xref: /openbmc/linux/arch/alpha/kernel/traps.c (revision 1c2dd16a)
1 /*
2  * arch/alpha/kernel/traps.c
3  *
4  * (C) Copyright 1994 Linus Torvalds
5  */
6 
7 /*
8  * This file initializes the trap entry points
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/debug.h>
15 #include <linux/tty.h>
16 #include <linux/delay.h>
17 #include <linux/extable.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
20 
21 #include <asm/gentrap.h>
22 #include <linux/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
28 
29 #include "proto.h"
30 
31 /* Work-around for some SRMs which mishandle opDEC faults.  */
32 
33 static int opDEC_fix;
34 
35 static void
36 opDEC_check(void)
37 {
38 	__asm__ __volatile__ (
39 	/* Load the address of... */
40 	"	br	$16, 1f\n"
41 	/* A stub instruction fault handler.  Just add 4 to the
42 	   pc and continue.  */
43 	"	ldq	$16, 8($sp)\n"
44 	"	addq	$16, 4, $16\n"
45 	"	stq	$16, 8($sp)\n"
46 	"	call_pal %[rti]\n"
47 	/* Install the instruction fault handler.  */
48 	"1:	lda	$17, 3\n"
49 	"	call_pal %[wrent]\n"
50 	/* With that in place, the fault from the round-to-minf fp
51 	   insn will arrive either at the "lda 4" insn (bad) or one
52 	   past that (good).  This places the correct fixup in %0.  */
53 	"	lda %[fix], 0\n"
54 	"	cvttq/svm $f31,$f31\n"
55 	"	lda %[fix], 4"
56 	: [fix] "=r" (opDEC_fix)
57 	: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
58 	: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
59 
60 	if (opDEC_fix)
61 		printk("opDEC fixup enabled.\n");
62 }
63 
64 void
65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
66 {
67 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
68 	       regs->pc, regs->r26, regs->ps, print_tainted());
69 	printk("pc is at %pSR\n", (void *)regs->pc);
70 	printk("ra is at %pSR\n", (void *)regs->r26);
71 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
72 	       regs->r0, regs->r1, regs->r2);
73 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
74  	       regs->r3, regs->r4, regs->r5);
75 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
76 	       regs->r6, regs->r7, regs->r8);
77 
78 	if (r9_15) {
79 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
80 		       r9_15[9], r9_15[10], r9_15[11]);
81 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
82 		       r9_15[12], r9_15[13], r9_15[14]);
83 		printk("s6 = %016lx\n", r9_15[15]);
84 	}
85 
86 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
87 	       regs->r16, regs->r17, regs->r18);
88 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
89  	       regs->r19, regs->r20, regs->r21);
90  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
91 	       regs->r22, regs->r23, regs->r24);
92 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
93 	       regs->r25, regs->r27, regs->r28);
94 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
95 #if 0
96 __halt();
97 #endif
98 }
99 
100 #if 0
101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
105 #endif
106 
107 static void
108 dik_show_code(unsigned int *pc)
109 {
110 	long i;
111 
112 	printk("Code:");
113 	for (i = -6; i < 2; i++) {
114 		unsigned int insn;
115 		if (__get_user(insn, (unsigned int __user *)pc + i))
116 			break;
117 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
118 	}
119 	printk("\n");
120 }
121 
122 static void
123 dik_show_trace(unsigned long *sp)
124 {
125 	long i = 0;
126 	printk("Trace:\n");
127 	while (0x1ff8 & (unsigned long) sp) {
128 		extern char _stext[], _etext[];
129 		unsigned long tmp = *sp;
130 		sp++;
131 		if (tmp < (unsigned long) &_stext)
132 			continue;
133 		if (tmp >= (unsigned long) &_etext)
134 			continue;
135 		printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
136 		if (i > 40) {
137 			printk(" ...");
138 			break;
139 		}
140 	}
141 	printk("\n");
142 }
143 
144 static int kstack_depth_to_print = 24;
145 
146 void show_stack(struct task_struct *task, unsigned long *sp)
147 {
148 	unsigned long *stack;
149 	int i;
150 
151 	/*
152 	 * debugging aid: "show_stack(NULL);" prints the
153 	 * back trace for this cpu.
