = current->mm; 1047 down_read(&mm->mmap_sem); 1048 if (find_vma(mm, (unsigned long)va)) 1049 info.si_code = SEGV_ACCERR; 1050 else 1051 info.si_code = SEGV_MAPERR; 1052 up_read(&mm->mmap_sem); 1053 } 1054 info.si_addr = va; 1055 send_sig_info(SIGSEGV, &info, current); 1056 return; 1057 1058 give_sigbus: 1059 regs->pc -= 4; 1060 info.si_signo = SIGBUS; 1061 info.si_errno = 0; 1062 info.si_code = BUS_ADRALN; 1063 info.si_addr = va; 1064 send_sig_info(SIGBUS, &info, current); 1065 return; 1066 } 1067 1068 void __cpuinit 1069 trap_init(void) 1070 { 1071 /* Tell PAL-code what global pointer we want in the kernel. */ 1072 register unsigned long gptr __asm__("$29"); 1073 wrkgp(gptr); 1074 1075 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 1076 a bug in the handling of the opDEC fault. Fix it up if so. */ 1077 if (implver() == IMPLVER_EV4) 1078 opDEC_check(); 1079 1080 wrent(entArith, 1); 1081 wrent(entMM, 2); 1082 wrent(entIF, 3); 1083 wrent(entUna, 4); 1084 wrent(entSys, 5); 1085 wrent(entDbg, 6); 1086 } 1087