1 /* 2 * arch/alpha/kernel/traps.c 3 * 4 * (C) Copyright 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file initializes the trap entry points 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/mm.h> 13 #include <linux/sched.h> 14 #include <linux/tty.h> 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/kallsyms.h> 18 #include <linux/ratelimit.h> 19 20 #include <asm/gentrap.h> 21 #include <asm/uaccess.h> 22 #include <asm/unaligned.h> 23 #include <asm/sysinfo.h> 24 #include <asm/hwrpb.h> 25 #include <asm/mmu_context.h> 26 #include <asm/special_insns.h> 27 28 #include "proto.h" 29 30 /* Work-around for some SRMs which mishandle opDEC faults. */ 31 32 static int opDEC_fix; 33 34 static void 35 opDEC_check(void) 36 { 37 __asm__ __volatile__ ( 38 /* Load the address of... */ 39 " br $16, 1f\n" 40 /* A stub instruction fault handler. Just add 4 to the 41 pc and continue. */ 42 " ldq $16, 8($sp)\n" 43 " addq $16, 4, $16\n" 44 " stq $16, 8($sp)\n" 45 " call_pal %[rti]\n" 46 /* Install the instruction fault handler. */ 47 "1: lda $17, 3\n" 48 " call_pal %[wrent]\n" 49 /* With that in place, the fault from the round-to-minf fp 50 insn will arrive either at the "lda 4" insn (bad) or one 51 past that (good). This places the correct fixup in %0. */ 52 " lda %[fix], 0\n" 53 " cvttq/svm $f31,$f31\n" 54 " lda %[fix], 4" 55 : [fix] "=r" (opDEC_fix) 56 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 57 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 58 59 if (opDEC_fix) 60 printk("opDEC fixup enabled.\n"); 61 } 62 63 void 64 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 65 { 66 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 67 regs->pc, regs->r26, regs->ps, print_tainted()); 68 printk("pc is at %pSR\n", (void *)regs->pc); 69 printk("ra is at %pSR\n", (void *)regs->r26); 70 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 71 regs->r0, regs->r1, regs->r2); 72 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 73 regs->r3, regs->r4, regs->r5); 74 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 75 regs->r6, regs->r7, regs->r8); 76 77 if (r9_15) { 78 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 79 r9_15[9], r9_15[10], r9_15[11]); 80 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 81 r9_15[12], r9_15[13], r9_15[14]); 82 printk("s6 = %016lx\n", r9_15[15]); 83 } 84 85 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 86 regs->r16, regs->r17, regs->r18); 87 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 88 regs->r19, regs->r20, regs->r21); 89 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 90 regs->r22, regs->r23, regs->r24); 91 printk("t11= %016lx pv = %016lx at = %016lx\n", 92 regs->r25, regs->r27, regs->r28); 93 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 94 #if 0 95 __halt(); 96 #endif 97 } 98 99 #if 0 100 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 101 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 102 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 103 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 104 #endif 105 106 static void 107 dik_show_code(unsigned int *pc) 108 { 109 long i; 110 111 printk("Code:"); 112 for (i = -6; i < 2; i++) { 113 unsigned int insn; 114 if (__get_user(insn, (unsigned int __user *)pc + i)) 115 break; 116 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 117 } 118 printk("\n"); 119 } 120 121 static void 122 dik_show_trace(unsigned long *sp) 123 { 124 long i = 0; 125 printk("Trace:\n"); 126 while (0x1ff8 & (unsigned long) sp) { 127 extern char _stext[], _etext[]; 128 unsigned long tmp = *sp; 129 sp++; 130 if (tmp < (unsigned long) &_stext) 131 continue; 132 if (tmp >= (unsigned long) &_etext) 133 continue; 134 printk("[<%lx>] %pSR\n", tmp, (void *)tmp); 135 if (i > 40) { 136 