154 	 */
155 	if(sp==NULL)
156 		sp=(unsigned long*)&sp;
157 
158 	stack = sp;
159 	for(i=0; i < kstack_depth_to_print; i++) {
160 		if (((long) stack & (THREAD_SIZE-1)) == 0)
161 			break;
162 		if (i && ((i % 4) == 0))
163 			printk("\n       ");
164 		printk("%016lx ", *stack++);
165 	}
166 	printk("\n");
167 	dik_show_trace(sp);
168 }
169 
170 void
171 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
172 {
173 	if (regs->ps & 8)
174 		return;
175 #ifdef CONFIG_SMP
176 	printk("CPU %d ", hard_smp_processor_id());
177 #endif
178 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
179 	dik_show_regs(regs, r9_15);
180 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
181 	dik_show_trace((unsigned long *)(regs+1));
182 	dik_show_code((unsigned int *)regs->pc);
183 
184 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
185 		printk("die_if_kernel recursion detected.\n");
186 		local_irq_enable();
187 		while (1);
188 	}
189 	do_exit(SIGSEGV);
190 }
191 
192 #ifndef CONFIG_MATHEMU
193 static long dummy_emul(void) { return 0; }
194 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
195   = (void *)dummy_emul;
196 long (*alpha_fp_emul) (unsigned long pc)
197   = (void *)dummy_emul;
198 #else
199 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
200 long alpha_fp_emul (unsigned long pc);
201 #endif
202 
203 asmlinkage void
204 do_entArith(unsigned long summary, unsigned long write_mask,
205 	    struct pt_regs *regs)
206 {
207 	long si_code = FPE_FLTINV;
208 	siginfo_t info;
209 
210 	if (summary & 1) {
211 		/* Software-completion summary bit is set, so try to
212 		   emulate the instruction.  If the processor supports
213 		   precise exceptions, we don't have to search.  */
214 		if (!amask(AMASK_PRECISE_TRAP))
215 			si_code = alpha_fp_emul(regs->pc - 4);
216 		else
217 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
218 		if (si_code == 0)
219 			return;
220 	}
221 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
222 
223 	info.si_signo = SIGFPE;
224 	info.si_errno = 0;
225 	info.si_code = si_code;
226 	info.si_addr = (void __user *) regs->pc;
227 	send_sig_info(SIGFPE, &info, current);
228 }
229 
230 asmlinkage void
231 do_entIF(unsigned long type, struct pt_regs *regs)
232 {
233 	siginfo_t info;
234 	int signo, code;
235 
236 	if ((regs->ps & ~IPL_MAX) == 0) {
237 		if (type == 1) {
238 			const unsigned int *data
239 			  = (const unsigned int *) regs->pc;
240 			printk("Kernel bug at %s:%d\n",
241 			       (const char *)(data[1] | (long)data[2] << 32),
242 			       data[0]);
243 		}
244 #ifdef CONFIG_ALPHA_WTINT
245 		if (type == 4) {
246 			/* If CALL_PAL WTINT is totally unsupported by the
247 			   PALcode, e.g. MILO, "emulate" it by overwriting
248 			   the insn.  */
249 			unsigned int *pinsn
250 			  = (unsigned int *) regs->pc - 1;
251 			if (*pinsn == PAL_wtint) {
252 				*pinsn = 0x47e01400; /* mov 0,$0 */
253 				imb();
254 				regs->r0 = 0;
255 				return;
256 			}
257 		}
258 #endif /* ALPHA_WTINT */
259 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
260 			      regs, type, NULL);
261 	}
262 
263 	switch (type) {
264 	      case 0: /* breakpoint */
265 		info.si_signo = SIGTRAP;
266 		info.si_errno = 0;
267 		info.si_code = TRAP_BRKPT;
268 		info.si_trapno = 0;
269 		info.si_addr = (void __user *) regs->pc;
270 
271 		if (ptrace_cancel_bpt(current)) {
272 			regs->pc -= 4;	/* make pc point to former bpt */
273 		}
274 
275 		send_sig_info(SIGTRAP, &info, current);
276 		return;
277 
278 	      case 1: /* bugcheck */
279 		info.si_signo = SIGTRAP;
280 		info.si_errno = 0;
281 		info.si_code = __SI_FAULT;
282 		info.si_addr = (void __user *) regs->pc;
283 		info.si_trapno = 0;