printk(" ..."); 137 break; 138 } 139 } 140 printk("\n"); 141 } 142 143 static int kstack_depth_to_print = 24; 144 145 void show_stack(struct task_struct *task, unsigned long *sp) 146 { 147 unsigned long *stack; 148 int i; 149 150 /* 151 * debugging aid: "show_stack(NULL);" prints the 152 * back trace for this cpu. 153 */ 154 if(sp==NULL) 155 sp=(unsigned long*)&sp; 156 157 stack = sp; 158 for(i=0; i < kstack_depth_to_print; i++) { 159 if (((long) stack & (THREAD_SIZE-1)) == 0) 160 break; 161 if (i && ((i % 4) == 0)) 162 printk("\n "); 163 printk("%016lx ", *stack++); 164 } 165 printk("\n"); 166 dik_show_trace(sp); 167 } 168 169 void 170 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 171 { 172 if (regs->ps & 8) 173 return; 174 #ifdef CONFIG_SMP 175 printk("CPU %d ", hard_smp_processor_id()); 176 #endif 177 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 178 dik_show_regs(regs, r9_15); 179 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 180 dik_show_trace((unsigned long *)(regs+1)); 181 dik_show_code((unsigned int *)regs->pc); 182 183 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 184 printk("die_if_kernel recursion detected.\n"); 185 local_irq_enable(); 186 while (1); 187 } 188 do_exit(SIGSEGV); 189 } 190 191 #ifndef CONFIG_MATHEMU 192 static long dummy_emul(void) { return 0; } 193 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 194 = (void *)dummy_emul; 195 long (*alpha_fp_emul) (unsigned long pc) 196 = (void *)dummy_emul; 197 #else 198 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 199 long alpha_fp_emul (unsigned long pc); 200 #endif 201 202 asmlinkage void 203 do_entArith(unsigned long summary, unsigned long write_mask, 204 struct pt_regs *regs) 205 { 206 long si_code = FPE_FLTINV; 207 siginfo_t info; 208 209 if (summary & 1) { 210 /* Software-completion summary bit is set, so try to 211 emulate the instruction. If the processor supports 212 precise exceptions, we don't have to search. */ 213 if (!amask(AMASK_PRECISE_TRAP)) 214 si_code = alpha_fp_emul(regs->pc - 4); 215 else 216 si_code = alpha_fp_emul_imprecise(regs, write_mask); 217 if (si_code == 0) 218 return; 219 } 220 die_if_kernel("Arithmetic fault", regs, 0, NULL); 221 222 info.si_signo = SIGFPE; 223 info.si_errno = 0; 224 info.si_code = si_code; 225 info.si_addr = (void __user *) regs->pc; 226 send_sig_info(SIGFPE, &info, current); 227 } 228 229 asmlinkage void 230 do_entIF(unsigned long type, struct pt_regs *regs) 231 { 232 siginfo_t info; 233 int signo, code; 234 235 if ((regs->ps & ~IPL_MAX) == 0) { 236 if (type == 1) { 237 const unsigned int *data 238 = (const unsigned int *) regs->pc; 239 printk("Kernel bug at %s:%d\n", 240 (const char *)(data[1] | (long)data[2] << 32), 241 data[0]); 242 } 243 #ifdef CONFIG_ALPHA_WTINT 244 if (type == 4) { 245 /* If CALL_PAL WTINT is totally unsupported by the 246 PALcode, e.g. MILO, "emulate" it by overwriting 247 the insn. */ 248 unsigned int *pinsn 249 = (unsigned int *) regs->pc - 1; 250 if (*pinsn == PAL_wtint) { 251 *pinsn = 0x47e01400; /* mov 0,$0 */ 252 imb(); 253 regs->r0 = 0; 254 return; 255 } 256 } 257 #endif /* ALPHA_WTINT */ 258 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 259 regs, type, NULL); 260 } 261 262 switch (type) { 263 case 0: /* breakpoint */ 264 info.si_signo = SIGTRAP; 265 info.si_errno = 0; 266 info.si_code = TRAP_BRKPT; 267 info.si_trapno = 0; 268 info.si_addr = (void __user *) regs->pc; 269 270 if (ptrace_cancel_bpt(current)) { 271 regs->pc -= 4; /* make pc point to former bpt */ 272 } 273 274 send_sig_info(SIGTRAP, &info, current); 275 return; 276 277 case 1: /* bugcheck */ 278 info.si_signo = SIGTRAP; 279 info.si_errno = 0; 280 info.si_code = __SI_FAULT; 281 info.si_addr = (void __user *) regs->pc; 282 info.si_trapno = 0; 283 send_sig_info(SIGTRAP, &info, current); 284 return; 285 286 case 2: /* gentrap */ 287 info.si_addr = (void __user *) regs->pc; 288 info.si_trapno = regs->r16; 289 switch ((long) regs->r16) { 290 case GEN_INTOVF: 291 signo = SIGFPE; 292 code = FPE_INTOVF; 293 break; 294 case GEN_INTDIV: 295 signo = SIGFPE; 296 code = FPE_INTDIV; 297 break; 298 case GEN_FLTOVF: 299 signo = SIGFPE; 300 code = FPE_FLTOVF; 301 break; 302 case GEN_FLTDIV: 303 signo = SIGFPE; 304 code = FPE_FLTDIV; 305 break; 306 case GEN_FLTUND: 307 signo = SIGFPE; 308 code = FPE_FLTUND; 309 break; 310 case GEN_FLTINV: 311 signo = SIGFPE; 312 code = FPE_FLTINV; 313 break; 314 case GEN_FLTINE: 315 signo = SIGFPE; 316 code = FPE_FLTRES; 317 break; 318 case GEN_ROPRAND: 319 signo = SIGFPE; 320 code = __SI_FAULT; 321 break; 322 323 case GEN_DECOVF: 324 case GEN_DECDIV: 325 case GEN_DECINV: 326 case GEN_ASSERTERR: 327 case GEN_NULPTRERR: 328 case GEN_STKOVF: 329 case GEN_STRLENERR: 330 case GEN_SUBSTRERR: 331 case GEN_RANGERR: 332 case GEN_SUBRNG: 333 case GEN_SUBRNG1: 334 case GEN_SUBRNG2: 335 case GEN_SUBRNG3: 336 case GEN_SUBRNG4: 337 case GEN_SUBRNG5: 338 case GEN_SUBRNG6: 339 case GEN_SUBRNG7: 340 default: 341 signo = SIGTRAP; 342 code = __SI_FAULT; 343 break; 344 } 345 346 info.si_signo = signo; 347 info.si_errno = 0; 348 info.si_code = code; 349 info.si_addr = (void __user *) regs->pc; 350 send_sig_info(signo, &info, current); 351 return; 352 353 case 4: /* opDEC */ 354 if (implver() == IMPLVER_EV4) { 355 long si_code; 356 357 /* The some versions of SRM do not handle 358 the opDEC properly - they return the PC of the 359 opDEC fault, not the instruction after as the 360 Alpha architecture requires. Here we fix it up. 361 We do this by intentionally causing an opDEC 362 fault during the boot sequence and testing if 363 we get the correct PC. If not, we set a flag 364 to correct it every time through. */ 365 regs->pc += opDEC_fix; 366 367 /* EV4 does not implement anything except normal 368 rounding. Everything else will come here as 369 an illegal instruction. Emulate them. */ 370 si_code = alpha_fp_emul(regs->pc - 4); 371 if (si_code == 0) 372 return; 373 if (si_code > 0) { 374 info.si_signo = SIGFPE; 375 info.si_errno = 0; 376 info.si_code = si_code; 377 info.si_addr = (void __user *) regs->pc; 378 send_sig_info(SIGFPE, &info, current); 379 return; 380 } 381 } 382 break; 383 384 case 3: /* FEN fault */ 385 /* Irritating users can call PAL_clrfen to disable the 386 FPU for the process. The kernel will then trap in 387 do_switch_stack and undo_switch_stack when we try 388 to save and restore the FP registers. 389 390 Given that GCC by default generates code that uses the 391 FP registers, PAL_clrfen is not useful except for DoS 392 attacks. So turn the bleeding FPU back on and be done 393 with it. */ 394 current_thread_info()->pcb.flags |= 1; 395 __reload_thread(¤t_thread_info()->pcb); 396 return; 397 398 case 5: /* illoc */ 399 default: /* unexpected instruction-fault type */ 400 ; 401 } 402 403 info.si_signo = SIGILL; 404 info.si_errno = 0; 405 info.si_code = ILL_ILLOPC; 406 info.si_addr = (void __user *) regs->pc; 407 send_sig_info(SIGILL, &info, current); 408 } 409 410 /* There is an ifdef in the PALcode in MILO that enables a 411 "kernel debugging entry point" as an unprivileged call_pal. 412 413 We don't want to have anything to do with it, but unfortunately 414 several versions of MILO included in distributions have it enabled, 415 and if we don't put something on the entry point we'll oops. */ 416 417 asmlinkage void 418 do_entDbg(struct pt_regs *regs) 419 { 420 siginfo_t info; 421 422 die_if_kernel("Instruction fault", regs, 0, NULL); 423 424 info.si_signo = SIGILL; 425 info.si_errno = 0; 426 info.si_code = ILL_ILLOPC; 427 info.si_addr = (void __user *) regs->pc; 428 force_sig_info(SIGILL, &info, current); 429 } 430 431 432 /* 433 * entUna has a different register layout to be reasonably simple. It 434 * needs access to all the integer registers (the kernel doesn't use 435 * fp-regs), and it needs to have them in order for simpler access. 