284 		send_sig_info(SIGTRAP, &info, current);
285 		return;
286 
287 	      case 2: /* gentrap */
288 		info.si_addr = (void __user *) regs->pc;
289 		info.si_trapno = regs->r16;
290 		switch ((long) regs->r16) {
291 		case GEN_INTOVF:
292 			signo = SIGFPE;
293 			code = FPE_INTOVF;
294 			break;
295 		case GEN_INTDIV:
296 			signo = SIGFPE;
297 			code = FPE_INTDIV;
298 			break;
299 		case GEN_FLTOVF:
300 			signo = SIGFPE;
301 			code = FPE_FLTOVF;
302 			break;
303 		case GEN_FLTDIV:
304 			signo = SIGFPE;
305 			code = FPE_FLTDIV;
306 			break;
307 		case GEN_FLTUND:
308 			signo = SIGFPE;
309 			code = FPE_FLTUND;
310 			break;
311 		case GEN_FLTINV:
312 			signo = SIGFPE;
313 			code = FPE_FLTINV;
314 			break;
315 		case GEN_FLTINE:
316 			signo = SIGFPE;
317 			code = FPE_FLTRES;
318 			break;
319 		case GEN_ROPRAND:
320 			signo = SIGFPE;
321 			code = __SI_FAULT;
322 			break;
323 
324 		case GEN_DECOVF:
325 		case GEN_DECDIV:
326 		case GEN_DECINV:
327 		case GEN_ASSERTERR:
328 		case GEN_NULPTRERR:
329 		case GEN_STKOVF:
330 		case GEN_STRLENERR:
331 		case GEN_SUBSTRERR:
332 		case GEN_RANGERR:
333 		case GEN_SUBRNG:
334 		case GEN_SUBRNG1:
335 		case GEN_SUBRNG2:
336 		case GEN_SUBRNG3:
337 		case GEN_SUBRNG4:
338 		case GEN_SUBRNG5:
339 		case GEN_SUBRNG6:
340 		case GEN_SUBRNG7:
341 		default:
342 			signo = SIGTRAP;
343 			code = __SI_FAULT;
344 			break;
345 		}
346 
347 		info.si_signo = signo;
348 		info.si_errno = 0;
349 		info.si_code = code;
350 		info.si_addr = (void __user *) regs->pc;
351 		send_sig_info(signo, &info, current);
352 		return;
353 
354 	      case 4: /* opDEC */
355 		if (implver() == IMPLVER_EV4) {
356 			long si_code;
357 
358 			/* The some versions of SRM do not handle
359 			   the opDEC properly - they return the PC of the
360 			   opDEC fault, not the instruction after as the
361 			   Alpha architecture requires.  Here we fix it up.
362 			   We do this by intentionally causing an opDEC
363 			   fault during the boot sequence and testing if
364 			   we get the correct PC.  If not, we set a flag
365 			   to correct it every time through.  */
366 			regs->pc += opDEC_fix;
367 
368 			/* EV4 does not implement anything except normal
369 			   rounding.  Everything else will come here as
370 			   an illegal instruction.  Emulate them.  */
371 			si_code = alpha_fp_emul(regs->pc - 4);
372 			if (si_code == 0)
373 				return;
374 			if (si_code > 0) {
375 				info.si_signo = SIGFPE;
376 				info.si_errno = 0;
377 				info.si_code = si_code;
378 				info.si_addr = (void __user *) regs->pc;
379 				send_sig_info(SIGFPE, &info, current);
380 				return;
381 			}
382 		}
383 		break;
384 
385 	      case 3: /* FEN fault */
386 		/* Irritating users can call PAL_clrfen to disable the
387 		   FPU for the process.  The kernel will then trap in
388 		   do_switch_stack and undo_switch_stack when we try
389 		   to save and restore the FP registers.
390 
391 		   Given that GCC by default generates code that uses the
392 		   FP registers, PAL_clrfen is not useful except for DoS
393 		   attacks.  So turn the bleeding FPU back on and be done
394 		   with it.  */
395 		current_thread_info()->pcb.flags |= 1;
396 		__reload_thread(&current_thread_info()->pcb);
397 		return;
398 
399 	      case 5: /* illoc */
400 	      default: /* unexpected instruction-fault type */
401 		      ;
402 	}
403 
404 	info.si_signo = SIGILL;
405 	info.si_errno = 0;
406 	info.si_code = ILL_ILLOPC;
407 	info.si_addr = (void __user *) regs->pc;
408 	send_sig_info(SIGILL, &info, current);
409 }
410 
411 /* There is an ifdef in the PALcode in MILO that enables a
412    "kernel debugging entry point" as an unprivileged call_pal.