436 * 437 * Due to the non-standard register layout (and because we don't want 438 * to handle floating-point regs), user-mode unaligned accesses are 439 * handled separately by do_entUnaUser below. 440 * 441 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 442 * on a gp-register unaligned load/store, something is _very_ wrong 443 * in the kernel anyway.. 444 */ 445 struct allregs { 446 unsigned long regs[32]; 447 unsigned long ps, pc, gp, a0, a1, a2; 448 }; 449 450 struct unaligned_stat { 451 unsigned long count, va, pc; 452 } unaligned[2]; 453 454 455 /* Macro for exception fixup code to access integer registers. */ 456 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 457 458 459 asmlinkage void 460 do_entUna(void * va, unsigned long opcode, unsigned long reg, 461 struct allregs *regs) 462 { 463 long error, tmp1, tmp2, tmp3, tmp4; 464 unsigned long pc = regs->pc - 4; 465 unsigned long *_regs = regs->regs; 466 const struct exception_table_entry *fixup; 467 468 unaligned[0].count++; 469 unaligned[0].va = (unsigned long) va; 470 unaligned[0].pc = pc; 471 472 /* We don't want to use the generic get/put unaligned macros as 473 we want to trap exceptions. Only if we actually get an 474 exception will we decide whether we should have caught it. */ 475 476 switch (opcode) { 477 case 0x0c: /* ldwu */ 478 __asm__ __volatile__( 479 "1: ldq_u %1,0(%3)\n" 480 "2: ldq_u %2,1(%3)\n" 481 " extwl %1,%3,%1\n" 482 " extwh %2,%3,%2\n" 483 "3:\n" 484 ".section __ex_table,\"a\"\n" 485 " .long 1b - .\n" 486 " lda %1,3b-1b(%0)\n" 487 " .long 2b - .\n" 488 " lda %2,3b-2b(%0)\n" 489 ".previous" 490 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 491 : "r"(va), "0"(0)); 492 if (error) 493 goto got_exception; 494 una_reg(reg) = tmp1|tmp2; 495 return; 496 497 case 0x28: /* ldl */ 498 __asm__ __volatile__( 499 "1: ldq_u %1,0(%3)\n" 500 "2: ldq_u %2,3(%3)\n" 501 " extll %1,%3,%1\n" 502 " extlh %2,%3,%2\n" 503 "3:\n" 504 ".section __ex_table,\"a\"\n" 505 " .long 1b - .\n" 506 " lda %1,3b-1b(%0)\n" 507 " .long 2b - .\n" 508 " lda %2,3b-2b(%0)\n" 509 ".previous" 510 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 511 : "r"(va), "0"(0)); 512 if (error) 513 goto got_exception; 514 una_reg(reg) = (int)(tmp1|tmp2); 515 return; 516 517 case 0x29: /* ldq */ 518 __asm__ __volatile__( 519 "1: ldq_u %1,0(%3)\n" 520 "2: ldq_u %2,7(%3)\n" 521 " extql %1,%3,%1\n" 522 " extqh %2,%3,%2\n" 523 "3:\n" 524 ".section __ex_table,\"a\"\n" 525 " .long 1b - .\n" 526 " lda %1,3b-1b(%0)\n" 527 " .long 2b - .\n" 528 " lda %2,3b-2b(%0)\n" 529 ".previous" 530 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 531 : "r"(va), "0"(0)); 532 if (error) 533 goto got_exception; 534 una_reg(reg) = tmp1|tmp2; 535 return; 536 537 /* Note that the store sequences do not indicate that they change 538 memory because it _should_ be affecting nothing in this context. 539 (Otherwise we have other, much larger, problems.) */ 540 case 0x0d: /* stw */ 541 __asm__ __volatile__( 542 "1: ldq_u %2,1(%5)\n" 543 "2: ldq_u %1,0(%5)\n" 544 " inswh %6,%5,%4\n" 545 " inswl %6,%5,%3\n" 546 " mskwh %2,%5,%2\n" 547 " mskwl %1,%5,%1\n" 548 " or %2,%4,%2\n" 549 " or %1,%3,%1\n" 550 "3: stq_u %2,1(%5)\n" 551 "4: stq_u %1,0(%5)\n" 552 "5:\n" 553 ".section __ex_table,\"a\"\n" 554 " .long 1b - .\n" 555 " lda %2,5b-1b(%0)\n" 556 " .long 2b - .\n" 557 " lda %1,5b-2b(%0)\n" 558 " .long 3b - .\n" 559 " lda $31,5b-3b(%0)\n" 560 " .long 4b - .\n" 561 " lda $31,5b-4b(%0)\n" 562 ".previous" 563 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 564 "=&r"(tmp3), "=&r"(tmp4) 565 : "r"(va), "r"(una_reg(reg)), "0"(0)); 566 if (error) 567 goto got_exception; 568 return; 569 570 case 0x2c: /* stl */ 571 __asm__ __volatile__( 572 "1: ldq_u %2,3(%5)\n" 573 "2: ldq_u %1,0(%5)\n" 574 " inslh %6,%5,%4\n" 575 " insll %6,%5,%3\n" 576 " msklh %2,%5,%2\n" 577 " mskll %1,%5,%1\n" 578 " or %2,%4,%2\n" 579 " or %1,%3,%1\n" 580 "3: stq_u %2,3(%5)\n" 581 "4: stq_u %1,0(%5)\n" 582 "5:\n" 583 ".section __ex_table,\"a\"\n" 584 " .long 1b - .\n" 585 " lda %2,5b-1b(%0)\n" 586 " .long 2b - .\n" 587 " lda %1,5b-2b(%0)\n" 588 " .long 3b - .\n" 589 " lda $31,5b-3b(%0)\n" 590 " .long 4b - .\n" 591 " lda $31,5b-4b(%0)\n" 592 ".previous" 593 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 594 "=&r"(tmp3), "=&r"(tmp4) 595 : "r"(va), "r"(una_reg(reg)), "0"(0)); 596 if (error) 597 goto got_exception; 598 return; 599 600 case 0x2d: /* stq */ 601 __asm__ __volatile__( 602 "1: ldq_u %2,7(%5)\n" 603 "2: ldq_u %1,0(%5)\n" 604 " insqh %6,%5,%4\n" 605 " insql %6,%5,%3\n" 606 " mskqh %2,%5,%2\n" 607 " mskql %1,%5,%1\n" 608 " or %2,%4,%2\n" 609 " or %1,%3,%1\n" 610 "3: stq_u %2,7(%5)\n" 611 "4: stq_u %1,0(%5)\n" 612 "5:\n" 613 ".section __ex_table,\"a\"\n\t" 614 " .long 1b - .\n" 615 " lda %2,5b-1b(%0)\n" 616 " .long 2b - .\n" 617 " lda %1,5b-2b(%0)\n" 618 " .long 3b - .\n" 619 " lda $31,5b-3b(%0)\n" 620 " .long 4b - .\n" 621 " lda $31,5b-4b(%0)\n" 622 ".previous" 623 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 624 "=&r"(tmp3), "=&r"(tmp4) 625 : "r"(va), "r"(una_reg(reg)), "0"(0)); 626 if (error) 627 goto got_exception; 628 return; 629 } 630 631 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 632 pc, va, opcode, reg); 633 do_exit(SIGSEGV); 634 635 got_exception: 636 /* Ok, we caught the exception, but we don't want it. Is there 637 someone to pass it along to? */ 638 if ((fixup = search_exception_tables(pc)) != 0) { 639 unsigned long newpc; 640 newpc = fixup_exception(una_reg, fixup, pc); 641 642 printk("Forwarding unaligned exception at %lx (%lx)\n", 643 pc, newpc); 644 645 regs->pc = newpc; 646 return; 647 } 648 649 /* 650 * Yikes! No one to forward the exception to. 651 * Since the registers are in a weird format, dump them ourselves. 652 */ 653 654 printk("%s(%d): unhandled unaligned exception\n", 655 current->comm, task_pid_nr(current)); 656 657 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 658 pc, una_reg(26), regs->ps); 659 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 660 una_reg(0), una_reg(1), una_reg(2)); 661 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 662 una_reg(3), una_reg(4), una_reg(5)); 663 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 664 una_reg(6), una_reg(7), una_reg(8)); 665 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 666 una_reg(9), una_reg(10), una_reg(11)); 667 printk("r12= %016lx r13= %016lx r14= %016lx\n", 668 una_reg(12), una_reg(13), una_reg(14)); 669 printk("r15= %016lx\n", una_reg(15)); 670 printk("r16= %016lx r17= %016lx r18= %016lx\n", 671 una_reg(16), una_reg(17), una_reg(18)); 672 printk("r19= %016lx r20= %016lx r21= %016lx\n", 673 una_reg(19), una_reg(20), una_reg(21)); 674 printk("r22= %016lx r23= %016lx r24= %016lx\n", 675 una_reg(22), una_reg(23), una_reg(24)); 676 printk("r25= %016lx r27= %016lx r28= %016lx\n", 677 una_reg(25), una_reg(27), una_reg(28)); 678 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 679 680 dik_show_code((unsigned int *)pc); 681 dik_show_trace((unsigned long *)(regs+1)); 682 683 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 684 printk("die_if_kernel recursion detected.