413 
414    We don't want to have anything to do with it, but unfortunately
415    several versions of MILO included in distributions have it enabled,
416    and if we don't put something on the entry point we'll oops.  */
417 
418 asmlinkage void
419 do_entDbg(struct pt_regs *regs)
420 {
421 	siginfo_t info;
422 
423 	die_if_kernel("Instruction fault", regs, 0, NULL);
424 
425 	info.si_signo = SIGILL;
426 	info.si_errno = 0;
427 	info.si_code = ILL_ILLOPC;
428 	info.si_addr = (void __user *) regs->pc;
429 	force_sig_info(SIGILL, &info, current);
430 }
431 
432 
433 /*
434  * entUna has a different register layout to be reasonably simple. It
435  * needs access to all the integer registers (the kernel doesn't use
436  * fp-regs), and it needs to have them in order for simpler access.
437  *
438  * Due to the non-standard register layout (and because we don't want
439  * to handle floating-point regs), user-mode unaligned accesses are
440  * handled separately by do_entUnaUser below.
441  *
442  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
443  * on a gp-register unaligned load/store, something is _very_ wrong
444  * in the kernel anyway..
445  */
446 struct allregs {
447 	unsigned long regs[32];
448 	unsigned long ps, pc, gp, a0, a1, a2;
449 };
450 
451 struct unaligned_stat {
452 	unsigned long count, va, pc;
453 } unaligned[2];
454 
455 
456 /* Macro for exception fixup code to access integer registers.  */
457 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
458 
459 
460 asmlinkage void
461 do_entUna(void * va, unsigned long opcode, unsigned long reg,
462 	  struct allregs *regs)
463 {
464 	long error, tmp1, tmp2, tmp3, tmp4;
465 	unsigned long pc = regs->pc - 4;
466 	unsigned long *_regs = regs->regs;
467 	const struct exception_table_entry *fixup;
468 
469 	unaligned[0].count++;
470 	unaligned[0].va = (unsigned long) va;
471 	unaligned[0].pc = pc;
472 
473 	/* We don't want to use the generic get/put unaligned macros as
474 	   we want to trap exceptions.  Only if we actually get an
475 	   exception will we decide whether we should have caught it.  */
476 
477 	switch (opcode) {
478 	case 0x0c: /* ldwu */
479 		__asm__ __volatile__(
480 		"1:	ldq_u %1,0(%3)\n"
481 		"2:	ldq_u %2,1(%3)\n"
482 		"	extwl %1,%3,%1\n"
483 		"	extwh %2,%3,%2\n"
484 		"3:\n"
485 		EXC(1b,3b,%1,%0)
486 		EXC(2b,3b,%2,%0)
487 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
488 			: "r"(va), "0"(0));
489 		if (error)
490 			goto got_exception;
491 		una_reg(reg) = tmp1|tmp2;
492 		return;
493 
494 	case 0x28: /* ldl */
495 		__asm__ __volatile__(
496 		"1:	ldq_u %1,0(%3)\n"
497 		"2:	ldq_u %2,3(%3)\n"
498 		"	extll %1,%3,%1\n"
499 		"	extlh %2,%3,%2\n"
500 		"3:\n"
501 		EXC(1b,3b,%1,%0)
502 		EXC(2b,3b,%2,%0)
503 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
504 			: "r"(va), "0"(0));
505 		if (error)
506 			goto got_exception;
507 		una_reg(reg) = (int)(tmp1|tmp2);
508 		return;
509 
510 	case 0x29: /* ldq */
511 		__asm__ __volatile__(
512 		"1:	ldq_u %1,0(%3)\n"
513 		"2:	ldq_u %2,7(%3)\n"
514 		"	extql %1,%3,%1\n"
515 		"	extqh %2,%3,%2\n"
516 		"3:\n"
517 		EXC(1b,3b,%1,%0)
518 		EXC(2b,3b,%2,%0)
519 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
520 			: "r"(va), "0"(0));
521 		if (error)
522 			goto got_exception;
523 		una_reg(reg) = tmp1|tmp2;
524 		return;
525 
526 	/* Note that the store sequences do not indicate that they change
527 	   memory because it _should_ be affecting nothing in this context.