\n"); 685 local_irq_enable(); 686 while (1); 687 } 688 do_exit(SIGSEGV); 689 } 690 691 /* 692 * Convert an s-floating point value in memory format to the 693 * corresponding value in register format. The exponent 694 * needs to be remapped to preserve non-finite values 695 * (infinities, not-a-numbers, denormals). 696 */ 697 static inline unsigned long 698 s_mem_to_reg (unsigned long s_mem) 699 { 700 unsigned long frac = (s_mem >> 0) & 0x7fffff; 701 unsigned long sign = (s_mem >> 31) & 0x1; 702 unsigned long exp_msb = (s_mem >> 30) & 0x1; 703 unsigned long exp_low = (s_mem >> 23) & 0x7f; 704 unsigned long exp; 705 706 exp = (exp_msb << 10) | exp_low; /* common case */ 707 if (exp_msb) { 708 if (exp_low == 0x7f) { 709 exp = 0x7ff; 710 } 711 } else { 712 if (exp_low == 0x00) { 713 exp = 0x000; 714 } else { 715 exp |= (0x7 << 7); 716 } 717 } 718 return (sign << 63) | (exp << 52) | (frac << 29); 719 } 720 721 /* 722 * Convert an s-floating point value in register format to the 723 * corresponding value in memory format. 724 */ 725 static inline unsigned long 726 s_reg_to_mem (unsigned long s_reg) 727 { 728 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 729 } 730 731 /* 732 * Handle user-level unaligned fault. Handling user-level unaligned 733 * faults is *extremely* slow and produces nasty messages. A user 734 * program *should* fix unaligned faults ASAP. 735 * 736 * Notice that we have (almost) the regular kernel stack layout here, 737 * so finding the appropriate registers is a little more difficult 738 * than in the kernel case. 739 * 740 * Finally, we handle regular integer load/stores only. In 741 * particular, load-linked/store-conditionally and floating point 742 * load/stores are not supported. The former make no sense with 743 * unaligned faults (they are guaranteed to fail) and I don't think 744 * the latter will occur in any decent program. 745 * 746 * Sigh. We *do* have to handle some FP operations, because GCC will 747 * uses them as temporary storage for integer memory to memory copies. 748 * However, we need to deal with stt/ldt and sts/lds only. 749 */ 750 751 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 752 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 753 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 754 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 755 756 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 757 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 758 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 759 760 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 761 762 static int unauser_reg_offsets[32] = { 763 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 764 /* r9 ... r15 are stored in front of regs. */ 765 -56, -48, -40, -32, -24, -16, -8, 766 R(r16), R(r17), R(r18), 767 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 768 R(r27), R(r28), R(gp), 769 0, 0 770 }; 771 772 #undef R 773 774 asmlinkage void 775 do_entUnaUser(void __user * va, unsigned long opcode, 776 unsigned long reg, struct pt_regs *regs) 777 { 778 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 779 780 unsigned long tmp1, tmp2, tmp3, tmp4; 781 unsigned long fake_reg, *reg_addr = &fake_reg; 782 siginfo_t info; 783 long error; 784 785 /* Check the UAC bits to decide what the user wants us to do 786 with the unaliged access. */ 787 788 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { 789 if (__ratelimit(&ratelimit)) { 790 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 791 current->comm, task_pid_nr(current), 792 regs->pc - 4, va, opcode, reg); 793 } 794 } 795 if ((current_thread_info()->status & TS_UAC_SIGBUS)) 796 goto give_sigbus; 797 /* Not sure why you'd want to use this, but... */ 798 if ((current_thread_info()->status & TS_UAC_NOFIX)) 799 return; 800 801 /* Don't bother reading ds in the access check since we already 802 know that this came from the user. Also rely on the fact that 803 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 804 if (!