528 	   (Otherwise we have other, much larger, problems.)  */
529 	case 0x0d: /* stw */
530 		__asm__ __volatile__(
531 		"1:	ldq_u %2,1(%5)\n"
532 		"2:	ldq_u %1,0(%5)\n"
533 		"	inswh %6,%5,%4\n"
534 		"	inswl %6,%5,%3\n"
535 		"	mskwh %2,%5,%2\n"
536 		"	mskwl %1,%5,%1\n"
537 		"	or %2,%4,%2\n"
538 		"	or %1,%3,%1\n"
539 		"3:	stq_u %2,1(%5)\n"
540 		"4:	stq_u %1,0(%5)\n"
541 		"5:\n"
542 		EXC(1b,5b,%2,%0)
543 		EXC(2b,5b,%1,%0)
544 		EXC(3b,5b,$31,%0)
545 		EXC(4b,5b,$31,%0)
546 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
547 			  "=&r"(tmp3), "=&r"(tmp4)
548 			: "r"(va), "r"(una_reg(reg)), "0"(0));
549 		if (error)
550 			goto got_exception;
551 		return;
552 
553 	case 0x2c: /* stl */
554 		__asm__ __volatile__(
555 		"1:	ldq_u %2,3(%5)\n"
556 		"2:	ldq_u %1,0(%5)\n"
557 		"	inslh %6,%5,%4\n"
558 		"	insll %6,%5,%3\n"
559 		"	msklh %2,%5,%2\n"
560 		"	mskll %1,%5,%1\n"
561 		"	or %2,%4,%2\n"
562 		"	or %1,%3,%1\n"
563 		"3:	stq_u %2,3(%5)\n"
564 		"4:	stq_u %1,0(%5)\n"
565 		"5:\n"
566 		EXC(1b,5b,%2,%0)
567 		EXC(2b,5b,%1,%0)
568 		EXC(3b,5b,$31,%0)
569 		EXC(4b,5b,$31,%0)
570 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
571 			  "=&r"(tmp3), "=&r"(tmp4)
572 			: "r"(va), "r"(una_reg(reg)), "0"(0));
573 		if (error)
574 			goto got_exception;
575 		return;
576 
577 	case 0x2d: /* stq */
578 		__asm__ __volatile__(
579 		"1:	ldq_u %2,7(%5)\n"
580 		"2:	ldq_u %1,0(%5)\n"
581 		"	insqh %6,%5,%4\n"
582 		"	insql %6,%5,%3\n"
583 		"	mskqh %2,%5,%2\n"
584 		"	mskql %1,%5,%1\n"
585 		"	or %2,%4,%2\n"
586 		"	or %1,%3,%1\n"
587 		"3:	stq_u %2,7(%5)\n"
588 		"4:	stq_u %1,0(%5)\n"
589 		"5:\n"
590 		EXC(1b,5b,%2,%0)
591 		EXC(2b,5b,%1,%0)
592 		EXC(3b,5b,$31,%0)
593 		EXC(4b,5b,$31,%0)
594 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
595 			  "=&r"(tmp3), "=&r"(tmp4)
596 			: "r"(va), "r"(una_reg(reg)), "0"(0));
597 		if (error)
598 			goto got_exception;
599 		return;
600 	}
601 
602 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
603 		pc, va, opcode, reg);
604 	do_exit(SIGSEGV);
605 
606 got_exception:
607 	/* Ok, we caught the exception, but we don't want it.  Is there
608 	   someone to pass it along to?  */
609 	if ((fixup = search_exception_tables(pc)) != 0) {
610 		unsigned long newpc;
611 		newpc = fixup_exception(una_reg, fixup, pc);
612 
613 		printk("Forwarding unaligned exception at %lx (%lx)\n",
614 		       pc, newpc);
615 
616 		regs->pc = newpc;
617 		return;
618 	}
619 
620 	/*
621 	 * Yikes!  No one to forward the exception to.
622 	 * Since the registers are in a weird format, dump them ourselves.
623  	 */
624 
625 	printk("%s(%d): unhandled unaligned exception\n",
626 	       current->comm, task_pid_nr(current));
627 
628 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
629 	       pc, una_reg(26), regs->ps);
630 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
631 	       una_reg(0), una_reg(1), una_reg(2));
632 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
633  	       una_reg(3), una_reg(4), una_reg(5));
634 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
635 	       una_reg(6), una_reg(7), una_reg(8));
636 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
637 	       una_reg(9), una_reg(10), una_reg(11));
638 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
639 	       una_reg(12), una_reg(13), una_reg(14));
640 	printk("r15= %016lx\n", una_reg(15));
641 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
642 	       una_reg(16), una_reg(17), una_reg(18));
643 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
644  	       una_reg(19), una_reg(20), una_reg(21));
645  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
646 	       una_reg(22), una_reg(23), una_reg(24));
647 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
648 	       una_reg(25), una_reg(27), una_reg(28));
649 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
650 
651 	dik_show_code((unsigned int *)pc);
652 	dik_show_trace((unsigned long *)(regs+1));
653 
654 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
655 		printk("die_if_kernel recursion detected.\n");
656 		local_irq_enable();
657 		while (1);
658 	}
659 	do_exit(SIGSEGV);
660 }
661 
662 /*
663  * Convert an s-floating point value in memory format to the
664  * corresponding value in register format.  The exponent
665  * needs to be remapped to preserve non-finite values
666  * (infinities, not-a-numbers, denormals).
667  */
668 static inline unsigned long
669 s_mem_to_reg (unsigned long s_mem)
670 {
671 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
672 	unsigned long sign    = (s_mem >> 31) & 0x1;
673 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
674 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
675 	unsigned long exp;
676 
677 	exp = (exp_msb << 10) | exp_low;	/* common case */
678 	if (exp_msb) {
679 		if (exp_low == 0x7f) {
680 			exp = 0x7ff;
681 		}
682 	} else {
683 		if (exp_low == 0x00) {
684 			exp = 0x000;
685 		} else {
686 			exp |= (0x7 << 7);
687 		}
688 	}
689 	return (sign << 63) | (exp << 52) | (frac << 29);
690 }
691 
692 /*
693  * Convert an s-floating point value in register format to the
694  * corresponding value in memory format.
695  */
696 static inline unsigned long
697 s_reg_to_mem (unsigned long s_reg)
698 {
699 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
700 }
701 
702 /*
703  * Handle user-level unaligned fault.  Handling user-level unaligned
704  * faults is *extremely* slow and produces nasty messages.  A user
705  * program *should* fix unaligned faults ASAP.
706  *
707  * Notice that we have (almost) the regular kernel stack layout here,
708  * so finding the appropriate registers is a little more difficult
709  * than in the kernel case.
710  *
711  * Finally, we handle regular integer load/stores only.  In
712  * particular, load-linked/store-conditionally and floating point
713  * load/stores are not supported.  The former make no sense with
714  * unaligned faults (they are guaranteed to fail) and I don't think
715  * the latter will occur in any decent program.
716  *
717  * Sigh. We *do* have to handle some FP operations, because GCC will
718  * uses them as temporary storage for integer memory to memory copies.
719  * However, we need to deal with stt/ldt and sts/lds only.
720  */
721 
722 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
723 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
724 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
725 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
726 
727 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
728 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
729 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
730 
731 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
732 
733 static int unauser_reg_offsets[32] = {
734 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
735 	/* r9 ... r15 are stored in front of regs.  */
736 	-56, -48, -40, -32, -24, -16, -8,
737 	R(r16), R(r17), R(r18),
738 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
739 	R(r27), R(r28), R(gp),
740 	0, 0
741 };
742 
743 #undef R
744 
745 asmlinkage void
746 do_entUnaUser(void __user * va, unsigned long opcode,
747 	      unsigned long reg, struct pt_regs *regs)
748 {
749 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
750 
751 	unsigned long tmp1, tmp2, tmp3, tmp4;
752 	unsigned long fake_reg, *reg_addr = &fake_reg;
753 	siginfo_t info;
754 	long error;
755 
756 	/* Check the UAC bits to decide what the user wants us to do
757 	   with the unaliged access.  */
758 
759 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
760 		if (__ratelimit(&ratelimit)) {
761 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
762 			       current->comm, task_pid_nr(current),
763 			       regs->pc - 4, va, opcode, reg);