__access_ok((unsigned long)va, 0, USER_DS)) 805 goto give_sigsegv; 806 807 ++unaligned[1].count; 808 unaligned[1].va = (unsigned long)va; 809 unaligned[1].pc = regs->pc - 4; 810 811 if ((1L << opcode) & OP_INT_MASK) { 812 /* it's an integer load/store */ 813 if (reg < 30) { 814 reg_addr = (unsigned long *) 815 ((char *)regs + unauser_reg_offsets[reg]); 816 } else if (reg == 30) { 817 /* usp in PAL regs */ 818 fake_reg = rdusp(); 819 } else { 820 /* zero "register" */ 821 fake_reg = 0; 822 } 823 } 824 825 /* We don't want to use the generic get/put unaligned macros as 826 we want to trap exceptions. Only if we actually get an 827 exception will we decide whether we should have caught it. */ 828 829 switch (opcode) { 830 case 0x0c: /* ldwu */ 831 __asm__ __volatile__( 832 "1: ldq_u %1,0(%3)\n" 833 "2: ldq_u %2,1(%3)\n" 834 " extwl %1,%3,%1\n" 835 " extwh %2,%3,%2\n" 836 "3:\n" 837 ".section __ex_table,\"a\"\n" 838 " .long 1b - .\n" 839 " lda %1,3b-1b(%0)\n" 840 " .long 2b - .\n" 841 " lda %2,3b-2b(%0)\n" 842 ".previous" 843 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 844 : "r"(va), "0"(0)); 845 if (error) 846 goto give_sigsegv; 847 *reg_addr = tmp1|tmp2; 848 break; 849 850 case 0x22: /* lds */ 851 __asm__ __volatile__( 852 "1: ldq_u %1,0(%3)\n" 853 "2: ldq_u %2,3(%3)\n" 854 " extll %1,%3,%1\n" 855 " extlh %2,%3,%2\n" 856 "3:\n" 857 ".section __ex_table,\"a\"\n" 858 " .long 1b - .\n" 859 " lda %1,3b-1b(%0)\n" 860 " .long 2b - .\n" 861 " lda %2,3b-2b(%0)\n" 862 ".previous" 863 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 864 : "r"(va), "0"(0)); 865 if (error) 866 goto give_sigsegv; 867 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 868 return; 869 870 case 0x23: /* ldt */ 871 __asm__ __volatile__( 872 "1: ldq_u %1,0(%3)\n" 873 "2: ldq_u %2,7(%3)\n" 874 " extql %1,%3,%1\n" 875 " extqh %2,%3,%2\n" 876 "3:\n" 877 ".section __ex_table,\"a\"\n" 878 " .long 1b - .\n" 879 " lda %1,3b-1b(%0)\n" 880 " .long 2b - .\n" 881 " lda %2,3b-2b(%0)\n" 882 ".previous" 883 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 884 : "r"(va), "0"(0)); 885 if (error) 886 goto give_sigsegv; 887 alpha_write_fp_reg(reg, tmp1|tmp2); 888 return; 889 890 case 0x28: /* ldl */ 891 __asm__ __volatile__( 892 "1: ldq_u %1,0(%3)\n" 893 "2: ldq_u %2,3(%3)\n" 894 " extll %1,%3,%1\n" 895 " extlh %2,%3,%2\n" 896 "3:\n" 897 ".section __ex_table,\"a\"\n" 898 " .long 1b - .\n" 899 " lda %1,3b-1b(%0)\n" 900 " .long 2b - .\n" 901 " lda %2,3b-2b(%0)\n" 902 ".previous" 903 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 904 : "r"(va), "0"(0)); 905 if (error) 906 goto give_sigsegv; 907 *reg_addr = (int)(tmp1|tmp2); 908 break; 909 910 case 0x29: /* ldq */ 911 __asm__ __volatile__( 912 "1: ldq_u %1,0(%3)\n" 913 "2: ldq_u %2,7(%3)\n" 914 " extql %1,%3,%1\n" 915 " extqh %2,%3,%2\n" 916 "3:\n" 917 ".section __ex_table,\"a\"\n" 918 " .long 1b - .\n" 919 " lda %1,3b-1b(%0)\n" 920 " .long 2b - .\n" 921 " lda %2,3b-2b(%0)\n" 922 ".previous" 923 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 924 : "r"(va), "0"(0)); 925 if (error) 926 goto give_sigsegv; 927 *reg_addr = tmp1|tmp2; 928 break; 929 930 /* Note that the store sequences do not indicate that they change 931 memory because it _should_ be affecting nothing in this context. 932 (Otherwise we have other, much larger, problems.) */ 933 case 0x0d: /* stw */ 934 __asm__ __volatile__( 935 "1: ldq_u %2,1(%5)\n" 936 "2: ldq_u %1,0(%5)\n" 937 " inswh %6,%5,%4\n" 938 " inswl %6,%5,%3\n" 939 " mskwh %2,%5,%2\n" 940 " mskwl %1,%5,%1\n" 941 " or %2,%4,%2\n" 942 " or %1,%3,%1\n" 943 "3: stq_u %2,1(%5)\n" 944 "4: stq_u %1,0(%5)\n" 945 "5:\n" 946 ".section __ex_table,\"a\"\n" 947 " .long 1b - .\n" 948 " lda %2,5b-1b(%0)\n" 949 " .long 2b - .\n" 950 " lda %1,5b-2b(%0)\n" 951 " .long 3b - .\n" 952 " lda $31,5b-3b(%0)\n" 953 " .long 4b - .\n" 954 " lda $31,5b-4b(%0)\n" 955 ".previous" 956 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 957 "=&r"(tmp3), "=&r"(tmp4) 958 : "r"(va), "r"(*reg_addr), "0"(0)); 959 if (error) 960 goto give_sigsegv; 961 return; 962 963 case 0x26: /* sts */ 964 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 965 /* FALLTHRU */ 966 967 case 0x2c: /* stl */ 968 __asm__ __volatile__( 969 "1: ldq_u %2,3(%5)\n" 970 "2: ldq_u %1,0(%5)\n" 971 " inslh %6,%5,%4\n" 972 " insll %6,%5,%3\n" 973 " msklh %2,%5,%2\n" 974 " mskll %1,%5,%1\n" 975 " or %2,%4,%2\n" 976 " or %1,%3,%1\n" 977 "3: stq_u %2,3(%5)\n" 978 "4: stq_u %1,0(%5)\n" 979 "5:\n" 980 ".section __ex_table,\"a\"\n" 981 " .long 1b - .\n" 982 " lda %2,5b-1b(%0)\n" 983 " .long 2b - .\n" 984 " lda %1,5b-2b(%0)\n" 985 " .long 3b - .\n" 986 " lda $31,5b-3b(%0)\n" 987 " .long 4b - .\n" 988 " lda $31,5b-4b(%0)\n" 989 ".previous" 990 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 991 "=&r"(tmp3), "=&r"(tmp4) 992 : "r"(va), "r"(*reg_addr), "0"(0)); 993 if (error) 994 goto give_sigsegv; 995 return; 996 997 case 0x27: /* stt */ 998 fake_reg = alpha_read_fp_reg(reg); 999 /* FALLTHRU */ 1000 1001 case 0x2d: /* stq */ 1002 __asm__ __volatile__( 1003 "1: ldq_u %2,7(%5)\n" 1004 "2: ldq_u %1,0(%5)\n" 1005 " insqh %6,%5,%4\n" 1006 " insql %6,%5,%3\n" 1007 " mskqh %2,%5,%2\n" 1008 " mskql %1,%5,%1\n" 1009 " or %2,%4,%2\n" 1010 " or %1,%3,%1\n" 1011 "3: stq_u %2,7(%5)\n" 1012 "4: stq_u %1,0(%5)\n" 1013 "5:\n" 1014 ".section __ex_table,\"a\"\n\t" 1015 " .long 1b - .\n" 1016 " lda %2,5b-1b(%0)\n" 1017 " .long 2b - .\n" 1018 " lda %1,5b-2b(%0)\n" 1019 " .long 3b - .\n" 1020 " lda $31,5b-3b(%0)\n" 1021 " .long 4b - .\n" 1022 " lda $31,5b-4b(%0)\n" 1023 ".previous" 1024 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 1025 "=&r"(tmp3), "=&r"(tmp4) 1026 : "r"(va), "r"(*reg_addr), "0"(0)); 1027 if (error) 1028 goto give_sigsegv; 1029 return; 1030 1031 default: 1032 /* What instruction were you trying to use, exactly? */ 1033 goto give_sigbus; 1034 } 1035 1036 /* Only integer loads should get here; everyone else returns early. */ 1037 if (reg == 30) 1038 wrusp(fake_reg); 1039 return; 1040 1041 give_sigsegv: 1042 regs->pc -= 4; /* make pc point to faulting insn */ 1043 info.si_signo = SIGSEGV; 1044 info.si_errno = 0; 1045 1046 /* We need to replicate some of the logic in mm/fault.c, 1047 since we don't have access to the fault code in the 1048 exception handling return path. */ 1049 if (!__access_ok((unsigned long)va, 0, USER_DS)) 1050 info.si_code = SEGV_ACCERR; 1051 else { 1052 struct mm_struct *mm = current->mm; 1053 down_read(&mm->mmap_sem); 1054 if (find_vma(mm, (unsigned long)va)) 1055 info.si_code = SEGV_ACCERR; 1056 else 1057 info.si_code = SEGV_MAPERR; 1058 up_read(&mm->mmap_sem); 1059 } 1060 info.si_addr = va; 1061 send_sig_info(SIGSEGV, &info, current); 1062 return; 1063 1064 give_sigbus: 1065 regs->pc -= 4; 1066 info.si_signo = SIGBUS; 1067 info.si_errno = 0; 1068 info.si_code = BUS_ADRALN; 1069 info.si_addr = va; 1070 send_sig_info(SIGBUS, &info, current); 1071 return; 1072 } 1073 1074 void 1075 trap_init(void) 1076 { 1077 /* Tell PAL-code what global pointer we want in the kernel. */ 1078 register unsigned long gptr __asm__("$29"); 1079 wrkgp(gptr); 1080 1081 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 1082 a bug in the handling of the opDEC fault. Fix it up if so. */ 1083 if (implver() == IMPLVER_EV4) 1084 opDEC_check(); 1085 1086 wrent(entArith, 1); 1087 wrent(entMM, 2); 1088 wrent(entIF, 3); 1089 wrent(entUna, 4); 1090 wrent(entSys, 5); 1091 wrent(entDbg, 6); 1092 } 1093