764 		}
765 	}
766 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
767 		goto give_sigbus;
768 	/* Not sure why you'd want to use this, but... */
769 	if ((current_thread_info()->status & TS_UAC_NOFIX))
770 		return;
771 
772 	/* Don't bother reading ds in the access check since we already
773 	   know that this came from the user.  Also rely on the fact that
774 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
775 	if ((unsigned long)va >= TASK_SIZE)
776 		goto give_sigsegv;
777 
778 	++unaligned[1].count;
779 	unaligned[1].va = (unsigned long)va;
780 	unaligned[1].pc = regs->pc - 4;
781 
782 	if ((1L << opcode) & OP_INT_MASK) {
783 		/* it's an integer load/store */
784 		if (reg < 30) {
785 			reg_addr = (unsigned long *)
786 			  ((char *)regs + unauser_reg_offsets[reg]);
787 		} else if (reg == 30) {
788 			/* usp in PAL regs */
789 			fake_reg = rdusp();
790 		} else {
791 			/* zero "register" */
792 			fake_reg = 0;
793 		}
794 	}
795 
796 	/* We don't want to use the generic get/put unaligned macros as
797 	   we want to trap exceptions.  Only if we actually get an
798 	   exception will we decide whether we should have caught it.  */
799 
800 	switch (opcode) {
801 	case 0x0c: /* ldwu */
802 		__asm__ __volatile__(
803 		"1:	ldq_u %1,0(%3)\n"
804 		"2:	ldq_u %2,1(%3)\n"
805 		"	extwl %1,%3,%1\n"
806 		"	extwh %2,%3,%2\n"
807 		"3:\n"
808 		EXC(1b,3b,%1,%0)
809 		EXC(2b,3b,%2,%0)
810 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
811 			: "r"(va), "0"(0));
812 		if (error)
813 			goto give_sigsegv;
814 		*reg_addr = tmp1|tmp2;
815 		break;
816 
817 	case 0x22: /* lds */
818 		__asm__ __volatile__(
819 		"1:	ldq_u %1,0(%3)\n"
820 		"2:	ldq_u %2,3(%3)\n"
821 		"	extll %1,%3,%1\n"
822 		"	extlh %2,%3,%2\n"
823 		"3:\n"
824 		EXC(1b,3b,%1,%0)
825 		EXC(2b,3b,%2,%0)
826 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
827 			: "r"(va), "0"(0));
828 		if (error)
829 			goto give_sigsegv;
830 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
831 		return;
832 
833 	case 0x23: /* ldt */
834 		__asm__ __volatile__(
835 		"1:	ldq_u %1,0(%3)\n"
836 		"2:	ldq_u %2,7(%3)\n"
837 		"	extql %1,%3,%1\n"
838 		"	extqh %2,%3,%2\n"
839 		"3:\n"
840 		EXC(1b,3b,%1,%0)
841 		EXC(2b,3b,%2,%0)
842 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
843 			: "r"(va), "0"(0));
844 		if (error)
845 			goto give_sigsegv;
846 		alpha_write_fp_reg(reg, tmp1|tmp2);
847 		return;
848 
849 	case 0x28: /* ldl */
850 		__asm__ __volatile__(
851 		"1:	ldq_u %1,0(%3)\n"
852 		"2:	ldq_u %2,3(%3)\n"
853 		"	extll %1,%3,%1\n"
854 		"	extlh %2,%3,%2\n"
855 		"3:\n"
856 		EXC(1b,3b,%1,%0)
857 		EXC(2b,3b,%2,%0)
858 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
859 			: "r"(va), "0"(0));
860 		if (error)
861 			goto give_sigsegv;
862 		*reg_addr = (int)(tmp1|tmp2);
863 		break;
864 
865 	case 0x29: /* ldq */
866 		__asm__ __volatile__(
867 		"1:	ldq_u %1,0(%3)\n"
868 		"2:	ldq_u %2,7(%3)\n"
869 		"	extql %1,%3,%1\n"
870 		"	extqh %2,%3,%2\n"
871 		"3:\n"
872 		EXC(1b,3b,%1,%0)
873 		EXC(2b,3b,%2,%0)
874 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
875 			: "r"(va), "0"(0));
876 		if (error)
877 			goto give_sigsegv;
878 		*reg_addr = tmp1|tmp2;
879 		break;
880 
881 	/* Note that the store sequences do not indicate that they change
882 	   memory because it _should_ be affecting nothing in this context.
883 	   (Otherwise we have other, much larger, problems.)  */
884 	case 0x0d: /* stw */
885 		__asm__ __volatile__(
886 		"1:	ldq_u %2,1(%5)\n"
887 		"2:	ldq_u %1,0(%5)\n"
888 		"	inswh %6,%5,%4\n"
889 		"	inswl %6,%5,%3\n"
890 		"	mskwh %2,%5,%2\n"
891 		"	mskwl %1,%5,%1\n"
892 		"	or %2,%4,%2\n"
893 		"	or %1,%3,%1\n"
894 		"3:	stq_u %2,1(%5)\n"
895 		"4:	stq_u %1,0(%5)\n"
896 		"5:\n"
897 		EXC(1b,5b,%2,%0)
898 		EXC(2b,5b,%1,%0)
899 		EXC(3b,5b,$31,%0)
900 		EXC(4b,5b,$31,%0)
901 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
902 			  "=&r"(tmp3), "=&r"(tmp4)
903 			: "r"(va), "r"(*reg_addr), "0"(0));
904 		if (error)
905 			goto give_sigsegv;
906 		return;
907 
908 	case 0x26: /* sts */
909 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
910 		/* FALLTHRU */
911 
912 	case 0x2c: /* stl */
913 		__asm__ __volatile__(
914 		"1:	ldq_u %2,3(%5)\n"
915 		"2:	ldq_u %1,0(%5)\n"
916 		"	inslh %6,%5,%4\n"
917 		"	insll %6,%5,%3\n"
918 		"	msklh %2,%5,%2\n"
919 		"	mskll %1,%5,%1\n"
920 		"	or %2,%4,%2\n"
921 		"	or %1,%3,%1\n"
922 		"3:	stq_u %2,3(%5)\n"
923 		"4:	stq_u %1,0(%5)\n"
924 		"5:\n"
925 		EXC(1b,5b,%2,%0)
926 		EXC(2b,5b,%1,%0)
927 		EXC(3b,5b,$31,%0)
928 		EXC(4b,5b,$31,%0)
929 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
930 			  "=&r"(tmp3), "=&r"(tmp4)
931 			: "r"(va), "r"(*reg_addr), "0"(0));
932 		if (error)
933 			goto give_sigsegv;
934 		return;
935 
936 	case 0x27: /* stt */
937 		fake_reg = alpha_read_fp_reg(reg);
938 		/* FALLTHRU */
939 
940 	case 0x2d: /* stq */
941 		__asm__ __volatile__(
942 		"1:	ldq_u %2,7(%5)\n"
943 		"2:	ldq_u %1,0(%5)\n"
944 		"	insqh %6,%5,%4\n"
945 		"	insql %6,%5,%3\n"
946 		"	mskqh %2,%5,%2\n"
947 		"	mskql %1,%5,%1\n"
948 		"	or %2,%4,%2\n"
949 		"	or %1,%3,%1\n"
950 		"3:	stq_u %2,7(%5)\n"
951 		"4:	stq_u %1,0(%5)\n"
952 		"5:\n"
953 		EXC(1b,5b,%2,%0)
954 		EXC(2b,5b,%1,%0)
955 		EXC(3b,5b,$31,%0)
956 		EXC(4b,5b,$31,%0)
957 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
958 			  "=&r"(tmp3), "=&r"(tmp4)
959 			: "r"(va), "r"(*reg_addr), "0"(0));
960 		if (error)
961 			goto give_sigsegv;
962 		return;
963 
964 	default:
965 		/* What instruction were you trying to use, exactly?  */
966 		goto give_sigbus;
967 	}
968 
969 	/* Only integer loads should get here; everyone else returns early. */
970 	if (reg == 30)
971 		wrusp(fake_reg);
972 	return;
973 
974 give_sigsegv:
975 	regs->pc -= 4;  /* make pc point to faulting insn */
976 	info.si_signo = SIGSEGV;
977 	info.si_errno = 0;
978 
979 	/* We need to replicate some of the logic in mm/fault.c,
980 	   since we don't have access to the fault code in the
981 	   exception handling return path.  */
982 	if ((unsigned long)va >= TASK_SIZE)
983 		info.si_code = SEGV_ACCERR;
984 	else {
985 		struct mm_struct *mm = current->mm;
986 		down_read(&mm->mmap_sem);
987 		if (find_vma(mm, (unsigned long)va))
988 			info.si_code = SEGV_ACCERR;
989 		else
990 			info.si_code = SEGV_MAPERR;
991 		up_read(&mm->mmap_sem);
992 	}
993 	info.si_addr = va;
994 	send_sig_info(SIGSEGV, &info, current);
995 	return;
996 
997 give_sigbus:
998 	regs->pc -= 4;
999 	info.si_signo = SIGBUS;
1000 	info.si_errno = 0;
1001 	info.si_code = BUS_ADRALN;
1002 	info.si_addr = va;
1003 	send_sig_info(SIGBUS, &info, current);
1004 	return;
1005 }
1006 
1007 void
1008 trap_init(void)
1009 {
1010 	/* Tell PAL-code what global pointer we want in the kernel.  */
1011 	register unsigned long gptr __asm__("$29");
1012 	wrkgp(gptr);
1013 
1014 	/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1015 	   a bug in the handling of the opDEC fault.  Fix it up if so.  */
1016 	if (implver() == IMPLVER_EV4)
1017 		opDEC_check();
1018 
1019 	wrent(entArith, 1);
1020 	wrent(entMM, 2);
1021 	wrent(entIF, 3);
1022 	wrent(entUna, 4);
1023 	wrent(entSys, 5);
1024 	wrent(entDbg, 6);
1025 }
1026